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The general techniques developed in an earlier paper [J. Math. Phys. 10, 494 (1969)] are applied to
evaluate the singularities and discontinuities of unitarity integrals. The results are conveniently expressed
in terms of what we call mechanism (or M) diagrams.

1. INTRODUCTION

A unitarity integral is regarded as an integral over
real loop momenta of an integrand which is a product
of mass-shell é functions and mass-shell amplitudes
possessing the Landau—Cutkosky singularity structure.
This paper applies the results of a previous paper,!
hereafter called I, to the singularities of unitarity
integrals occurring for physical momenta. The main
problem in doing this is the framing of a suitable
language or notation in which to deal with combina-
torial complications. Since the anticipated singularities
lie on arcs of Landau curves which can be related to
Landau diagrams, and since the unitarity integrals
themselves can be represented by unitarity diagrams,?
it is natural to develop a diagrammatic technique. In
fact, it is already known® (and here confirmed. in
greater detail) that, roughly speaking, the singularities
of unitarity integrals correspond to diagrams obtained
by replacing the “bubbles’ of the unitarity diagram by
Landau diagrams corresponding to possible singulari-
ties of the bubbles. The diagram so obtained is called
a mechanism (or M) diagram, and plays a central role
in providing simple rules for further important
properties of the singularities, namely, (i) in dis-
tinguishing which arcs of a Landau curve may be
singular, (i) in determining whether (and if so in
what sense) the evaluations of the unitarity integral
on the two sides of the singularity /. and I. are
analytically related, (iii) in determining (where rel-
evant) the discontinuity of the unitarity integral,
paying special attention to the integration region and
over-all numerical factors, and (iv) in providing general
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rules for the quantities 7, — I, ,, where I is
a continuation of I, to the same side as I, .

The work applies to any unitarity integral, however
many particles are involved, and to any singularity,
providing that the corresponding Landau diagram has
no more than one line joining any two bubbles (a
restriction we intend to remove in a future paper). We
exclude points where the singular curve has a node or
intersects other singular curves. In Sec. 2 we recall
how Landau singularities and unitarity integrals are
conveniently related to Landau and unitarity dia-
grams, and in Sec. 3 we use the idea of a mechanism
diagram to find what singularities unitarity integrals
may have. The M diagram is relevant for each of the
three classes of singularity distinguished in I—gener-
ative, explicit, and regenerative—and it also provides
a rule for the natural distortion prescribing the
analytic relation, if any, between /. and 7. . In Sec.
4 we find that the main difficulty in using the results
of I to evaluate the discontinuity due to a specific
generative mechanism is that, when we have identical
particles, a given singularity may be generated by
many different sets of singularity surfaces, and we must
have a technique for counting the different pinch
points that arise. This is provided by a simple group-
theoretic treatment of permutational symmetries in
the relevant diagrams. In Sec. 5 we derive rules for
evaluating I, — (I.),; thatare valid, no matter how
the singularity originates. This is our main result, and
it is employed in the subsequent paper, in which the
unitarity equations are used to determine the singu-
larities of the amplitude itself.

<n—i€

2. LANDAU DIAGRAMS

Consider a diagram representing a sequence of
intermediate scattering processes that may occur for a
given number of initial and final external particles. By
energy-momentum conservation at each vertex, each
internal line carries a four-momentum ¢, which is a
linear combination of the external momenta p and
loop momenta k, just as in a Feynman diagram.
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Fic. 1. Examples of Landau diagram; (a), (b), and (f) are non-
simple. With », and n, as explained in the text we have (a) n, =
ng=2,(b) np=n,=6, (c) npb=6n,=2, (d np=n, =1,
@np=n,=2and (f)n,=8n,=4.
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Associated with one such diagram will be the set of
Landau equations:

g* — m?2 =0 for each internal line,

> ag =0 for each loop i .1

k

(where the summation runs over lines carrying k& and
is measured in the sense of the loop), which implicitly
define a Landau curve L(p) = 0. If the equations have
a solution for physical p (so that the Landau curve
enters the physical region for the amplitude) and for
real ¢, then each « is real and (making some choice of
over-all factor) has a definite sign, as does each ¢,.
Corresponding to a particular solution of this sort, we
draw a diagram orientated so that positive energy
flows in a definite sense, say from right to left, and we
label the lines with the signs of the &’s. This diagram we
call the Landau diagram, and examples are given in
Fig. 1. Note that to preserve the sense of energy flow
we may be obliged to stretch out a vertex, as in the
so-called “pseudothreshold” of 1(c).

Our Landau diagram thus corresponds to a partic-
ular solution of the Landau equations rather than to
the curve itself. If a diagram has a symmetry thatallows
internal lines to be permuted without altering its
structure (while holding external lines fixed and
paying no regard to line labels or sense), this tells us
that any new association of ¢’s to internal lines which
is effected by the permutation is also a solution to the
equations at the same p. These symmetry operations
form a group which we call G, of order np. It is also
convenient to define a group G, of order ny , which
is the subgroup of G which respects both the sense

BLOXHAM, OLIVE, AND POLKINGHORNE

of the internal lines and their labels (4, —).
Ilustrations appear in Fig. 1.

In what follows we shall assume, for simplicity,
that only one Landau diagram corresponds to the
Landau curve under consideration, and that the
various solutions at a particular p are all related by
symmetry operations which are elements of Gz . This
restriction is not essential, as we note in Sec. 5.

As explained in I, we can express the Landau curve
as

Lp=3alg®?—m?) =0 2.2)
and define a normal variable 7 by
oL
d=—"dp = (E aq)/dp, (2.3)
D ?

where Y, runs over lines carrying p and a summation
over the p’s is understood. This variable depends, of
course, on the choice of over-all sign for the o’s. (If
the «’s have the same sign, we shall conventionally
choose them to be all positive.)

Unitarity Integrals

Unitarity integrals are conveniently represented by
diagrams, called I diagrams, of which examples are
given in Fig. 2. The contribution (also called 7) that
a unitarity integral makes to the right-hand side of the
unitarity equation is given by the rules®:

(i) AT or A~ for each 4 or — bubble, respectively,

(it) —2midt(q2 — m?) for each internal line,

(iii) | i(2m)~* d*% for each loop,

(iv) (n7)~! where n; is the symmetry number of the

diagram,
(V) — ( _ l)number of minus bubbles'

(2.4)

The symmetry number #; is defined as the number of
permutations of internal lines that leave the structure
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FiG. 2. Examples of I diagrams.
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of the diagram unchanged, and is made up of factors
n for each n-particle intermediate state joining two
bubbles.

The integrand thus has é-functions constraints

D(p k=g —m*=0 (2.5)

and real singularities which are the real singularities of
the bubbles. These we assume to be the positive-a
parts of Landau curves.? They can be written

S(p, k) =3 &(g? —m*) =0, (2.6)
wherethe &’sare all positive and theg’s are the momenta
of the lines of the corresponding Landau diagram for
the bubble. & and ¢ are solutions to the Landau
equations for that diagram and so are expressed in
terms of the external and loop momenta p and k that
appear in [ itself. We further assume, as for Feynman
integrals, the 4+ and — amplitudes are n + ie¢ and
7 — ie limits, respectively, on to # real. Hence the
singularities S of the integrand obey as S + ie or
S — ie prescription accordingly as they occur in
a 4 or — bubble, that is, the sign of the prescription
is that of the bubble label.

For *“simple” singularities (those corresponding to
Landau diagrams with only single lines joining any
two bubbles) we assume that the discontinuity in 7 of
the + amplitude is given in terms of the corresponding
Landau diagram by the Cutkosky rules:

(i) A* for each bubble,
(ii) —2mid* (g2 — m?) for each line,

(iii) { i(2m)~* d* for each loop,

(iv) (nr)™, where n;, is defined above.

Q.7

This agrees with the result obtained in perturbation
theory (see I, Sec. 4), if we note that any inequality of
ny, and np will be compensated by the appearance of
0% rather than ¢ in the rules above. This reduces the
number of pinch points counted, according to argu-
ments similar to ones that will be presented in Sec. 4.
In the case when more than one singularity coming
from a particular bubble participates in the pinch, it is
the multiple discontinuity at their intersection which is
relevant. As we see later, this vanishes unless the
singularities can be put together in one hinged diagram
[such as Figs. 2(c) or 2(d)], in which case the multiple
discontinuity is given by the rules above.

3. SINGULARITIES OF UNITARITY
INTEGRALS

Unitarity integrals satisfy the appropriate conditions
for Theorems 1 and 2 of I. We distinguish four

4 This and following assumptions are proved in succeeding papers.
Though the proof employs results derived in this paper, it is in-
ductive, and the argument not therefore circular.

® This is associated with what Pham (Ref. 7) calls a fiber product.
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possibilities:

(a) Generative singularity, in which the $’s coming
from a particular bubble can be represented by one
diagram for that bubble (so that if more than one S
comes from a particular bubble, they are to correspond
to the hinged diagram just discussed). In the unitarity
diagram I we replace each bubble by the Landau
diagram corresponding to its particular participating
singularity, if any, and label the new bubbles with the
sign of the parent bubble, obtaining what we shall call
the M diagram. According to I, Sec. 2, the resulting
singularity has equation L(p) = X oS + > aD = 0.
By (2.2) and (2.6) this is

Lip)=> a(g® —m») =0, 3.

where the summation extends over the lines of the M
diagram, the ¢ being its internal momenta. Further,

o  forphasespacelines appearing in M (zero if
they do not participate),
&o for lines that appear in M through having
been inserted in the bubbles of 1.
(3.2)

We consider the lines of M as being labeled with the
signs of the «’s, if nonzero, and with the label o if
« = 0 (which can only apply to phase-space lines).
Then from (2.2) we recognize (3.1) as the equation of
the Landau singularity corresponding to the Landau
diagram obtained by contracting out the o lines. In
Fig. 3 we give examples of the procedure I - M — L.

(b) Generative singularities not of type (a). In this
case two or more S’s coming from a particular bubble
cannot be represented by a single diagram. The
resultant singularity cannot therefore be represented
by a Landau diagram, and would not appear to be a
Landau singularity. Although this sort of pinch is

Fi1G. 3. Examples of the procedure 7 — M — L for
generative mechanisms.
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F1G. 4. Examples of the procedure / — M — L for
explicit mechanisms.

genuine, we shall see that such singularities are
spurious as they have zero discontinuity. %’

(c) Explicit singularity. This is just case (a) with no
S’s and hence no insertions, and can lead only to
Landau singularities (see Fig. 4).

(d) Regenerative singularity. In this case we have a
singularity of a bubble which does not depend on the
integration variables. Diagrammatically, the effect is
that the M diagram is hinged in a characteristic way,
as in Fig. 5. We sum up possibilities (a), (c), and
(d) in

Rule 1: Physical unitarity integrals may be singular
on the Landau curves corresponding to diagrams
obtained by inserting some (or no) physical sub-
diagrams into the bubbles and contracting some (or
no) phase space lines.

Natural Distortions

According to the first theorem of I, to be singular

a particular mechanism must satisfy
sign oy€; = Sin g€, = * * * = sign €., (3.3)
that is, the quantities oe¢ take the same sign for each
singularity, and e, is an increment of that sign. If
the singularity is explicit, we understand ., = 0,
as this equation suggests. Furthermore, according to
Theorem 2 of paper I, the integrals I, and I (eval-
uated in 7 > 0 and 7 < 0) are not analytically related
if €,,, = 0. For brevity we shall say the mechanism is
singular + if €, 2 0, and singular — if €, <O0.
With this definition explicit mechanisms are both. As
the sign of the ¢, associated with each S, in our unitarity
integral is simply the label of the bubble, (3.3) implies
that, for singularity, sign o = sign €, times the label
of the bubble. By (3.2), as & > 0, this is also the line

¢ I, T. Drummond, Nuovo Cimento 29, 720 (1963).
? F. Pham, Ann. Inst. H. Poincaré 6, 89 (1967).
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label of any line inserted into the bubble. So we have

Rule 2: The mechanism corresponding to a partic-
ular M diagram is

singular + if every line joining + bubbles has label +
and every line joining — bubbles has label —,

singular — ifevery line joining + bubbles has label —
and every line joining — bubbles has label +,

and nonsingular otherwise.

Note that although the line labeling of an M diagram
has an arbitrary over-all sign, the rule itself is intrinsic
because the notion of singular + also depends on this
sign through the definition of 7. The mechanism
diagrams in Figs. 3 and 5 are singular +.

Effects of Contracting Out o Lines

According to Theorem 1 of I, there is the further
necessary condition for singularity that, for non-
participating D’s, D = 0. In terms of the M diagram,
this means that each o line must satisfy both momen-
tum conservation and ¢ — m? = 0. First we note
that if one o line joins two bubbles, then all other
lines joining these two bubbles must be o lines, if L
is to be sensible.

Suppose only one o line joins two bubbles. Its
momentum is determined by momentum conservation
in terms of the other lines of M, and hence, on the
Landau curve, in terms of the external momenta p.
When ¢ = m?, which is necessary for singularity, the
Landau equations which involve this line in addition
are also satisfied, but with the corresponding « zero.
Thus the Landau curve corresponding to the diagram
got by contracting a single o line is nonsingular except
at the effective intersection with the higher-order curve
corresponding to the participation of the line.

Now consider a case where many o lines join two
given bubbles. If k are the loop momenta they form,
then the participating S’s and D’s are independent of
k and we have the infinite degeneracy situation con-
sidered in Sec. 3 of paper I. Reality and the mass shell
conditions for the o lines imply

P> X mpe

where Y runs over the o lines. Consequently, singu-
larity occurs only on the part of the Landau curve

EO=cR AN

FiGc. 5. An example of the procedure I - M — L
for a regenerative mechanism.
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where this is true. The transition between singularity
and nonsingularity takes place when the equality
holds, in which case the Landau equations for the
higher-order curve in which these o lines participate,
with zero «’s, are also satisfied. Thus we have the
antihierarchial effect,® mentioned in I, that the singu-
larity of unitarity integrals may be affected by effective
intersections with higher-order Landau curves.

These two phenomena are quite awkward in that we
can no longer classify singularities solely by the « signs
on L. Fortunately, they will each be automatically
accounted for by our subsequent discontinuity for-
mula, and need not be explicitly considered.

From our analysis we discover that unitarity inte-
grals are in general singular on different parts of
Landau curves from Feynman integrals, so that we
cannot say they have global ie prescriptions, both
because the sense in which they are limits onto 9 = 0
depends upon the signs of the «’s and because they may
be singular in regions containing places where the
normal variable % may cease to be defined.

4. DISCONTINUITIES OF UNITARITY
INTEGRALS
According to the ideas of paper I, we can isolate
contributions to a given discontinuity that are due to
different mechanisms by choosing suitable R regions
to surround the pinch points. The first main discon-
tinuity result of this paper is that the contribution to
dif.> I arising from a given generative mechanism is
given by
M> - (M<)y,—i€nat ’ (41)

where M is an integral obtained from the A/ diagram
corresponding to the generative mechanism by the
diagrammatic rules below. M, is M evaluated in
n >0 and (M<),,_iElmt is the continuation of M
evaluated in # < 0 into the region > 0 following an
n — ie,,; detour at the singularity # = 0. The rules
are
(i) A+ or A~ for each + or — bubble;
(i) —2wid+(q® — m?) for each line;
(iii) § i(2m)~* d* for each loop;
(iv) (n)~ where nj, is the symmetry number of the
M diagram;
(V) — (_ l)number of minus bubbles R
(vi) the integration is restricted to regions in the
space of loop momenta of M that are not
contracted out. These regions surround the
pinch points corresponding to the line labeling
of the M diagram.
4.2)

8 P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, Nuovo
Cimento 43, 444 (1966),
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The symmetry number 7, is the number of permuta-
tions of the internal lines of M that preserve M,
holding external lines fixed and taking into account
the labeling of its bubbles and of its lines. The re-
semblances between these rules and the unitarity and
Cutkosky rules (2.4) and (2.7) are of course significant
and fortunate for the ease of future analysis. We now
derive these rules.

First Steps in the Proof

In paper I (Theorem 3) we showed that the contri-
bution to the discontinuity of the integral arising from
a particular generative mechanism characterized by a
pinch of singularity surfaces S and constraint surfaces
D is given by

Cs = (Cymieny» 4.3)
where
C= I dify fdk, (4.9
R(k)>0 ¢

where R > 0 is a region surrounding the pinch point
k, y, are > or < chosen arbitrarily, and fis under-
stood to contain the constraints. In our case fis a
product of A*’s, A7’s, and mass-shell d functions. In
S > 0, difg ffor an Soccurringina + bubble is got by
replacing that 4* by its Cutkosky discontinuity (2.7).
If S occurs in a — bubble, then as — is found by
Hermitian conjugation of a + amplitude, so is its
dif: dif A~ = (dif 4*)". Under Hermitian conjugation
of the rules (2.7), each A* becomes A~. According to
the rules, there is also an imaginary factor (i)™,
where / and m are the numbers of loops and lines of
L, which under conjugation becomes (—i)*~™, thereby
introducing a factor (—1)™~, Now for any connected
diagram, m — ! = v — 1, where v is the number of
vertices. Therefore in S > 0 difg 4~ is given directly
in terms of the L diagram corresponding to S by the
rules

(i) A~ for each bubble,
(ii) —2mid+(g® — m?®) for each line,
(iii) f i(2m)~* d*%* for each loop,

@iv) (nr)tasin (2.7),
(V) —_ (_ l)number of minus bubbles.

4.5

Since in Eq. (2.6) we adopted the convention & > 0,
it is in the region S > 0 that the Cutkosky formula is
valid with real contours of integration. Further, the
Cutkosky integrals vanish in § < 0 since, according to
Pham,? there is a real vanishing cycle in S > 0.
Accordingly, we choose to set each y, in (4.4) equal to
>. Inserting (2.7) and (4.5) into (4.4), we see that we
do indeed get an A+ or A~ factor for each (+) or (—)
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bubble of the M diagram. Further, each (—) bubble
brings an extra factor (—1), so we have understood
aspects (i), (i), (iii), and (v) of (4.2). We go on to
discuss (iv) in the next subsection. As for (vi), the
restriction on the uncontracted loop momenta
appearing on the original integral follows from the
R region ideas of I, whilst the fact that the loop
momenta which correspond to the use of the Cutkosky
formula for dif’s of the integrand are similarly
restricted is due to the existence of the vanishing cycle
already noted. The argument is unaffected by infinite
degeneracies associated with multiple o lines; compare
the discussion of this point in I.

The Symmetry Factor

The factor (n, [] ne)™ (where np are symmetry
numbers associated with inserted Cutkosky formulas)
for one contribution is not, in general, the n3} given
by our rules. This is because the M diagram may
represent more than one mechanism. For example, in
Fig. 3(a) for the equal-mass case L is generated in I not
only by the pole at 5,33 = m?, but also by the pole at
S237 = m? and the contributions to the discontinuity
from the two mechanisms are the same. The numerical
factor is therefore twice the (nn)* of each contri-
bution, or 2 x (2 x 1)7!, which is n3}, ny the
symmetry number of the M diagram, as predicted by
the rules. Similarly, in Fig. 3(b) the three generative
mechanism in I involving poles in (5559 and Ssg),
(5565 and Sass), and (s567 and Sa3;) yield a contribution
which when expressed as an integral over just one
R region carries a numerical factor 3 x (6 X 1)1,
= nyt.

For identical particles, symmetries imply that pinch
points can occur together in sets—for if there is one
mechanism making 7 singular at a given j, then there
may be many, as in the above examples. Furthermore,
as a symmetry in the M diagram reflects a symmetry
in the Landau equations, a given set of S’s may pinch
at several places at once. We have chosen to represent
all these symmetry-related pinches by one M diagram;
consequently, to find the numerical factor associated
with its contribution we shall have to count how many
such pinch points there are. The first step is to count
the number of mechanisms, that is, the number of
distinct insertions of Landau singularities into the
bubbles of I that lead to a given M.

Let us number the internal lines of the unitarity
diagram / in order that we may distinguish them, and
let G; be the group of permutations of these lines
which preserve the structure of I when the external
lines are held fixed. The order of G; is n;, the number
appearing in the rules (2.4). Let us similarly label
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the corresponding lines of the M diagram and permute
these labels according to elements of G; to get a new
diagram. If the permutation is such that the resultant
diagram can be rearranged into its original form while
holding external lines fixed, then the singularities of
the unitarity integrand indicated by these two M
diagrams are the same. Examples are (78) in Fig. 3(b)
and (13)(24) in Fig. 3(d). Such permutations form a
group which we call Gg, a subgroup of G;. Per-
mutations for which this rearrangement is impossible
[e.g., (78) in Fig. 3(a)] lead to different singularities of
the unitarity integrand which nevertheless generate
the same singularity I" unless we break our assumption
that I" corresponds to a unique Landau diagram.

The cosets of Gg in G; are in one-to-one corre-
spondence with the distinct sets of similar singularities
of the [ integrand giving I'. By Lagrange’s theorem,
there are n;/ng of these sets. In order usefully to
re-express this number ng we now number all internal
lines of the M diagram and define

G ; = group of permutations of lines of M leaving
it invariant, while holding external lines
fixed and respecting bubble labels,

G (G_) = group of permutations of lines of M joining
+ (=) bubbles that leave M invariant,
holding all other lines fixed.

By invariant we mean that the final diagram can be
rearranged into the original diagram without per-
muting any lines.

Then G, ® G_ is an invariant subgroup of G,; and
the quotient group G,,/G, ® G_ is isomorphic to the
G defined above.

According to Bose (or Fermi) statistics, the unitar-
ity integrand is invariant under permutations of
phase-space momenta given by S7, and so the n;/ng =
nm.n_[Ai,, symmetry-related sets of S’s contribute
equally to the discontinuity across I'. The discontinuity
contributed by one set has a numerical factor (n)™
coming from I [see (2.4)] and factors (n,)"* and (n_)!
coming from the inserted Cutkosky formulas (2.7)
and (4.5). Hence, adding contributions, the over-all
numerical factor associated with the M diagram
contribution is

11 1 nmn_

provided we integrate the M integral over the R
regions associated with all the pinch points involving
one particular set of S’s.

In (4.2) we integrated over what may be a smaller
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number of R regions, namely, those associated with
pinch points corresponding to a specific line labeling
of the phase space lines in M, and we had a numerical
factor (n;,)~! rather than the above. In order to get
this form, which is useful in later work (paper III of
this series, the following paper), we define

G;; = group of permutations of internal lines of M
which leave M invariant while holding ex-
ternal lines fixed and taking into account
both bubble and line labels (4, —, or o).

Then G, is a subgroup of G, though not an in-
variant one, and its left cosets in G, correspond to
elements of Gg giving distinct rearrangements of
labels (+, —, and o) on the phase-space lines. Thus
for each pinch point corresponding to a specific line
labeling there is a family of 7iy/n,, distinct pinch
points involving the same S’s but different line label-
ings, as obtained by these cosets. Each member of
such a family contributes a numerically equal amount
to the total discontinuity, and if we integrate over the
R regions associated with just one member of each
family, the numerical factor is

X

-
< |8
=

t_ 1

*

M "y
as quoted in (4.2).

We have implicitly assumed that all pinch points
discussed so far can be treated independently. By a
later result dif’s for singularities in different generating
sets annihilate each other at their intersection, while
pinch points for the same S’s but corresponding to
different line labelings must be distinct, in the cases
we are considering.

The pinch points we are left with, namely, those
corresponding to a specific line labeling, are permuted
among themselves by elements of G,,, but we cannot
in general tell whether or not they are distinct, and
so do not separate their contributions further.

S. EVALUATION OF I, — I, ,
Regenerative and Explicit Mechanisms

In I we saw that the integral formula we have just
used to get our first result (4.2) generalizes to the
situation in which many generative mechanisms and a
regenerative or explicit mechanism operate at the same
time in the integral to give (Theorem 4 of 1)

Iy — Iy pe= (§ C)> - <§ C)<,,_,-Z
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where

C= f I dif}¥, fdk for generative mechanisms,
R>0

for regenerative
mechanisms,

C =fdif§fdk

c=| fdk

R>0

for explicit mechanisms,

.1)

and ), is the sum over all singular + mechanisms.
We now translate this into M-diagram terms to obtain
our final result.

In the case of an explicit mechanism, as in Fig. 4,
the M diagram is [ itself. M is both singular + and
singular —. The numerical factor is #;, and the only
symmetries of such an I are found by permuting
lines joining the same two bubbles, which must carry
the same line labels (in the case where they are not
contracted out, this is implied by > ag = 0). In this
case therefore n,; = n; and the numerical factor is
still given by ng}.

A regenerative mechanism corresponds to L itself
being inserted in a bubble of  to form an M diagram.
L is recovered from M by contracting all the phase-
space lines, which therefore have label 0. The inserted
lines will all carry labels + if we take it that we know L
is singular only on the positive-a Landau curves. The
contribution to the discontinuity is then given by the
M-diagram rules, for in this case nn; = n,,, while
the R-region specification is made automatic because
of the existence of a vanishing cycle for the L dis-
continuity.

Finally, in order to apply Theorem 4 of I, we must
confirm that when generative and a regenerative
mechanism act together,

dif H difg, f= 0.

Since ], difg, f is given by the Cutkosky rules, the
nonvanishing of the expression above would be equiv-
alent to saying that the M diagram for the generative
process has L as a regenerative singularity. This would
mean that the diagrams M and L could be hinged,
and indeed that L could be hinged with itself, since
M goes into L by contracting internal lines, The two
vertices of L which are put together in the hinging
process must have external lines exhausting all
external lines of L, if the hinging is to be possible.
This cannot be so unless L has only two vertices with
external lines; the result thus follows for all other
graphs, and, in particular, for all simple graphs.
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To sum up,

b= fone= (30) - (20,

<n—i€

(5.2)

where the sum runs over all singular + M diagrams,
which are the diagrams got by inserting some (or no) +
lines into + bubbles and some (or no) — lines into —
bubbles of 7, which, by contracting some phase space
lines (those labeled o), give L, and whose remaining
lines are labeled with the sign they have in L.

The Spurious Singularities

We now consider case (b) of Sec. 3, when one of the
bubbles 4 of I contributes two singularities, say S,
and S;, to a given generative mechanism. By (5.1) the
resulting contribution to the discontinuity has a factor
difg, difg, 4 in the integrand which is integrated over a
neighborhood of the intersection of S; and S,. This is
nonzero only if difg, 4, which is a Cutkosky integral,
is singular on S; . Since S, is a Landau singularity and
since our previous results apply equally well to
Cutkosky integrals, we consider the possible M
diagrams by which this could be so.

Consider the possibility of a generative mechanism.
Since difg, 4 is evaluated close to S;,which is the
positive-« arc of a Landau curve, the internal momenta
very nearly satisfy the Landau equations. The same
applies to the corresponding lines of the M diagram.
Hence the internal momenta of the M diagram must
satisfy two different sets of Landau equations, corre-
sponding to S, and S,. Then a third set of Landau
equations is also satisfied, namely, those of M itself,
and so if the double discontinuity is nonzero because
of a generative mechanism, we are on another Landau
curve, a situation we have excluded from consideration.
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Similar arguments apply to explicit mechanisms,
while if S, is a regenerative singularity of difg_A, then
the M diagram is a hinged diagram, and we have
case (a) of Sec. 3, which has already been considered.

6. COMMENTS

Notice that our formulas (5.2) remain true when
there is the form of nonsingularity, discussed in Sec.
3, associated with the presence of o lines in M. This
occurred because the nonparticipating d-function
constraints could not be satisfied simultaneously with
the Landau equations. By virtue of the R region, the
momenta of the M integral corresponding to + and
— lines are constrained to lie close to the pinch values
given by the Landau equations; by the same token it is
impossible to find real momenta which also satisfy the
d-function constraints corresponding to the o lines.
Hence the integrand has zero support and the M
functions M., and M . both vanish.

This means that an important simplification has
occurred. Although the arcs of possible singularity
are not solely classified by the « assignments of the
lines of L, in that transitions between singularity and
nonsingularity occur at effective intersections with
higher-order curves, nevertheless the form of the
discontinuity formula which is applicable can be
classified according to the « signs of L.

Finally, we recall our assumption that our Landau
corresponds to just one Landau diagram L. If, as may
be the case, it corresponds to several such diagrams,
the modification to our procedure is obvious, and we
add separately the M diagram contributions corre-
sponding to each L.
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Drawing on the understanding of unitarity integrals acquired in previous papers [J. Math. Phys. 10,
494, 545 (1969)], we show that unitarity demands that connected amplitudes be singular on the positive-«
arcs of all “simple” Landau curves in their physical regions. Further, we show that the amplitudes are
nonsingular on mixed-a arcs, while on the positive-x arcs their discontinuities are given by the Cutkosky
rule. This confirms arguments from perturbation theory and demonstrates how a weak analyticity
assumption can generate in an exact way a singularity scheme relating to causality.

1. INTRODUCTION

In this paper we apply the results of the preceding
paperst'? of the series to determine the physical-
region singularities of connected S-matrix amplitudes,
showing them to be the positive-x arcs of Landau
curves with associated discontinuities given by the
Cutkosky formula. We restrict our attention to
singularities corresponding to simple Landau curves,
that is, curves whose Landau diagrams have no
more than one line joining any two bubbles. The
discussion of the nonsimple case requires refinements
of technique which we postpone to a later paper.

The procedure is a generalization of one already
carried out successfully in the study of particular
examples.® It consists of comparing the physical
unitarity equation holding on one side of a Landau
curve with an analytic continuation of the unitarity
equation holding on the other side. The two are, in
general, different because of the mechanisms which
make unitarity integrals singular, which were discussed
in II. From their simultaneous validity in Sec. 2 we

* The research reported in this document has been sponsored in
part by the Air Force Office of Scientific Research under Grant AF
EOAR 65-36 through the European Office of Aerospace Research
(OAR), United States Air Force.

1 M. J. W. Bloxham, D. I. Olive, and J. C. Polkinghorne, J. Math.
Phys. 10, 494 (1969). We shall call this paper I.

2 M. J. W. Bloxham, D. L. Olive, and J. C. Polkinghorne, J. Math.
Phys. 10, 545 (1969). We shall refer to this paper as II.

3 (a) D. 1. Olive, Nuovo Cimento 29, 326 (1963); P. V. Landshoff,
D. I. Olive, and J. C. Polkinghorne, J. Math. Phys. 7, 1593 (1966);
(b) D. 1. Olive, Phys. Rev. 135, B745 (1964); R. J. Eden, P. V.
Landshoff, D. I. Olive, and J. C. Polkinghorne, The Analytic
S-Matrix (Cambridge University Press, London, 1966); (c) P. V.
Landshoff and D. I. Olive, J. Math. Phys. 7, 1464 (1966); (d) M. J. W.
Bloxham, Nuovo Cimento 44, 794 (1966); (e) P. V. Landshoff, D. 1.
Olive, and J. C. Polkinghorne, J. Math. Phys. 7, 1600 (1966);
J. K. Storrow, Nuovo Cimento 48, 593 (1967). (a) and (b) deal with
normal thresholds and poles, respectively, which arise only through
explicit and regenerative mechanisms. (c) and (e) deal with triangle
singularities arising only through generative and regenerative
mechanisms, while (d) deals with a singularity arising through all
three mechanisms. Our analysis in this paper generalizes all these
arguments except for those of (a) and (e), which deal with non-
simple graphs.
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are able to deduce an equation of the form

+ +
2if A1 —B)=3M, -3 M. (LD
R G.E G.E
The terms on the right involve known quantities
arising from the various generative and explicit
mechanisms operating in the unitarity integrals,
while the terms on the left arise from regenerative
singularity mechanisms and involve unknown quan-
tities, the discontinuities of several amplitudes A
across singularities related to the Landau curve under
consideration. The number of terms to be included
in the original unitarity equation depends upon the
values of external momenta, and this is also true of
(1.1), but the argument is phrased in a way that will
take this fact into account.

The first step in solving (1.1) is to simplify the right-
hand side by means of a cancellation theorem obtained
in Sec. 3 which states that a certain sum of M terms
adds to zero. The second step (Sec. 4) is to invert the
operators on the left-hand side of (1.1) and obtain a
unique solution for dif 4, the required discontinuities.
Section 5 deals with alternative continuation proce-
dures and the relaxation of certain assumptions made
earlier. Section 6 sums up our conclusions.

We wish to emphasize two points about our argu-
ment, onemethodological, the other morefundamental.
To evaluate the right-hand side of (1.1) we need to
know discontinuities of amplitudes across singularities
corresponding to subdiagrams of the diagram under
discussion. These subdiagrams involve fewer loops
and their properties have been determined at an
earlier stage of the inductive argument. To invert the
equations we consider successive intervals between
thresholds in the total energy, and since the energy at
which the discontinuity of a subdiagram is evaluated
never exceeds the total energy, we can indeed follow a
well-defined induction procedure.
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Finally, we emphasize that our discussion uses only
unitarity, connectedness structure, and a relatively
weak analyticity assumption. The latter is simply
that the physical amplitudes defined in any neighbor-
hood of the physical region are analytically related,
and that the % 4 ie prescription provides the correct
analytic relation for A+ across the positive-a arcs of
Landau curves (which can actually be proved in
specific examples). No use is made in this work of
crossing or Hermitian analyticity.

2. THE ANALYTIC CONTINUATION
OF UNITARITY RELATIONS

Paper II indicated that unitarity integrals are
singular on Landau curves. We therefore consider
one such Landau curve I' which corresponds to a
Landau diagram L which is simple, as defined in the
introduction, and not hinged.* We consider points of
T which lie on no other Landau curves and which are
not themselves nodes. Our technique is to compare
the physical-unitarity relations holding one side of I'
with the analytic continuation of physical unitarity
from the other side of the curve. In making the com-
parison we shall only continue the infinitesimal
distance necessary to cross the curve.

Specifically, we shall consider the 5 — ie continua-
tion of unitarity written in the SS' form, that is, the
form in which — (i.e., “minus”) bubbles appear to the
right of + bubbles. For the moment we assume that
n — ie is the correct path of continuation for the —
bubbles. Later we show that arguments which were
based on 5 — ie or  + ie continuation for either the
SST or S'S form would lead to the same singularity
structure, and that in fact no assumption need be made
as to the correct analytic continuation for the ampli-
tudes, except on positive-« arcs. The unitarity relations
are of the form

A(+) - A(_) = ZIE> ’
A+F)— A=) =21%, <0,

n>0, (21a)

(2.1b)

where, on the right-hand side, we sum over all
integrals in the unitarity relation for given external
momenta. If there are new terms in unitarity which
appear as we cross I' (corresponding to explicit

4 For any simple Landau diagram there may be other diagrams
leading to the same Landau curve which are found by replacing
single-particle lines by pseudothreshold sets (2m — m)?, etc., if
energy—-momentum conservation permits. These further diagrams,
however, correspond to pinch points of the unitarity integrals
which are distinct from those of the simple Landau diagram under
discussion. Their contributions can, therefore, be considered
separately, though we defer this until paper IV of this series. How-
ever, we note that, since pseudothresholds necessarily correspond
to mixed «’s, these further diagrams are expected to cancel in any
unitarity equation and so not affect the amplitude.
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singularities), the corresponding 7% will be zero,
but this is taken account of in the formalism of II.
If (2.1b) is now continued across I' in an # — ie
sense, A(—) will continue into itself but A(+4) will
be taken on to the wrong sheet of I', where we denote
its value by A(f). Subtracting the continued equation
from (2.1a) gives

A(H) — AW =2 T3 — 1%,

The left-hand side is what we wish to evaluate. If it is
zero, I must in fact be nonsingular; if it is nonzero, I
is singular and (2.2) evaluates the discontinuity
across it. According to (5.2) of II, (2.2) can be re-
written as

A4 — AD =33 (ML = M%), (23)

2.2)

+
where the sum Z extends over all the singular +
mechanism diagrams associated with the singularity
of the integral I* on I'. Note that, as explained in II,
this sum may include terms with o lines which rep-
resent integrals that in fact vanish over a range of
external momenta. An example of this is provided by
single-particle o lines: an M diagram containing such a
line contributes nothing except at an effective inter-
section with the Landau curve whose diagram includes
this line. Similarly, the formalism automatically takes
antihierarchy into account, the switch from singularity
to nonsingularity of an integral being matched by the
vanishing of the contribution from one or more M
diagram terms. Thus, no explicit account need be
taken of this phenomenon.® It will sometimes be
convenient for the manipulations not to remove such
diagrams from (2.3), even though their contributions
vanish.
The Iterative Procedure

We now examine more carefully what information is
used in evaluating the right-hand side of (2.3). In
obtaining the explicit terms nothing is assumed. In
obtaining the generative terms we have assumed
Cutkosky discontinuity formulas for the singularities
participating in the generative mechanism. Such a
singularity corresponds to a subset of the internal
lines of the diagram L whose Landau curve we are
discussing. This defines a partial ordering of singular-
ities which allows the Cutkosky assumption to be
made inductively. To evaluate the regenerative
contributions, on the other hand, we would need the
Cutkosky formulas for a set of singularities with the
same internal lines as L and with different numbers of
external lines attached to the bubble of L in ways

8 A particular example of the effect has recently been discussed by
D. Branson, Nuovo Cimento 54A, 217 (1968).
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which are consistent with the given external momenta.
These singularities must be considered simultaneously
with L, and it obviously is not permissable to assume a
Cutkosky formula for them without proof. We shall
simply assume that each singularity has the same ie
prescription in the appropriate amplitude 4 and write
its discontinuity as an unknown quantity dif 4.
Returning to (2.3), this means that if L has positive
«’s, we must replace the Cutkosky form in each re-
generative M diagram by a connected bubble labeled
dif 4 where A is the relevant amplitude. If the M
diagram is CB~, where C represents the Cutkosky form
and B~ the remainder of the diagram, then we replace
it with (dif 4)B—. If L has mixed «’s, we expect we
shall find it to be nonsingular, and there are non-
singular regenerative M diagrams in (2.3) according
to the definitions of these M diagrams given in IL
However, as we cannot assume L to be nonsingular
from the outset, we must retain the set of regener-
ative terms (dif 4)B~ exactly as in the positive-«
case. Finally, we note that regenerative and gener-
ative mechanisms in the same /* do yield a sum
of M integrals for each mechanism separately, as
dif; difg A = 0 with § a sidgularity participating in a
generative singularity. The argument is given in IL
The equation we have to discuss in the inductive
argument is therefore

+
dif 4 — 3 3 (dif )B™ = 3 3 (M3 — M%),
a R « B,G
(2.4)
where the sum may run over many 4’s and B~’s.

Partitions and Explosions

We can regard the M diagram as being partitioned,
the internal lines cut by the partition being the phase
space lines of the original unitarity integral.® Accord-
ing to II, the mechanism diagrams which are singular
+ for L have the following properties:

(1) Each line cut by the partition bears positive
energy from right to left and is labeled with a 4+, —,
oro;

(ii) internal lines and bubbles to the left of the
partition carry + labels, while those to the right of
the partition carry — labels (this is for the SS*
form of unitarity);

(iii) contraction of o lines and omission of bubble
labels gives the diagram L.

These properties are valid regardless of whether the
mechanism concerned is generative, explicit, or
regenerative. Indeed, for a given L we may define M

8 We shall allow a partition which cuts only external lines, classing

this as a regenerative M diagram. It corresponds to minus the
dif 4 term on the left of (2.4).
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FiG. 1. A diagram (a) together with possible explosions (b)f) of
the vertex X. The dotted line is the partition.

diagrams as labeled diagrams with associated parti-
tions satisfying the properties above. Any such dia-
gram must be an M diagram in the original sense,
because, by contracting all lines not cut by the parti-
tion, we obtain the unitarity integral which would
possess the singularity mechanism. Further, it is easy
to recognize whether the mechanism is generative,
regenerative, or explicit.

We can reverse this procedure and enumerate all
possible M diagrams by introducing the concept of
explosions at vertices of the L diagram. An explosion
of a vertex is given by replacing it with a 4 bubble
or — bubble or any other term occurring in the
unitarity equation for the process represented by the
bubble at the vertex (with o labels on all the new lines
introduced). Having done this at each vertex, we retain
those diagrams which satisfy the conditions above
and which are compatible with energy-momentum
conservation for the values of external momenta
considered. Figure 1 illustrates the explosion proce-
dure.

Disposable Vertices

A particularly important type of vertex in the orig-
inal Landau diagram is that at which all the incoming
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F1G. 2. A vertex which has a unique exploded version (below the
three-particle subenergy threshold).

internal lines are — lines and all the outgoing internal
lines are + lines. We call such vertex a disposable
vertex because it will be possible to form mechanism
diagrams in which the partition passes either to the
right or to the left of the vertex. Moreover, in such a
case there will also be diagrams in which the partition
passes through lines introduced by exploding the
vertex, and the set of all possible explosions will
exactly correspond to the set of all terms in the
unitarity equation appropriate to the process repre-
sented by the original vertex. For this reason dispos-
able vertices play a vital role in the cancellation effects
discussed in the succeeding section.

Explosions can also be made at vertices which are
not disposable; an example is given in Fig. 2. In
these cases, however, the set of possible explosions is
limited, and it is not possible to have M diagrams with
partitions running to either side of the vertex, though,
as Fig. 2 illustrates, it may be possible to displace the
partition to one of the sides. We call these vertices
explodable vertices. Their existence can lead to possible
partitions which are not obvious on inspection of the
original Landau diagram. An example is given in
Fig. 3.

3. THE CANCELLATION THEOREM

The right-hand side of Eq. (2.4) can now be read
as a sum over all possible M diagrams that correspond
to singular + generative and explicit mechanisms,
without reference to the particular unitarity integrals
I* in which they arise. To simplify this sum we prove
the following cancellation theorem:

+
> M=0.
G.E.R
That is, the sum of all the M integrals corresponding
to singular + M diagrams for L vanishes when the

Fic. 3. A Landau diagram with an associated partitioned
mechanism diagram made possible by the existence of an explodable
vertex.

(3.1)
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Fic. 4. A Landau dia-
gram without a dispos-
able vertex.

integration regions are suitably standardized in the
way discussed below. The result holds on either side
of I, that is, for M, or M. . The basic idea is that all
unitarity terms appear at a disposable vertex, and
their sum vanishes by the unitarity equation valid
for that vertex. The first step is to show that in the
physical region the Landau diagram always contains
at least one disposable vertex. At first sight this might
not seem to be so, for it is easy to write down Landau
diagrams which do not have this property; Fig. 4is a
simple example. However, the Landau equations
cannot be satisfied by real internal momenta in the
physical region with the « assignments of Fig. 4. This
is because the assignment of positive energy to the
internal momentum vectors directed as shown pre-
vents the condition

2 agy=0 (3.2)

being satisfied for the upper triangular loop. This
generalizes in the following way. In the Landau
diagram suppose we choose a — line and follow to the
left through a sequence of — lines as far as is possible.
The sequence stops at a vertex at which the only
outgoing lines are either + or external lines. If there
is no disposable vertex, then there must be at least
one + line which is incoming at this vertex. We then
follow back to the right through this and succeeding
+ lines as far as possible. The chain ends at a vertex
at which the incoming lines are all — lines or external
lines. If there is no disposable vertex there must be at
least one outgoing — line at this vertex. This we
follow to the left, and so on. Eventually, because of
the finite number of lines in the diagram, the sequence
must close to form a loop. By construction the
momenta of this loop do not satisfy the > ag, = 0
condition as each term is strictly negative. We
conclude that for possible arcs of Landau curves in
the physical region there must be a disposable vertex.

Standardizing the R Region

In order to obtain the cancellation (3.1) it is
necessary that all the integrals corresponding to each
M diagram should be taken over the same region of
integration. We first show that this is possible.

Different M diagrams will give different status to a
loop momentum & which occurs in the Landau dia-
gram. For some it will be a loop momentum in the
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corresponding unitarity integral, in which case, as
explained in I and II, its region of integration is
confined to a small real arbitrary region R surround-
ing the pinch point (or pinch points). In other mech-
anism diagrams k£ may correspond to an integration
in a Cutkosky formula inserted into the unitarity
integrand. Its range of integration in that case is not
confined by R region considerations but, as was
noted in II, the fact that there is a real vanishing
cycle on positive arcs means that in this case also the
integration is in fact confined to a real neighborhood
of the value (or values) of k corresponding to the
solution of the Landau equations for L. The loop
momenta which must be contracted out to form L
from M have an unrestricted region of integration
since they correspond to an infinite degeneracy
situation as discussed in L.

It is therefore possible to choose a standardized R
region for the momenta appearing in L which is the
same for all M diagrams, the remaining momenta

- being unrestricted. In fact, this standard R region can
be taken to be the same as an R region for the Feyn-
man integral associated with L. Of course, the uni-
tarity integrals have more singularities than the
Feynman integral, but these are irrelevant—provided
we are near a point on a single Landau curve, since in
that case no other singularities can intersect the
pinch point.

The Cancellation

Let us imagine that the integrations over the loops
to be contracted out are carried out first. These are
unrestricted and hence are genuine unitarity integra-
tions, dependent only upon the momenta carried by
the remaining lines of the M diagrams. The cancella-
tion actually occurs before the remaining integrations
are performed, so let us suppose the momenta borne
by the + and — lines take some fixed value lying in the
R region discussed above. Initially we consider the
case when L has associated symmetry number (nr)
unity so that there is no ambiguity as to which lines
of the M diagram correspond to which lines of the L
diagram.

The explosions permissable at each L vertex
depend solely on the momenta which we have now

fixed, and so are independent of each other. We.

select a disposable vertex V' and group the terms of
(3.1) into sets corresponding to diagrams which have
the same explosions at all other vertices. Our aim is to
show that unitarity at ¥ will cause the sum of contri-
butions from each such set to vanish. If there is more
than one disposable vertex, the choice of which to use
is arbitrary. According to the rules of M-diagram
contributions given in II, when the partition passes to
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F1G. 5. A simple example of the cancellation mechanism on a mixed-
a arc. All contributions are generative.

the left of V' the term to be inserted at ¥V is —A—,
where 4 is the amplitude for that vertex, and when it
passes to the right of V, the appropriate term is A*;
when the partition runs through lines introduced by
exploding V, the term is minus the appropriate
contribution to the right-hand side of the unitarity
equation for the bubble at V. Thus we get precisely
all the terms in the unitarity equation valid for the
momenta incident on vertex V, because all such
terms give genuine singular +AM diagrams. All
the factors corresponding to the other lines and
vertices are common factors within a given set and
hence we can indeed use unitarity at ¥ to get the set to
cancel to zero. Examples are given in Figs. 5 and 6.
Hence the whole of (3.1) does cancel to zero, at least
if the numerical factors are correct. These we now
proceed to discuss.

The Case When L Has Symmetries

In this case there will be more than one way of
identifying M lines with L lines.

Let X be the diagram obtained from the M diagram
by contracting out o lines and labeling the fused
vertices to indicate the unitarity term applicable there.
Thus X differs from the diagram L only in having its
bubbles labeled. Following II, let G, be the group
of permutations of internal lines of M that leave it
invariant, while respecting line and bubble labels, and
let G, be the subgroup permuting only o lines. Then
G, is an invariant subgroup of G,, and the quotient
group Gy /G, is isomorphic to Gx, the group of
permutations of internal lines of X that leave X
invariant while respecting line and bubble labels.
Now Gy is itself a subgroup (though not an invariant

(@) (b) ©
Fi1G. 6. A simple example of the cancellation mechanism on a
positive-o. arc. (a) Regenerative: the left-hand side of Eq. (2.3);
(b) generative; (c) regenerative.
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FiG. 7. An L diagram with symmetry factor two and M diagram contributions.

one) of G, the group of permutations of internal
lines of L that leaves L invariant, respecting line
labels, and the cosets of Gx in G, correspond to
orientations of the diagram X which differ if the
internal lines are identified, but not otherwise.

In the cancellation argument we want all these
different orientations so as to ensure that, once the
lines are identified, each vertex indeed appears with
all possible explosions. Therefore we rewrite a partic-
ular M diagram as the sum over the n,/ny orienta-
tions of itself, compensating for this by a numerical
factor nx/n; . That is, we write

1 1
= | Mgy =—"%

Ny JR

> M(pg), (3.3
Ny nyp JR
where 3, indicates the sum over the n;/ny cosets of
Gy in G, and P; is an element of the ith such coset.
(It is irrelevant whether or not P,g = g.) We have used
the fact that the integration region R is invariant
(by choice) under G,. Since nx = ny/ny, the over-all
numerical factor associated with each oriented term
is not n3} but (meny)™!, which is just right, as nz' is
common to all the terms and ng' is the numerical
factor appropriate to the unitarity integrals associated
with the exploded vertices. We can now pick out the
values of the integrands for chosen ¢ € R and cancel
as before, recognizing a specific vertex by the lines
attached to it.

As an illustration, we consider the L given in
Fig. 7(a). This has n;, = 2 because of the symmetry

(12)(34)(56)(78), which effectively interchanges the two
disposable vertices. In Fig. 7(b) we have written down
all the singular 4+ M diagram terms appearing below
the 5-particle threshold, writing the numerical factor
associated with the possibility of the above permuta-
tion explicitly, i.e., 4 if the disposable vertices have
identical labels and 1 otherwise. Using (3.3), we
rewrite these terms as in Fig. 7(c). Now we see that
both the rows and the columns in the array cancel ,
corresponding to whether we choose to cancel on the
top or bottom disposable vertex.

4. INVERSION AND UNIQUENESS

We recall the equation derived so far:

S @if AL — B) = 3 (M — Moy, (41)
R E,G

S M=0 in >0 or 7<0. (4.2)

E.G,R
Using (4.2) with 7 > 0 and 5 < 0, (4.1) becomes

> dif A(1 — B") = ~SM, — M <nie)-
R R

Now for positive «’s, the contribution from a regenera-
tive mechanism diagram has the form CB, with C a
Cutkosky integral. C = 0 in 5 < 0 because of the
existence of the vanishing cycle. So

ZdifA(l—B‘)=—§:M>. “4.3)
R R
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(a) (b) (c)

FiG. 8. Landau diagrams discussed in this section.

This equation also holds for mixed «’s, as there are no
singular 4 regenerative M diagrams, as we noted
earlier, and the right-hand side is actually zero.
Notice how the terms M _,_,. have disappeared. We
have not had the problem of examining the details
of the analytic continuation because the terms
appeared in combination whose sum vanished in
7 <O0.

We now note that (4.3) is consistent with what we
wish to prove. The terms on the left-hand side were
defined in Sec. 2 exactly by the property that if we
replace each dif 4 by the Cutkosky formula C_ on
the positive-a arc, then

+
> dif A0l — B") becomes —> M..
R R

The Cutkosky formula is thus a manifest solution to
(4.3) in the positive-a case.” On the mixed-a arcs our
anticipated solution dif 4 = 0 also satisfied (4.3), as
both sides vanish. It remains only to be shown that
these solutions are unique.

Let us define new bubbles, labeled A, which repre-
sent dif A+ where L has mixed «, and dif 4* — C near
positive-a arcs. Then our result (4.3) can be summed
up as

A1 —B)=0, 4.9
R
where each term is obtained from a positive-a singular
+ regenerative M diagram by replacing the Cutkosky
formula part with a A bubble and several A bubbles
with different numbers of external lines may appear

o=k
= |xE -

il
i

EO=

IOz JEo R

F1G. 9. Equation (4.4) for Fig. 8(a).
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FiG. 10. Collections of terms appearing in Fig. 9.

in the sum. We wish to conclude from (4.4) that each
A=0.

Let us write out in full Eq. (4.4) for the specific
example of the analysis of the singularity associated
with Fig. 8(a). This is done in Fig. 9. The A bubbles
in the equation correspond to Figs. 8(a), 8(b), 8(c),
respectively. As this example illustrates, either all
left-hand lines are connected to a A bubble or only
some of them are. This is in contrast with right-
hand lines of A, which may be greater in number
than the incoming lines if there is sufficient energy
for the relevant intermediate state. A’s, which have the
same number of outgoing lines as the original unitarity
equation, appear attached to operators (1 — B-)
which sum to give matrix elements of —S'. For
example, the first two terms in Fig. 9 may be rewritten
as in Fig. 10(a). A’s which appear with fewer left-hand
lines do not have this property. For example, in the
third term of Fig. 9 we lack the factors shown in
Fig. 10(b), because these would not give a connected
contribution. However, the fact that at least one
outgoing momentum line is not attached to the A
bubble means that it is evaluated in an energy range
which will already have been dealt with at an earlier
stage in the argument. Such A bubbles are thus already
known to be zero. Consequently, the surviving terms
in (4.4) take the form

SAS©)S'0) S0y =0, @5
where the right-hand lines of each A bubble have been
formed into sets 0, --0, according to the vertex
of the Landau diagram at which they are incident
[for Figure 8(a), 0, is the top right-hand line, 0, the
remaining three]. S7(0,) operates on the subspace of
the lines 0; and the sum includes all phase-space
integrations that correspond to possible intermediate
states, asin Fig. 10(a). The A;’sin (4.5) have the same
left-hand and internal lines, but have different
numbers of lines in the sets 0,, corresponding to the
different intermediate states. Equation (4.5) was
derived from the unitarity equation for a particular

7 A special case of this argument has been given for the pole by

H. P. Stapp in High-Energy Physics and Elementary Particles
(IAEA, Vienna, 1965); J. Math. Phys. 9, 1548 (1968).
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F1G. 11. Equations (4.5) for the singularities of Figs. 8(a) and 8(b).

amplitude, and the A bubble for this amplitude will
be one of the A, that appear. If we start from unitarity
equations for amplitudes corresponding to each of the
A,;, we obtain a closed set of equations like (4.5) which
can readily be solved by postmultiplication by S(0,)’s
and the use of unitarity to give the unique solution
A; =0, each i.

For example, the surviving terms of Fig. 9 may be
writtenas in Fig. 11(a). A similaranalysisapplied tothe
singularity associated with Fig. 8(b) yields Fig. 11(b).
Multiplication of the expression in Fig. 11(a) on the
right by the expression in Fig. 12(a) and of the ex-
pression in Fig. 11(b) by the expression in Fig. 12(b)
and adding yields, from the application of unitarity,
the equation in Fig. 12(c).

As the sequence of argument is well defined and
the inversion problem now explicitly solved, our
result holds for all the simple Landau singularities
in the physical region of any amplitude.

5. OTHER CONTINUATIONS

So far we have only considered the # — ie continua-
tion of unitarity written in the SST form. We could
also consider the % + /e continuation of this form,

(a)
(b)

©

Fig. 12. Quantities relevant to the
manipulation of Fig. 11.

BLOXHAM, OLIVE, AND POLKINGHORNE

or either % 4 ie continuation of the 'S form in which
-+ bubbles lie to the righi of — bubbles. We now
discuss all these possibilities, retaining for the moment
the supposition that # 4+ ie is the correct path of
continuation for + bubbles. We do not wish to
recapitulate the complexities of the preceding discus-
sion, so we write the equations in a symbolic way
which adequately displays their structure. The four
possible equations are
+

n—ie, SS': Y dif A4T(1 — B) =XdifI, (5.1a)

GE
SS": Y —(1 + BY) dif 4~ =3 dif I,

GE

7 + i,
(5.1b)

+
n—ie, S'S: I (1 — BHdif 4t =3 difl’, (5.1c)
GE

n+ic, S'S: S —dif A~(1 + BY) =Y dif I’,

QE

(5.1d)

in which I represents unitarity integrals written in the
SSt form and I, integrals in the S'S form, and by
dif I we really mean 7, — I, ;. The integrals 7 and
I’ are related by the transformation (+) <> —(—)
applied to each bubble, as are —B~ and B*. Thereisa
one-to-one correspondence between integrals J having
+(—) singularity mechanisms and integrals /" having
—(+4) mechanisms. Thus, if (5.1a) leads to dif 4+ as a
Cutkosky integral with 4 bubbles, then (5.1d) gives
dif A~ as the same integral with + bubbles replaced
by — bubbles and an over-all factor (—1)**1, where n
is the number of bubbles. This agrees with the rules
stated on the basis of Hermitian conjugation in IL
The relation between (5.1a) and (5.1c) may be stated
by saying that the arguments which, when read from
right to left, diagrammatically apply to (5.1a), apply
to (5.1c) when read from left to right. A similar
relation exists between (5.1b) and (5.1d). Thus all
procedures lead to the same picture of the singularity
structure.

Finally, we consider the effect of changing the
assumption that % + ie is the correct prescription for
the + amplitude. Supposing that 5 — e is in fact the
correct continuation interchanges the left-hand sides
of (5.1a) and (5.1b), and of (5.1c) and (5.1d). On
mixed-« arcs, where all these right-hand sides are
zero, this makes no difference. On positive-a arcs,
however, the interchange would have serious results,
for the inversion procedure would no longer give for
dif 4+ a Cutkosky formula with only 4 bubbles. At
the next stage of the induction argument this altered
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Cutkosky form would spoil the cancellation mech-
anism even for the mixed-« arcs. We conclude there-
fore that n + ie is necessary on positive-a arcs. This
assumption for each Landau singularity is not quite
as extensive as it seems, for if the scattering amplitude
is to be the real boundary value of an analytic function
almost everywhere in the physical region, the continua-
tion prescriptions across different Landau curves are
linked in the sense that they must agree at effective
intersections between the curves. Thus an 7 + ie
prescription for one curve implies a similar prescrip-
tion for all curves with which it has an effective
intersection, all curves with which these other curves
have effective intersections, and so on. This implica-
tion is limited by the noncontinuity of # (and hence
of the prescription) across cusps or nodes of the
curves. The positive arcs are believed to be free of these
singular points, so that this hierarchial constraint
works to maximum effect. On the other hand, it is
highly satisfactory that either an 7 + ic or an n — ie
prescription can be adopted on the mixed-a arcs,
for these are known to be capable of having such
cusps and nodes.

6. CONCLUSION

In this paper and its successor (which will deal with
Landau diagrams having multiple lines) we will have
given a complete description of the singularity
structure in the physical region which is required by
unitarity and the weak assumption of analyticity
described in the introduction. This structure may be
described as the minimum singularity structure. It is
obtained by taking the singularities represented by
explicit terms and adding to them all the singularities
generated through the iterative mechanism. It is
possible to conceive of further mechanisms, such as
the sequences of complex singularities approaching
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the physical region discussed by Martin,® which would
give further singularities consistent with unitarity.
We have excluded these in the hope that the criterion
of simplicity, or mimimal singularity, is the one
chosen by nature.

In S-matrix theory it seems necessary at present to
define the “minimum singularity structure” through
an iterative mechanism such as that described above.
We have been able to obtain precise results in the
physical region, because crossing and Hermitian
analyticity do not come into play and because the
analytic continuations required are only infinitesimal
and consequently make less demand on technical
resources. Outside the physical region a similar but
more involved iteration procedure is expected to
operate.”1® We believe that it is an important aspect
of our discussion that it shows how such iteratively
defined singularity structure can be made to yield
precise results.

Finally, we note that results similar to ours have
been linked by some authors to causal properties of
wavepackets.! The fact that we can deduce it from
unitarity and a weak analyticity assumption is
therefore some indication of how analyticity leads to
causality. The reverse direction of the argument is
still, of course, completely ununderstood.

8 A. Martin, *‘Inability of Field Theory to Exploit the Full
Unitarity Condition” (CERN Preprint Th. 727).

?R.J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne,

The Analytic S-Matrix (Cambridge University Press, London,
1966), Sec. 4.10. ’

10 For an example outside the physical region, see J. C. Polking-
horne, J. Math. Phys. 7, 2230 (1966).

11 B. N. Valuev, Sov. Phys. JETP 20, 433 (1965); S. Coleman and
R. E. Norton, Nuovo Cimento 38, 438 (1965); A. Peres, Ann.
Phys. (N.Y.) 37, 179 (1966); F. Pham, Ann. Inst. H. Poincaré, 6,
89 (1967); D. lagolnitzer, *‘S-Matrix and Classical Description of
Interactions” (Saclay preprint, November, 1966); C. Chandler and
H. P. Stapp, “S-Matrix Causality Conditions and Physical-Region
Analyticity Properties,” reported in Proceedings of XIIth Inter-
national Conference on High-Energy Physics (Univ. of California
Press, Los Angeles, 1967).
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Lower bounds to the ground-state energy of a system composed of N identical particles interacting by
two-body forces (and possibly also with an external potential) are derived. They are expressed in terms of
the ground-state energies of (simpler) systems composed of a smaller number of particles having masses
and/or interactions different from the original ones. This reduction process may be continued all the way
down to systems involving one and two particles only. The generalization to systems containing some
identical and some distinguishable particles is also discussed.

1. INTRODUCTION

The framework of this paper is the nonrelativistic-

quantum theory of many identical particles inter-
acting among themselves by two-body forces, and
possibly also with an external potential. The scope of
this paper is to provide /ower bounds to the ground-
state energy of the system composed of N such parti-
cles, in terms of the ground state energies of simpler
systems. The mathematical tool employed to obtain
these results is the Rayleigh-Ritz minimum principle,
which is,however, used in a somewhat unconventional
way, so that it yields a /ower rather than an upper
bound to the quantity of interest.

Throughout this paper, by ground-state energy we
mean the energy of the lowest-lying state of the system;;
this state may be a (normalizable) bound state or it
may just mark the beginning of a continuum, the
first case being generally the most interesting one.

No restriction on the two-body potential or on the
external potential is detailed, the only requirement for
the validity of the results being the applicability of
the Rayleigh-Ritz principle. In particular the results
hold both for potentials which diverge at large
distances (corresponding to closed problems) and for
potentials which vanish asymptotically.

The approach and results of this paper are anal-
ogous to, but more general than, those of Post.

1 H. R. Post, Proc. Phys. Soc. (London) A69, 936 (1956). See also:
H. R. Post, Proc. Phys. Soc. (London) A79, 819 (1962); R. L.
Hall and H. R. Post, Proc. Phys. Soc. (London) A90, 381 (1967);
R. L. Hall, Proc. Phys. Soc. (London) A91, 787 (1967); O. Ya.
Savchenko, Yad. Fiz. 6, 645 (1967) [Sov. J. Nucl. Phys. 6, 468
(1968)]. Other papers which consider similar problems but employ
different techniques are: N. W. Bazley and D. W. Fox, Phys. Rev.
124, 483 (1961); R. Sugar and R. Blankenbecler, Phys. Rev. 136,
B492 (1964); F. J. Dyson and A. Lenard, J. Math. Phys. 8, 423
(1967); F. Calogero and Yu. A. Simonov, Nuovo Cimento 56B,
71 (1968). Additional papers may be traced from the references
in these.

The main difference between the present approach
and that of Post (which is restricted to the case with
only interparticle forces present and no external
potential) is that he performs an exact separation of
the center-of-mass motion which we do not make.
This separation restricts the applicability of the
approach and therefore eliminates the possibility to
obtain some of the results we get. But in those cases
where both approaches apply, the previous elimina-
tion of the center-of-mass motion is an advantage
which is reflected in Post’s bounds being more stringent
than those derived here. It would of course be easy to
modify our approach in such cases so as to reproduce
Post’s results, but because this would merely corre-
spond to a repetition of his work we confine ourselves
to pointing out which of our results should be
discarded as being merely a less stringent version of

.the results previously obtained by Post.

In the following section the results are derived and
discussed. Some examples, and in particular the limit
of large N, are treated in Sec. 3; they demonstrate, at
least in some cases, the stringency of the bounds
obtained. Section 4 contains some final comments,
including a discussion of the generalization to systems
containing some identical and some distinguishable
particles.

We use throughout a unit system such that & = 1.

2. RESULTS

Let us consider the system composed of N identical
particles of mass m interacting with an external
potential W(r) and among themselves via the two-
body potential V(r,; r;). Here and in the following, r,
labels the position of the ith particle in 3-space and all
other internal degrees of freedom which this particle
may possess (spin, isotopic spin, etc.); generally the
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potentials are multiplicative functions of the inter-
particle distance times operators acting on the
(discrete) variables which label these additional
degrees of freedom.?

We indicate by Ey the ground-state energy of this
system. This is the quantity we want to minorize.

Let us then consider a comparison system com-
posed of n particles of masses m; = m/h;, interacting
between themselves via the two-body potentials
Vii(rssr;) = gi,;V(r;; r;); the ith particle also interacts
with the external potential /;W(r,). We indicate with
E,(h; g;f) the ground-state energy of this system,
the arguments 4, g, and f indicating respectively the
sets {hz}’ {gz‘:i}s {fz}

If all the scale constants A, coincide, A, = A, the
identity E,(h; g; f) = hE,(1; g/h; f]h) holds, the argu-
ments g/h and f]A indicating of course the sets {g,,/h}
and {f;/h}. This identity, whose proof follows by
inspection from the respective Hamiltonians or,
equivalently, from a dimensional count, is often used
in the following to express the results in the most
convenient way.

The results of this paper are based on the following
lemma.

Lemma: If the number n of particles of the com-
parison system does not exceed the number N of
original particles

n < N, (2.1a)

and if the scale constants h; and the coupling constants
g:; and f; are adjusted so that the sum total of,
respectively, the kinetic and the potential energies are
the same in the two systems, namely,

n N
}5 =>1=N, (2.1b)
. P
2_ = Z = N(N — 1), (2.1¢)
N
E fi= Z = N, (2.1d)

then the ground-state energy E,(k; g; f) of the com-
parison system provides a lower bound to the ground-
state energy Ey of the original system:

Ey 2 E,(h; 8;/) (2.2)

Here and in the following the prime on a double sum
indicates that the diagonal terms should be omitted.

% The 2-body potentials are assumed to depend (and operate) upon
the degrees of freedom of each of the two particles, but not upon
the state of the two-particle subsystem. In’ particular, exchange
forces are excluded (although some of the results below remain
valid even when exchange forces are present).
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Proof: The Rayleigh-Ritz principle, applied to the
comparison system, implies that

{‘F, [EhT + 3 g Virir) + 3 ﬂW(r,-)]‘F>
’ > E(h; g;/), (2.3a)

where h,T; = —(2m/h,)~'V? is the kinetic energy of
the ith particle and ¥ is any normalized trial function.
If we now choose 'Y to be a function of the N coordi-
nates r;, which is completely symmetric or antisym-
metric under the exchange of any two coordinates
r;» s, we may, in Eq. (2.3a), freely substitute any
other label in place of the index i of T, and of the
indices 7 and j in the arguments of ¥ and W [note the
role played at this point by the restriction of Eq.
(2.1a); it is required that a// the n coordinates which
appear in the Hamiltonian of Eq. (2.3a) be treated
symmetrically or antisymmetrically]. Taking advantage
of this possibility and using Eqs. (2.1) we may there-
fore rewrite Eq. (2.3a) in the form

¥ [ZT + 3 V) +3 )

=1 4,7=1
> E(h; g;f).

If we now choose V' to be the (unknown, but certainly
symmetric or antisymmetric) ground-state wave-
function of the original N-particle system, the lhs of
this inequality becomes the lhs of Eq. (2.2). Q.E.D.

(2.3b)

Before proceeding to derive more specific results
from this lemma, there is one important remark to be
made, which implies, in some cases, a strengthening
of the lemma.

It refers to the case in which also the comparison
system contains some particles which are equal,
namely which have identical masses and interactions.
The lemma may then be strengthened by requiring that,
in evaluating the ground-state energy E, (h; g;f) of the
comparison system, these particles be treated as
identical particles, obeying the same statistic as the
original particles. The validity of this remark is easily
justified through a re-examination of the proof of the
lemma. The fact that it may modify the lemma only
in the sense of making its conclusion more stringent is
implied by the observation that any restriction, such as
a (partial) symmetry requirement, upon the ground
state of the comparison system can only raise (or
leare unchanged) its energy.

The arbitrariness in the choice of the constants #,
h;, g:;, and f;, which is implicit in the formulation of
the lemma, provides great flexibility. This is exploited
below to derive a few significant examples of the kind
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of results which are implied by the lemma, and by the
remark following it. These examples, far from ex-
hausting the potentiality of the lemma, are merely
meant to illustrate it.

The first choice we consider is

n=N—1, hy=f,=h=N/®N-1),
go=g=N(N-2, 1<i,j<n (24

It is consistent with Egs. (2.1) and corresponds to the
elimination of the Nth particle from the system, its
kinetic and potential energy being evenly distributed
among the other particles. It yields the following
theorem.

Theorem 1. The ground-state energy of the system
composed of N identical particles interacting with an
external potential W(r,)) and through the interparticle
two-body potential ¥(r;; r;) is not less than N/(N — 1)
times the ground state energy of the system composed
of N — 1 such particles interacting with the same
external potential but through a two-body potential
which is (N — 1)/(N — 2) times stronger than that
of the N-body case:

N N N
Ey> Ex_ ; ;
N = "”(N—1 N—2 N—l)

- EN_l(l;N_;;l). 2.5)

N-1 N —

Repeated application of this theorem yields the
following corollary.

Corollary 1.1: The ground-state energy Ey of the
system composed of N identical particles of mass m
interacting via the two-body interparticle potential
V(r,; r;) and with the external potential W(r,) is not
less than N/2 times the ground-state energy of the
system composed of two such particles interacting
with the same external potential and among themselves
through a two-body interparticle potential, which is
N — 1 times stronger than the original interparticle
potential:

Ey 2 E[4N; IN(N — 1); N]
= {NE,(1; N — 1;1). (2.6)

Thus a lower bound to the ground-state energy of an
N-particle system is obtained from the solution of a
much simpler problem. Of course, this corollary
follows directly from the lemma if one sets n = 2,
hi=fi=3N,ga=gu=3INWN-1),i=12

In the case without external potential, namely if
W = 0, this result may of course be written with
zero in place of the argument £, but it provides a less
stringent bound than Post’s result,! which in our
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notation reads
Ey 2 Ey(N — 1;3N(N — 1), 0)
= (N — DE,(1;$N;0). 2.7
As mentioned in the introduction, the difference is
due to the preliminary elimination, performed by
Post, of the center-of-mass motion; this can, of
course, be performed only if no external potential is
present. Note, however, that even in this case such
an elimination prevents the establishment of more
general results, such as the lemma and theorem given
above and also some of the theorems and corollaries
given below. The fact that the result of Post is more
stringent follows from the obvious inequality
Ey(N — 1;2;0) > Ex(}N; 8;0), 2.8)
which is a consequence of the positivity of the kinetic
energy and of the fact that for all values of N larger
than two, N — 1 is larger than iN; for N = 2 both
results, Eqs. (2.6) and (2.7), hold with the equality
sign and reduce to trivial identities.
Another choice of the constants, which is also
consistent with Eqs. (2.1), is

n=N, h=h 0<h<(N-—1DN,
hN =N - h(N_ 1)’ 8ii = N/(N— 2)3 (29)
gn=8nwi=0, f;=0, fy=N,
1<i, jESN-1
This choice corresponds to decoupling the Nth
particle from all the others and transferring to it all

the interaction with the external potential. It yields the
following theorem.

Theorem 2: The ground-state energy Ey of the
system composed of N identical particles of mass m
interacting via the two-body interparticle potential
V(r;; r;) and with the external potential W(r;) is not
less than the sum of (a) 4 times the ground-state energy
of the system composed of N — 1 such particles,
interacting via the two-body interparticle potential
N[A(N — 2)1*V(r;; r;) but with no external potential,
and (b) [N — A(¥ — 1)] times the ground state energy
of one such particle interacting only with the external
potential N[N — h(N — D)]7*W(r), h being an arbi-
trary nonnegative number less than (N — 1)/N:

N
Ey 2> EN—I(h’N 2 ’O)
+ Ey(N — h(N — 1); 0; N)
N

= hEN_l(l, 3 ,0)

0 — N
+ [N — h(N — 1)1E1(1’ vy 1))'
(2.10)
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Combining this result with that of Post, Eq. (2.7),
we obtain the following corollary, which we write
directly as an inequality.

Corollary 2.1:
Ey> (N — 2)’1E2(1' M . 0)

RN —2)°

+ [N — h(N — 1)]E1(1;0; th)

(2.11)

Here E,(1,g,0) is the ground-state energy of the
system composed of two identical particles having
the same mass and obeying the same statistic as the
original particles but interacting through a 2-body
interparticle potential which is g times the original
interparticle potential. Note that this corollary reduces
the evaluation of a lower bound for the ground-state
energy of a system composed of N identical particles
to that of the ground state of one- and two-body
systems only. The arbitrariness in the choice of 4
[except for the inequality in Eq. (2.9)] should also be
emphasized.

Another interesting choice of the constants is the
following one:

n=N, h=h=nh=1,
g2:=81=8 u=8i=f1=8a=0,
gi=g8 =IN—-2\N -3 NN-1) — 2],
h=f=f fi=f=N-2)N-2),
3Li,j<N. (2.12)

This is also consistent with Egs. (2.1); it corresponds
to particles 1 and 2 interacting only between them-
selves, through the potential gV(r,; rp), and with the
external potential fW(r, ,), and the remaining N — 2
particles interacting between themselves through the
potential g'V(r;;r;) and with the external potential
S W(r), with g’ and f” adjusted to satisfy Eqs. (2.1).
It yields, therefore, the following theorem.

Theorem 3: The ground-state energy of the system
composed of N identical particles interacting via the
two-body interparticle potential V(r;; r;) and with the
external potential W(r,) is not less than the sum of (a)
the ground-state energy of the system composed of
N — 2 such particles interacting via a two-body
interparticle potential which is [(¥N — 2)(N — 3)]7! x
[N(N — 1) — 2g] times the original one, and with an
external potential which is (N — 2)71(N — 2f) times
the original one, and (b) the ground-state energy of the
system composed of two such particles interacting
through a two-body interparticle potential which is
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g times the original one and an external potential
which is f times the original one, g and f being arbitrary
constants:

Ey 2 Exo(1; [(N = 2)(N = )NV = 1) — 2]
[N =217 [N = 2D + Ey(1;8: /). (2.13)
The special choice
g=3:NN -1 —(N=2)(N—3)]=2N-3,

with f = 1 and f = 0, yields two corollaries which we
write directly in the form of inequalities.

Corollary 3.1:

Ey > Eyo+ E(;2N=3;1).  (214)
Corollary 3.2:
Ey 2 Ex_o(1; 1; N[(N — 2)) + E(1; 2N — 3;0).
(2.15)

Note that the first one yields a lower bound to the
ground-state energy of the system composed of N
identical particles in terms of the ground-state energy
of the system composed of N — 2 such particles with
the same forces, and it might, therefore, be directly
useful for phenomenological analysis.

For potentials which vanish at large distances, some
additional interesting results may be easily obtained.
To this end let us introduce the minimum value G
necessary and sufficient for the two-body problem
with the same particles and with the interparticle
potential GV(r,;r;) to possess one (zero-energy)
bound state. Of course, G is less than unity if V(r,; rp)
itself is sufficiently attractive to sustain a two-body
bound state. Similarly, let us introduce the minimum
value F necessary and sufficient for the single-particle
external potential FW(r) to sustain a (zero-energy)
bound state. We assume, of course, that at least one
of the two potentials ¥, W is attractive at least in some
region, otherwise the ground-state energy of any
N-body system is simply zero; and in the following
discussion we consider for simplicity only positive
values of G and F, although this restriction is not
really necessary.

Having introduced these definitions, we remark
that they imply that

Ex(1;G;0) = Ey(1;0; F)=0.  (2.16)

The combination of this equation with the previous
inequalities yields some interesting results whose
explicit derivation is left to the reader. We mention
explicitly only the following theorem, which follows
from Post’s result, Eq. (2.7).
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Theorem 4: If the potential V(r;; r;) through which
certain identical particles interact pairwise is too
weakly attractive to sustain a two-body bound state,
the minimum number of such particles which is
necessary to build up sufficient attraction to yield a
negative-energy ground-state is the smallest integer
not less than 2G, where G is such that the potential
GV (ry; rp) is just sufficient to sustain a (zero-energy)
two-body bound state.

This theorem may, for instance, be used to obtain
a lower bound for the number of ‘He atoms which
constitutes the smallest *“‘droplet” of liquid helium
at zero temperature.?

In the theorems and corollaries given above we have
concentrated upon the results which obtain by
“eliminating” from the N-body system one particle
(Theorem 1), or “factoring out’” one particle (Theorem
2) or a two-particle compound (Theorem 3). This
procedure was dictated by the aim to eventually
reduce the N-body problem to subproblems involving
at most two bodies, such problems being of course
substantially easier. But, of course, the scope of the
lemma is much broader, as it is exemplified by the
following theorem, which is written directly as an
inequality.

Theorem 5:

Ey 2> Ey(1;8:/)
+ Ex_u(L; (W= M)(N — M — D]
x [N(N — 1) — M(M — 1)g]; [N — M]?
X [N=MD), N>M+2, M>2 (217)

This theorem follows from the lemma (withn = N
and h; = 1) and corresponds to a choice of the
constants g; and f; such that, in the comparison
system, the first M particles interact between them-
selves via the two-body potential gV and with the
external potential fW, while the N — M remaining
particles interact between themselves via the potential
g'V and with the external potential f'W, with g’ and
/" adjusted so that the sum total, respectively, of the
internal and external interaction energy is unchanged,
i.e., Eqs. (2.1c) and (2.1d) are fulfilled. Again the
values of g and f are arbitrary. Note that Theorem 3
is merely a special case of this theorem, corresponding
to M = 2.

8 A preliminary computation yields for this lower bound the
value 11 4= 1, the error reflecting the uncertainty on the (phenom-
enological) potential. One of us (F. C.) wishes to acknowledge a

suggestive conversation with Professor G. Morpurgo about the
possibility to perform a computation of this kind.
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In the following section we give some examples of
applications of these results. Here we discuss in a
qualitative manner what one might expect as regards
the stringency of these bounds. These comments will
also bring out the difference between the fermion and
the boson case, which has been hidden up to now.

The essence of the lemma is the fact that a uniform
distribution of kinetic and potential energy among all
the particles of the system—and the requirement of
total symmetry or antisymmetry of the wavefunction—
which are characteristic of the system composed of N
identical particles, raise the energy of the correspond-
ing state, relative to that of a comparison system in
which the kinetic and the potential energies are
distributed less uniformly among all the particles,
and to which no symmetry requirement applies (or
it applies only partially). Of course, this statement is
true only if the sum totals of the kinetic and potential
energies, respectively, in the two systems are the same,
the precise meaning of this equality being defined by
the formulation of the lemma.

Once this basic point is understood, it is easy to
anticipate which cases are more likely to be charac-
terized by stringent bounds. They are just those in
which the symmetry requirement is less important.
Generally, for a system composed of N identical
particles with no internal degrees of freedom and
obeying Bose statistics, the symmetry requirement is
irrelevant for the determination of the ground-state
energy, because in this case for “dynamical” reasons,
the ground-state wavefunction would be completely
symmetrical even if the particles were distinguishable.
Just the opposite situation prevails in the case of
Fermi statistics, provided the number of particles is
sufficiently large for the Pauli principle to play a
dynamical role. (This is not the case for systems
composed of up to four nucleons, since there are just
four available states for each nucleon, corresponding
to the internal degrees of freedom of spin and isospin,
and the forces depend very weakly on these degrees of
freedom; for instance, the ground-state wavefunction
of the alpha particle is spatially symmetrical, just as
it would be if the four nucleons were distinguishable
particles.)

In conclusion, one may hope that results, such as
those of Corollaries 1.1 and 2.1 and Theorem 4 above,
which “reduce’ the N-body system all the way down
to two-body systems, yield stringent bounds also for
values of N much larger than 2, only if the ground-
state energy of the original system is not strongly
affected by symmetry requirements; generally, this is
the case if the ground-state wavefunction of the
original system is spatially symmetrical, because
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generally this is directly implied by the dynamics, even
without an extra symmetry requirement. As regards
results such as those of Theorems 1, 2, and 3, and of
Corollaries 3.1 and 3.2, this consideration, although
always valid, is less important. These conclusions are
perhaps best illustrated by the discussion of an
explicit example, say N identical fermions without
internal degrees of freedom and interacting by 2-body
attractive forces. For large values of N the ground-
state energy of such a system is much raised by the
Pauli principle, which forces the wavefunction to be
completely antisymmetrical and, therefore, to have
many zeros (resulting in a possible decrease of the
average potential energy) and a lot of curvature
(resulting in an increase of the average kinetic energy).
Thus a lower bound such as that of, say, Corollary
2.1, is certainly very poor, because it neglects almost
completely the effect of the Pauli principle. On the
other hand, a result such as, say, Corollary 3.1, is
for large N much more stringent, because the lower
bound still retains almost fully the effect of the Pauli
principle; namely, it retains that effect for N — 2
particles. But in any case, this result cannot be very
stringent, because the effect of the Pauli principle
between 2 and N — 2 particles is not taken into
account. On the other hand, if the particles were
bosons, the symmetry requirement would have no
effect at all on the ground-state wavefunction, and
therefore the hope that all bounds be reasonably good
would not be unrealistic. That this hope is fulfilled,
at least in some cases, is indeed confirmed by the
examples treated in the following section.

3. EXAMPLES

In this section we consider some examples to give
an idea of the stringency of the bounds considered in
this paper. We limit ourselves to very simple cases,
which can be managed without any analytical or
numerical effort.

We begin with the limit of large N, restricting the
consideration to the boson case which is the only one
in which one may hope to obtain reasonably stringent
bounds.

We note first of all that, if the two-body interparticle
potential V(r;;r;) has a finite negative minimum
— | V!, the reduction of the N-body problem to
one- and two-body problems through any one of the
theorems and corollaries of the previous section leads
eventually to the trivial result:

Ey > —3N* [Vl [1 + ON)7],

If, on the other hand, the potential does not have a
finite minimum, the theorems and corollaries may

N— . (3.1)
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yield more interesting results. For instance, in the
case of an interparticle potential

Virgr) = —€lr, — 1y,

corresponding to an attractive Coulomb-like inter-
action between all pairs (Newtonian forces), and no
external potential, the result of Post, Eq. (2.7), implies
the inequality

Ey > —(16)INX (N — 1)me®. (3.2)

Here and below m is the mass of the particles. This
lower bound may be compared with the upper bound

Ey < —(6m)INXN — Dmet., (3.3)

Both these results have been given by Post!; the
second one is obtained by a straightforward applica-
tion of the Rayleigh-Ritz variational principle with a
Gaussian trial function depending only upon the sum
of the squares of all interparticle distances. An upper
bound which is certainly more stringent ist

Ey < —[4/Om]IN(V — DN — 273N — 4!

x TGN — HITEN — 3)Pmet. (3.4)
For large N, these results yield
Ey = —cN3*m, N— oo, (3.5)
with
16 <c<6m (3.6)

leading to a determination of Ey accurate to £87;.
Note that the upper bounds, Eqgs. (3.3) and (3.4),
coincide in this limit.

The combination of Post’s lower bound, Eq. (3.2),
with the upper bound of Eq. (3.4) yields, for small
values of N, a determination of the ground-state
energy of the system under consideration which is
even more accurate. In fact for N = 3 and N = 4 one
finds, respectively,

9 4 16 > 4
—2me* < E; < —([—)me’, (3.7)
S
2
—3me* < E; < — (%) me, (3.8)

which are accurate to +49, and 45.57%;, respectively.
Other examples for small values of N may be found in
the paper by Hall and Post.

In the fermion case, and always considering particles
which interact via the two-body interparticle potential
V(r;;r;) = —e?/|r, — 1y, one obtains in place.of Eq.

¢ F. Calogero and Yu. A. Simonov, Phys. Rev. 169, 789 (1968).
The upper bound of this paper is the most stringent bound that may
be obtained by inserting in the Rayleigh-Ritz principle a trial func-
tion which depends only on the sum of the squares of all interparticle
distances.
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(3.7) the result

2
- %me‘ <E<-— (M) me*.  (3.9)

12762757

Here the lower bound is again obtained from the Post
result, Eq. (2.7), taking into account the requirement
of antisymmetry on the two-body problem, which
implies that the lowest P-wave state has to be used in
place of the S-wave ground state; this accounts for the
difference (a factor of 4) between the lhs of Egs. (3.7)
and (3.9). The upper bound is obtained instead by
applying the technique of Ref. 4 to the 3-fermion
problem (with vanishing total angular momentum).
These bounds imply a determination of the ground-
state energy accurate to +507;. It should again be
emphasized that these results are reported here only
to give an idea of the stringency of the bounds in the
various cases. Note, incidentally, that one is consider-
ing fermions having no internal degrees of freedom
(and therefore no spin).

4. FINAL REMARKS

As we have already emphasized, the lemma of Sec.
2 constitutes a rather general result. However, it is not
the most general one that may be formulated, as it is
restricted to systems composed of identical particles
only. In fact, the extension to systems which contain
some identical and some distinguishable particles is
already implicit in it, since the presence of the dis-
tinguishable particles may be considered, from the
point of view of the identical particles, as merely
contributing to the “external’ potential W(r;). Thus in
conclusion it may be quite generally stated that the
essence of all the results of this paper is the possibility,
in order to establish a lower bound to the ground-state
energy of a system containing some identical particles,
to distribute at one’s convenience among them the
kinetic and potential energies, with the only constraint
of keeping their sum totals unchanged. The extra-
ordinary flexibility afforded by this possibility is best
illustrated by the consideration of an example.

Consider a system composed of four identical
particles of mass m,, five identical particles of mass
m,, and 13 identical particles of mass m,. All these
particles interact among themselves via two-body
interparticle potentials; specifically, V*%(r;; r;) is the
potential between two particles of mass m,, V*(r;; r;)
is the interparticle potential between one particle of
mass m, and one of mass m,, etc. This is clearly a
complicated system. But the previous remark implies
that the ground-state energy of this system is not less
than the ground-state energy of a comparison system,
composed of four particles of mass m,, four particles
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of mass m, = ($)m,, and four particles of mass
m, = (%)m,, interacting as follows: The first two
particles of mass m, interact only between themselves,
via the potential 6¥%%; the first two particles of mass
my interact only between themselves, via the potential
10¥*; the first two particles of mass m, interact only
between themselves, via the potential 78 °¢; the third
particle of mass m, and the third particle of mass
my, interact only between themselves, via the potential
20V*; the fourth particle of mass m, and the third
particle of mass m; interact only between themselves,
via the potential 52V %¢; and the fourth particle of mass
m;, interacts only with the fourth particle of mass m_,
via the potential 65V%¢. Clearly this system is a very
simple one, being in fact only the union of six com-
pletely disconnected 2-body systems. Thus a lower
bound to the ground-state energy of the original very
complicated system may be obtained solving only
two-body problems.

Obviously this reduction to problems involving
only two bodies can be applied to any system com-
posed of N, identical particles of mass m, , N, identical
particles of mass m,, etc., up to Nx identical particles
of mass my, all interacting between themselves,
provided N; > K+ 1,I=1,2,:--, K; the reduced
problem may consist of K 2-body problems with
appropriate masses and potentials $/( — 1)V?I and
of }K(K — 1) 2-body problems with appropriate
masses and potentials IJVZ/ (here of course VI
indicates the potential between identical particles of
type I, and V27 the interparticle potential between a
particle of type I and one of typeJ). It is also clear that
the reduction we have indicated is merely one possi-
bility among several. Which one of these is likely to
produce a more stringent bound must be discussed in
each case, keeping in mind the considerations which
have been offered at the end of Sec. 2.

It should finally be emphasized that the remarks
referring to the (partial) symmetry constraints which
may be imposed upon the comparison system (in
particular the remark after the lemma in Sec. 2) also
apply in this more general context.

Note Added in Proof: In the case without external
potential another interesting choice for the constants
in the lemma is the following one:

n=N, hy=h=N/[(N—-1), hy=0,
gin=gni=8=13IN, g,;,=0,
1<i, jEN-1L
One is thereby attributing an infinite mass to the Nth

particle, so that it does not move, and is letting the
remaining particles interact only with this one, so
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that they become essentially independent from one
another. In the boson case, this choice leads again to
the result (2.6) (with f = 0), but in the fermion case
the remarks after the lemma leads to the inequality

N-1
Ey2 3 E"GN/(N = 1); iN)
— NN — TS (1 N — 1),

where E{"(k; g) is the nth energy level of the problem
with two distinguishable particles having masses
m/h and interacting through the interparticle potential

V [or, equivalently, of the problem with one particle
of mass m/(2h) in the external fixed potential gV].
Of course in the sum, each level must enter as many
times as required by its multiplicity. This result,how-
ever, for N > 3, is superseded by that of Hall,® who
by a previous separation of the center-of-mass motion
obtains

N1 3 N—-1
Ey2 3 ES(E IN) =2 3 B 4N,

5 R. L. Hall, Proc. Phys. Soc. (London) A91, 16 (1967); other
references are given in this paper.
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The advantage of this approach is that it retains
more fully the effect of the Pauli principle; it is,
therefore, particularly convenient at large N. For
instance, for ¥(r;, r;) = —e?[|r, — r,|, the last formula
yields the lower bound®

Ey 2 —ime'N*(V + 1);
Wr+Hr+DH<N-1
<¥V+ DIV +HI +2).

V integral,
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1. INTRODUCTION

Recent research on conservation laws for the
electromagnetic and gravitational fields by Newman
and Penrose! features a new differential operator 8
and a class of functions ,Y},(¢,0), called spin-s

1 E. T. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966).

spherical harmonics, all defined on a sphere. The new
operator and functions appear in the study of the
Bondi-Metzner-Sachs group. The ,Y;,, form a com-
plete orthonormal set for each value of s in the sense
that certain field functions #, called quantities of
spin-weight s, can be expanded in series in the ,Y;,,.
Quantities # of spin-weight s are those field functions
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obtained by contraction of tensor (of any rank) fields
with a certain complex triad.

Consequently, the operator & and the functions
+Y;m were studied by Goldberg, Macfarlane, Newman,
Rohrlich, and Sudarshan.? They showed that 0 is
related to the angular-momentum operator K and
the .Y, are related® to the matrix elements of the
irreducible representations T? of the three-dimen-
sional rotation group O;. The relevance of d and
+Y;m to the rotation group was stimulated by the
similarity of certain relations appearing in the
Newman-Penrose formalism to those appearing in
the usual theory of angular momentum. It was shown
that, by choosing the Euler angles appearing in
T;, and K in a certain way, an identification with
mYjnand O is obtained. If T3, and K were to be written
in terms of some three variables other than Euler’s
angles,* one might still find a way to make such an
identification possible.

The question arises as to whether the Newman—
Penrose formalism has a closer connection to O,.
This question becomes increasingly important because
of the unclear physical meaning of the new conserved
quantities. Giving a group-theofetic interpretation to
the formalism could lead to a better understanding of
these conserved quantities which might be of im-
portance to astrophysics and probably to the rest of
physics. In this paper we answer the above question
positively, thus giving the Newman-Penrose formalism
a group-theoretic basis.

In general there exists a close connection between
the usual theory of spherical harmonics and that of
group representations which was first pointed out by
both Cartan and Weyl, though it is not our purpose to
go into this question here.?

It should be mentioned that Gel’fand and Shapiro$-?
have presented a method for expansion of certain
combinations of components of vector and tensor
fields. The expansion was made in terms of generalized
spherical functions, the latter are the representation
matrix elements 77  , written as functions of Euler’s
angles. When the field quantities are evaluated on the

2 J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich,
and E. C. G. Sudarshan, J. Math. Phys. 8, 2155 (1967).

3In Ref. 2, the relationship of the functions spin-s spherical
harmonics to the four-dimensional rotation group and to the
Lorentz group was also indicated.

4 Representations of the three-dimensional rotation group in
terms of direction and angle of rotation was given by H. E. Moses,
Ann. Phys. (N.Y.) 37, 224 (1966); M. Carmeli, J. Math. Phys. 9,
1987 (1968).

5 See, for example, R. Godement, Trans. Am. Math. Soc. 73, 496
(1952).

6 1. M. Gel’fand and Z. Ya. Shapiro, Usp. Mat. Nauk 7, 3 (1952);
English translation in Am. Math. Soc. Transl. (2) 2, 207 (1956).

71. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representa-
tions of the Rotation and Lorentz Groups and their Applications
(Pergamon Press, Inc., New York, 1963).
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surface of a sphere, one has again to make certain
identification of its variables, similar to what has been
shown in Ref. 2.

Finally, we point out that generalized surface
harmonics were also introduced and discussed by
Moses.® We only mention that Moses’ generalized
surface harmonics, denoted by Y**(¢, 6), are related
to the spin-s spherical harmonics ;Y,,,(¢, ) of New-
man and Penrose by

Y‘;m(‘ﬁ’ 6) = —stm(¢s O)e_iw-

In Sec. 2, we define quantities % as functions over
the group O, . These quantities are defined in the same
way Newman and Penrose define their quantities of
spin-weight s. However, whereas previously the
additional rotational degree of freedom was fixed, we
here do not make this convention and our #’s depend
on three angles. ,

In Sec. 3, we relate these three angles to the three
variables of the elements of O,. The expansion of the
functions # in terms of the matrix elements of the
irreducible representations of Oy is given in Sec. 4.
The last section is devoted to the connection between
infinite- and finite-dimensional representation of Ogin
the spaces of the #’s and the T7, , respectively.

ne

2. QUANTITIES OF SPIN WEIGHT s

In the three-dimensional Euclidean space with
spherical coordinates r, 0, ¢, one introduces a triad® of
unit vectors &, E,, §; on each point of a sphere of
radius r. The two vectors E; and E, are taken to be
in the tangent plane to the sphere at the spherical
angles ¢ and 8, whereas & is taken to be normal to the
sphere there. The vectors &, and &, are defined up to a
rotation with an angle, which we denote by ¢,, in the
tangent plane about an axis in the direction of .
The rotation of §; and &, about &, is given a definite
mathematical expression in the sequel (see Sec. 3).

By introducing the above rotation, we have added
a new variable ¢, upon which the two vectors §; and
g, depend. Accordingly, these two vectors depend on
the spherical angles ¢, 0 as well as the new angle @,:

Ei=8u(¢,0,40), E2=58:(3,0,¢). (1)

The vector &g, on the other hand, depends only on ¢
and 0:

gs = Es(‘ib, 9)- (2.2)

Of particular interest to us is the behavior of §;
and §, under the rotation about ;. Such a rotation

8 H. E. Moses, Ann. Phys. (N.Y.) 41, 166 (1967).
¢ In Ref. 2, these three vectors were denoted by a, b, and c.
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can be represented by the orthogonal matrix

cosy siny O
Q=|—siny cosy O0]. (2.3)
0 0 1

Denoting the column of the three vectors §,, &, &;
by &,

&
E=1[8], (2.4)
&
then under the rotation Q we have
E = QF. (2.5

It is convenient to introduce the complex vector
g, and its complex conjugate §_ defined by

B, = 274, F iEy. (2.6)
Under the rotation (2.3) these complex vectors trans-
form as

EL = e"E, . 2.7
A quantity % is now said to be of spin weight s if
under the rotation Q it transforms as

” _)771 — eiswrl, (28)
where s is an integer.

Examples of quantities of spin weights 1, 0, and —1
are obtained by scalar multiplication of a vector field

v with E, &;:
"7¢1(¢” 0’ ¢2) = V(¢, 0) * Ei(¢’ 0’ ¢2),
n0($, 0) = v($, 0)  Es(4, 0). 29

Further examples of quantities of spin weights of
any order can be obtained in a similar way from
tensor fields.

In the following, we restrict ourselves to quantities
7 obtained by contraction of tensor fields with the
triad §,, E;. In other words, the % functions are
components of tensor fields along the complex triad.
These components generally depend on the three
angles ¢, 0, ¢,. By relating these angles to the three
parameters appearing in the three-dimensional rota-
tion group (such as Euler’s angles or direction and
angle of rotation?), the quantities # can be considered
as functions of g:

n = n(g), (2.10)

where g is an element of O;.

Using the well-known relationship between the
rotation group and the special unitary group of order
two, SU,, we consider 7 as functions on the group
SU, also:

n = n(u), (2.11)
where u € SU,.
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In the next section, we give the explicit dependence
of g on the angles ¢, 6, and ¢,. We also find out what
should be substituted for g in order that # be written as
a linear combination of components of the original
tensor field.

3. RELATION OF 5 FUNCTIONS TO THE
ROTATION GROUP

We now relate the quantities # to the elements g of
the rotation group O;.

First we relate the triad field &, given by Eq. (2.4),
to g € Oy in such a way that for each triad § there
corresponds a rotation g € O,. This correspondence
can be achieved, using a method similar to that
outlined by Gel'fand and Shapiro,® by assigning to
each triad § a rotation g € O; which transforms a
certain given triad on the sphere at ¢ =0 =20 to
. To find the rotation g, we proceed as follows.

We introduce a new triad of unit vectors

(3.1)

whose vectors are directed along the coordinates 8, ¢,
and r, respectively, and whose origin coincides with
that of the triad . The triad of vectors e is a function
of the spherical coordinates, e = e(¢, 0). The partic-

ular triad at ¢ = 6 = 0 is denoted by us by
€
e =lel]. 3.2)

Accordingly, we have
e = [e(d, 0)]4;:0:0'

It is easily seen that the three vectors €, e}, and e?
are pointing in the same directions as the Cartesian
coordinates x, y, and z of the fixed system. The
transformation g is then defined as that one which
transforms the triad €° into the triad &:

(3.3)

€ = ge'. (3.4)

Now the vectors ¢,, €, , and e, can be decomposed
along the Cartesian coordinates, hence along eJ, €,

and e?. One easily finds that the matrix of rotation R
which transforms the triad e° into the triad e,

e = Re®, (3.5)
is given by
cosfcosp cosfsing —sinh
R= —sin ¢ cos ¢ 0 3.6)
sinfcosé sinOsing cosf
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The above matrix R can be written as a product of
three orthogonal matrices

R = DBA’, 3.7
where
010
D={-1 0 0], (3.8)
0 01
1 0 0
B={0 cosf —sinf], (3.9)
0 sinf cosb
and where
sing —cos¢ O
A" =|cos¢d sing 0}, (3.10)
0 0 1

By changing the variable ¢, the matrix 4" may be
written as

cos¢, —sin¢g, 0
A=|singd;, cos¢é, O], (3.11)
0 0 1

where ¢, = 7/2 — ¢.

It remains to find the transformation from the
triad e to the triad €. Since the angle of rotation ¢, of
the two vectors E, and E, was left undetermined, we
define it by

E = CD e, (3.12)
where the matrix C is given by
cos¢d, —sing, O
C=|sin¢g, cos¢, O0}. (3.13)
0 0 1

For later calculations we have to know the relation
between the triad & when ¢, = 0 and the triad e.
From Eq. (3.12) we obtain

g, —e€,
E. =1 © (3.19)
53 [¢2=0 €,

Using Eqs. (3.12), (3.5), (3.7), and (3.11), we find
the explicit form of the rotation g € O, which trans-
forms the fixed triad e° into the triad §:

8($1, 0, 2) = C($,)B(D)4(y). (3.15)

The transformation g(¢,, 6, ¢,) represents three
rotations with Euler’s angles ¢,, 8, and ¢, around
the z, x, and z axis, respectively, where ¢, =
m/2 — ¢. Hence, for each value of the variables
¢, 6, and ¢, of the triad § there corresponds a rotation
g(m2 — ¢, 0, ¢;) € O3, and any function of these
variables can be considered as a function of g € O;.
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In particular, the vectors €, , §; can be considered
as functions over the group O;:

E. = g:t(g)’ gy = Es(g).

A direct calculation shows that

E.(8) = —2 P [ey(¢1, 0) % ieg(y, )],
Es(g) = e,(¢1, 0), (3.17)

where ¢, = 72 — .

The above considerations show that all functions %
obtained by contraction of tensor fields with the
complex vectors (3.16), such as those given by Eqgs.
(2.9), are functions of g € Oy:

n= [ﬂ(g)]¢1=,/z-¢- (3.18)

For example, the functions #,, s =1, 0, —1, given
by Egs. (2.9), are given by

72(8) = =2 vy(¢s, 6) £ ivg(s, B)]eT,
70(8) = v(¢1, 0). (3.19)

When we put ¢, = 0, the functions % become
functions of the spherical coordinates ¢ and 6 only:

77(?53 0) = [n(g)]¢1=1r/2—¢,¢2=0‘ (320)

Using Eqgs. (3.19), we obtain the result for n,, s = 1,
0, —1, for example:

Ny (9, 0) = 2_£(U¢ + ivy),
No(4,0) = v,. 3.21)
In the next section, we relate these functions to the

matrix elements of the irreducible representations of
O; and SU,.

4. EXPANSION OF QUANTITIES OF SPIN
WEIGHT s

Let T?, () be the matrix elements of the irreducible
representations of the special unitary group of order
two, SU,, in their canonical basis (called the general-
ized spherical functions by Gel'fand and Shapiro).
Here,m,n = —j, —j 41, -+, j, where j, the weight
of the representation, is a nonnegative integer or half-
integer, j =0, %, 1, £, - - -. The three variables ¢,,
0, ¢, are employed here also so that a function f(u)
over the group SU, means a function of the Euler
angles, f(u) = f(¢;, 0, $,). Although the indices j, m,
n can be half-integers, in general they are restricted in
our case to integers only. This is so since we have
limited ourselves to quantities % having only integral
weights (compare Sec. 2). The use of SU,, whose
relationship to Oy is well known, makes it easy to
extend our results to quantities with half-integral
weights.

We mention without proof?? that every continuous

(3.16)

10 M. A. Naimark, Linear Representations of the Lorentz Group
(Pergamon Press, Inc., New York, 1964).
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function f(u) in the group SU, is the limit of a uni-
formly convergent sequence of finite linear combina-
tions of the functions 77 (u).!* This means that the
functions 77, form a complete orthogonal system
for the aggregate of all functions f(x) whose modulus
square is integrable with the measure du.’* Accordingly,
we have

) 5
fy=3% 3 amTm), (4.1
§=0 m,n=—j
where of,, are constants given by
U = (% + DAL,
Ay = f ) Th () du, 42)

We now examine the behavior of different quantities
under the rotation £, Eq. (2.3). The unitary matrix
y € SU, which corresponds to the rotation Q € 0Oy is

given by??
e? 0
v= :F( 0 v 2)'

Furthermore, the matrix 77, when j is an integer,
satisfies!?

(4.3)

TZnn(yu) = eimszrm(u)’
Tzrm(uy) = emwT:rm(u)’

where y is given by Eq. (4.3) and u € SUj.
Accordingly, under the rotation , the function
f (@) transforms into

fyuw) = ; mE Ay T ina(y10)
=3 3 ™ T (w).

i mmn

4.4

(4.5)

In particular, for a quantity of spin weight s, we have

77(“) = ; mz ﬂ:rmTznn(u)’ (4.6)
n(yu) = 23 Brane™ T mal1).

jim,n

On the other hand, # satisfies the relation (2.8)
which, in our present notation, reads

%)

n(yu) = €*n(u). (4.8)
Hence, using Eq. (4.6), we have
n(yu) = € 3 3, BT mal®). 4.9)

3 m,n

Comparing the two expressions for n(yu) given by

11 This theorem is valid for compact groups in general. See, for
example, L. S. Pontrjagin, Topological Groups (Princeton Univer-
sity Press, Princeton, N.J., 1946); M. A. Naimark, Normed Rings
(P. Noordhoff Ltd., Groningen, The Netherlands, 1959).

12 The aggregate of all measurable functions f(#) satisfying the
condition I | £()]? du < oo provides a complete Hilbert space denoted
by L¥(SU,). In this space, the addition of functions and multiplication
by a number are defined in the usual way, the scalar product being

defined by (f;, f2) = § fi(Wfa(w) du.
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Egs. (4.7) and (4.9), we obtain
2 2 Bnae™ — )T, (u) = 0.

i mmn
Using the orthogonality relation that the matrices
T7 satisty,

~PM@MMMW=®+U%wM%uGM)

(4.10)

we obtain

ﬁ:‘”‘n(eimw -

mn = OmsBin. (4.13)
Accordingly, using Egs. (4.6) and (4.13), we obtain
for any quantity of spin weight s

n(u) = E Z Bl T (w).

j=lst n=—3
It remains to write this formula in terms of the
original spherical angles. Since, similarly to g € O3,
u is expressed in terms of ¢, , 6, and ¢,, we obtain the
desired expressions by substituting ¢, = 7/2 — ¢ and
¢, = 0. Accordingly,13

n($, 0) = 2 E BinTi(m]2 — $,0,0). (4.15)

j==ls| n=—1i

™) = 0. (4.12)

Thus, we have

4.19)

For example, a vector field v can be expanded in the
following way:

v(¢, 0) = jznﬂil,nTil,n("/2 — ,6,0),
($.0) = 3 BiaTiuln2 = $,0,0),  (416)
where we have used the notation
+ = “2_&(’)4’ % ivy),
Uy =1,. 4.17

A tensor field W of rank two provides nine quanti-
ties W, of weights s = 2,1, 0, —1, —2. These are
obtained by contraction of the tensor field W with
., &; and inserting ¢, = 0 [using Eq. (3.14)].1

13 Comparing the expansion given by Eq. (4.15) with the similar
one in terms of the spin-s spherical harmonics ,Y;,,(¢, 6) of Newman
and Penrose (Ref. 1), we conclude that

+Yin($, 0) ~ T}, (72 — ¢, 6,0).

The relation comparable to this one in Ref. 2 was shown to be
somewhat different, i.e., given by ,Y,u(¢, 0) ~ TZ,, (¢, 0, 0) [see
Eq. (3.11) of Ref. 2]. The reason for this difference is the way Euler’s
angles are chosen. Our rotation with the angle 0 is taken about the
x axis, whereas that of Ref. 2 was taken about the y axis.

14 The field quantities that were expanded by Newman and
Penrose are those obtained from contraction of the vector field
v = E + iB for the electromagnetic case. For the gravitational field,
in both the linear and the full theory of relativity, the quantity
analogous to the Maxwell tensor Fyy is the Weyl tensor Cpgy3. Just
as Fyycorresponds to the two vectors E and B, the Cygy5 corresponds
to two traceless symmetric three-dxmenswnal tensors U;; and V.
The quantities to be expanded are then those obtained from the
tensor Wy = Uy + iVy;. Since Wi is symmetric and traceless, one
obtains only five quantities instead of the nine quantities which are
usually obtained. See, for example, E. T. Newman and R. Penrose,
““Some New Gravitationally Conserved Quantities,” in Research on
Solutions of the Gravitational Field Equations, Aerospace Research
Laboratories Technical Report No. ARL 67-0053, 1967, p. 115.
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TasLE 1. Various spin-weight functions ¥, obtained from the
tensor field W. We also give their expansion modes in 7%, ,the
latter being evaluated at ¢, = #/2 — ¢ and ¢, = 0.

Weight s W, Tensor components Expanded in T2,

W, , — W, .
W b 06 Lam _
+2 Si‘szl: + l(%¢ + W¢0) T:tzv (/2 ¢) 6’ 0)
W'S:EES _(W¢r:|: 1%7*) ’
oW —ngtiwy e 400
W'§+$— W¢¢+ %0 ‘
+ i(%d, - W¢o)
0 W8, Wer Td,n(m/2 — 6,0, 0)
WeE L Wyt Wy
— o9 — Wo)

We give in Table I the various spin-weight functions
W, obtained from the tensor field W. We also give
their expansion modes in 77, ; the latter are evaluated
at ¢, = 7/2 — $ and ¢, = 0.

The above results were also obtained by Gel’fand
and Shapiro® by using a very tedious method.

The considerations of this section show how closely
related the functions # are to the matrix elements
T .. This relationship has even a group-theoretic
meaning when T and # are considered as functions
on the group O, or the group SU,. This meaning is
pointed out in the next section.

5. CONCLUDING REMARKS

We conclude our discussion by giving a group-
theoretic meaning to the expansion of the functions #
in terms of the T7  (u). It is shown that the trans-
formations which connect the #’s realize an infinite-
dimensional representation of SU, in the space of all
functions #. This infinite-dimensional representation
is not irreducible; its decomposition into irreducible
parts leads to the expansion of #(x) in the T} (),
the latter providing invariant subspaces in which
irreducible representations of SU, act.

We notice that the set of all measurable functions
n(u) of weight s [ie., satisfying Eq. (4.8)] which
satisfy the condition

f ()l du < oo (5.1)

form a Hilbert space.!® It is denoted by L2(SU,)."
We now assign for each u; € SU, an operator V|
defined in the Hilbert space L%(SU,) by

Viun() = nlun) (-2)
where 7(u) € L2(SU,). The correspondence u, — V|

15 The scalar product in this Hilbert space is defined by (n, ") =
j"r)(u)r]’(u) du, for any n, v’ € L#¥(SU,). It can be shown that the

space L2%(SU,) is a closed subspace of the Hilbert space L*(SU,) and,
therefore, is complete.
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then realizes an infinite-dimensional representation of
SU, in the space LZ(SU,). It is, in fact, a unitary
representation. 1

The decomposition of this infinite-dimensional
representation into irreducible parts can easily be
done if we notice that the matrix elements 77 (u) €
LE(SU,) since they satisfy Eq. (4.8). Therefore,

Vi, Tim() = Tin(uuy). (5.3)

Since 77, are matrix elements of the irreducible
representations of SU,, we have

Thiuu) = 3 Th@Thn(w). (54

Using Eq. (5.3), we obta;n,
Vi Tim(u) = n_Z_ ]T (T (). (5.5
Accordingly, the transformation V, realizes a

representation of SU, in the space R* of (2j + 1)-
functions of the sth row of the matrix 77. Also, the
matrix elements of V', are T7, (u,). The representation
u, — V, in the space of functions 77 (v), n = —j,
—j+1,-+,], is irreducible, and the 77, (v) form a
canonical basis in this space.'’

The above considerations show that the infinite-
dimensional representation of SU, in the Hilbert
space L2(SU,) is decomposed into irreducible parts
defined in the subspaces R* of the matrix elements
T?,(u), where j and s are fixed. In fact these are the
only irreducible components of the infinite-dimensional
representation. This explains the meaning of the
expansions of # in terms of T7,

18 This representation is related to the principal series of repre-~

sentations of the unimodular group of order two. See, e.g., Ref. 10.
17 The operators H4 , Hj of this representation are given by

Hy —ejr‘d’l(;i: cotan 6 =— +t—:FcosecGa¢)

E"N
Hy = i=— a¢
they satisfy the following relations with respect to the canonical
basis Tm.—J 4 Tm,—-i+1’ T Tzn i
HiT =[G £ n+ DG F 0l T ap1,
H:STj = "Tmn’

where m, n take the values —j, —j + 1,---,j. By changing the
variables ¢, into ¢, and vice versa and using the relation

T2,($2s 0, $) = Th (b1, 6, ),
KiT’,. =[( £ m+ DG F mITs 4.,
K,T,, = mT?

mn

we obtain

where K4, K are given by H+ ,Hawithqﬂl andgbz exchanged:
0
= ¢Ti
Kyi=e 4’2(:}: coton 8 — ¢ +i= % :Fcosecﬂ 30)

Ky =
3 'a¢2

1t then follows that K, is most related to &. See Ref. 2.
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The theory of a quantized Dirac field interacting with a classical electromagnetic field is considered.
The resulting g-number problem is reduced to a closely related c-number problem. The theory is then
shown to be without divergences. The interpolating field is shown to exist and is local. Also, the .S matrix

is shown to be unitary.

I. INTRODUCTION

The problem of an electron in an external electro-
magnetic field has been considered by various people,
particularly Salam and Matthews' and Schwinger.?
It was shown by their use of the Fredholm theory that
the one-particle Green’s functions exist for an electron
interacting with an external electromagnetic field.

It is also implicit in the work of Salam and Mat-
thews, and explicit in that of Schwinger, that all the
Green’s functions of the theory can be expressed in
terms of the two-point function. However, it is not
obvious how the full apparatus of the theory is to be
recovered from the Green’s functions. The difficulty is
that the theory has, in general, two distinct vacuum
states: the in vacuum ¥, and the out vacuum ¥?

out *
The two-point Green’s function as defined by Schwin-

ger s (lpgut’ (‘/’(z)’/)(’;)h lP.?n)

(lp?)ut: W?n)
and it is not obvious how to use the standard recon-
struction theorem of Wightman? to recover the Hilbert
space and field operators. That theorem assumes a
unique vacuum state.

We have avoided the difficulties mentioned above
by working directly with the fields. These fields are
operator-valued distributions* and therefore have a
meaning only when smeared with suitably smooth
test functions. They satisfy a system of linear partial
differential equations. The problem of existence of a
solution of these equations is reduced here to the
same problem for a closely related system for complex-
valued functions.

II. THE FREE DIRAC FIELD

The free Dirac operators ;,(x) are given in the
usual Fock-space representation as presented, for

* This work is part of the author’s Princeton Ph.D thesis, 1967.
f Present address.

1 A. Salam and P. T. Matthews, Phys. Rey. 90, 690 (1953).

2 J. Schwinger, Phys. Rev. 93, 615 (1954).

3 A. S. Wightman, Phys. Rev. 101, 860 (1956).

2 A. S. Wightman and L. Garding, Arkiv Fysik 28, 129 (1964).

example, in Ref. 5. The Hilbert space H™ on which
they act is given by

: © .
H(m) = (‘B()H;m) (1)

and (in) __ = pp(in)
H," = /\Hl » (2)

where % means the n-fold completely antisymmetric
tensor product. The no-particle (vacuum) H{™ con-
sists of elements which are complex numbers with the

inner product .
(@, V) = 7Y 3

H{in) — H(+) o) H(—). (4)

A state in H'®, e« = 4, is described by a pair of com-
plex-valued functions of the momentum p labeled by
an index « taking on the values 4. (Strictly speaking,
the states are equivalence classes of functions. Two
functions belong to the same equivalence class if they
differ only off the mass shell.) Under the proper
orthochronous Lorentz group, these states transform
according to the representations D9 or Dd of
SL(2, ¢) depending upon whether ¢ is + or —,
respectively. The inner products in H® are given by

@ (p), ¥(p) )
=3 | owxp) (ﬂ) W(p) dQ(p), (52)
af JV 4 m/jap
@ (p), Y (p)) ,
=3 | o) (—) Y (p) dQu(p). (5b)
af JV mjag
(6a)
(6b)

Convenient orthonormal basis functions for Hf are

and

Here, o
F=pl—p-o,

g=p01+p-a.

3
b(P) = 3 (2/m)osHe,PRI" + m)? - for (+),
(7a)
BR(p) = 3 (plm)aHy,(DXIBI® + mDt  for ().
’ (7b)

5 S. S. Schweber, An Introduction To Relativistic Quantum Field
Theory (Harper and Row Publishers, Inc., New York, 1962).
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The Hkﬂ(p) may be taken as pairs of ordinary Hermite
functions of the three-vector p so that each k;
corresponds to a triple (/;, m,, ng) of integers.

The basis vectors in H™< are conveniently taken as
determinants of the b_’s:

bfulkl,.. ',a,,k,,)(P, eee, p”)
1 . .
= (n !)} det (balkl(pl)’ Y ankn(p'n))- (8)

We have occasion to use such a basis set later on.
The field operators y;,(f), Pin(f) are defined by

('pln(f)Q)t(!T:r) L TR ’ﬁr(pl » "
- L dgm(p>{z (n + DH (P p)

"pn’q19”'sqr)

X (Dirz—.l:?:). ,a,.,ﬁl."',ﬂ,(p Pis°" s Pnsq1>" "> qr)}
+ rt 21( — 1) (—g sas)

j=
X (D;?:,:-'_p,amﬂb B B
x(pl,"”pnsqla'“sq‘j’“"qr)’ (93)

where * over a letter means “omit this” and the u,,
vy are the positive- and negative-frequency solutions
of the Dirac equation. The f(p) are the Fourier trans-
forms of four-component test functions. Throughout
this paper we use test functions from the space § of
infinitely differentiable functions that are rapidly
decreasing at infinity. We could, in fact, use a larger
space consisting of functions which, together with their
derivatives, are continuous and L2 For simplicity, we
have avoided this added complication.

With the notation # = u*y° we have

(V_Jln(f)(b)::,’r) cytn, By * -,ﬁ,(Pla Cy Pusdis s qr)
- fy dnm(q){g (r + DH=1)"3,(e)f (@)

X (I)if.;"'tlfan,ﬂ B1,- ",B,-(Pl’ e Pasqd 1" qr)}
+ n_lgl (=1, (p)f(—p))
X d):fn_'l',riih LR ™Y TRy 1
X(Pl"",ﬁj"",Pna‘h:""‘b)- (9b)
Also,
1pin(f)* = ¢in(ﬁ; (10)
and
[¥ia () vin(®)*L. = —iS(f, 2)» (11)
where
S(x —y) = — (i@ + mA(x — y) (12)
and
Sx—p)=Sx—y)—Sx—-p, 13
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where S, and S, are the advanced and retarded Green’s
functions, respectively, for the free Dirac equation.
The fields y;,(x) and ;,(x) satisfy the equations

(—iy -0 + m)yp(x) =0, (14a)

i0,p(x)y* + mp(x) = 0. (14b)

As domain of the field operators we may take all V'
such that ¥"»" = 0 for sufficiently large », r and such
that ¥"(»*) € § when restricted to the direct product of
the relevant mass hyperboloids.

III. THE INTERPOLATING FIELD

The most general gauge-invariant interaction of a
Dirac particle with an external electromagnetic field
is described by the field equations

(—iy -0+ my = (eA+ ,uo"””Fa,)tp. (15)
Here, eA + uoc**F,; = B,
o = i7'[y", »*]. (16)

Using the retarded or advanced free Green’s functions,
this equation leads to the Kallén-Yang-Feldman®’
integral equations:

P(x) = pu(x) + f S,(x — )BO)p(») dy,  (172)

P(E) = Pour®) + f S.(x — YBO)p(y)dy. (17b)

It is at this point that our procedure differs from the
usual one (perturbation expansion). In fact, we con-
vert this g-number problem to a c-number problem.

Since the solutions y(x) of these equations (if they
exist) define operator-valued distributions, it is natural
to consider the smeared equations. We continue to
use the notation

W) =3 f Fpax) dix, (18)

where o labels the spinor components of .
Thus (suppressing the spinor indices),

() = yulf) +ff (x)S(x — y)B(y)p(y) dy dx

= yu(f) + v[(f+ S;)B],
where the * means convolution. So that, finally,

W(T,f) = vi(f), (19a)

where
Tf=f—(f*S)B (202)

is a mapping of the test-function space 8 into itself if

¢ G. Kilién, Arkiv Fysik 2, 371 (1950).
7 C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950).
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B is properly restricted. In fact, if we choose 4, € §
then B € 8.

Now, S, is a tempered distribution and, therefore,
f*S,€0,, the space of infinitely differentiable
functions of slow growth. Hence, with B € 8§ we see
that (f* S,)B € 8. Furthermore, this mapping T, is
continuous from § into 8.

In a similar manner we obtain

Y(Tof) = Pou(S)s (19b)
with
T.f=f—(f*S,)B (20b)
a continuous mapping from 8 into 8.
We use the notation
Df = id, fy* + mf, (21)
Dpf = Df + fB. (22)
It then follows that
T,(Df) = T,(Df) = Dgf. (23)

IV. THE MAPPINGS T, AND 7,

We now show that the use of the mappings 7, and
T, reduces the question of the existence of solutions
for the fields to a c-number problem. To find the
interpolating fields requires finding the inverse map-
pings T, and T.». If these inverse mappings exist
and define a continuous mapping of 8 onto 8, we are
finished. The continuity of the inverse mappings
follows from a theorem in Gel’fand and Schilow?® that
states:

If a continuous linear operator 4 maps a complete,
countably normed space X in a one-to-one invertible
fashion onto the space Y, then the inverse operator
A1 is also continuous.

Thus, we need only show that the inverse mappings
exist from 8 onto 8. This means that we must show
that, for all 4 € 8, we can find an f€ § such that

T.f=h (24a)
or
T.f = h. (24b)

We restrict the discussion to 7, since the discussion
for T, is identical.
Define the auxiliary function

g=fxS,. (25)

Then, g € Oy and due to the retardedness property
of S,, g vanishes as x® - — co. Furthermore,

Dg =f.

8 I. M. Gel'fand and G. E. Schilow, Veraligemeinerte Funktionen
II (VEB Deutscher Verlag der Wissenschaften, Berlin, 1962).

(26)
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With zero initial conditions, the unique solution of
this equation in Oy, is

g=f*S,.
Replacing f by Dg in T, f, we get
Dg +gB=h, @7

So g must be a solution of the inhomogeneous, inter-
acting field equation with zero initial data. In the case
of T, we have zero final data.

The above system of differential equations is
strictly hyperbolic and the Cauchy problem is well
posed. It is well known?® that in this case there is a
unique solution for g € 0.

Therefore, T, and T, exist and define continuous
one-to-one mappings of 8 onto 8.

It also follows from the strict hyperbolicity of the
operator Dy that for zero initial data

suppg < Vo supph (28a)
and for zero final data
suppg < V. supp . (28b)

Here, V. supp 4 is the forward (backward) light cone
subtended by the support of 4.

From this we can conclude that
(29a)
(29b)

supp T,;f < V, supp f,
supp T,;%f < V_supp f.
V. RECIPROCITY RELATIONS

In this section we prove and list several identities
relating the Green’s functions for the Dirac equation
and the mappings T,, T,.

We start with the following well-known identity
for the Dirac Green’s functions:

(°SHY)—x) = §,(x) = S,(x), (302)
(°Sg7 ) —x) = 5,(x) = S,(x). (30b)
Also, since
PN =
and
yoo,vayO —_ o.uv’
we get
B(y) = B(y). (31

It then follows by writing out the following expression
that

S(T.f—f,8=S(f,T.g — g (32
Whence it follows that
S(T.1, 8) = S/, T,g), (33a)

® Partial Differential Equations, Bers, John, and Schechter, Eds.
(Interscience Publishers, Inc., New York, 1964).
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and replacing f by T, fand g by T, g, we get

S(f, T3'g) = S(T.°f, 8)- (33b)
In a similar manner, it is possible to prove a lot more
identities, of which we now make a list since we need
many of them later:

S(T.f, &) = S/, T.®) (33a)
SAT.f, &) = S/, T,9), (34a)
S(T.f, &) = S/, T.g), (35a)
SAT.1, &) = Su(f, T.g), (36a)
S«T.f, 8) — S(f, T,g) = Si(f,8) — S{f.g), (37a)
S/, T.8) — S(T.f, 8) = S.(f,8) — S«(f.8). (38a)

The corresponding identities in terms of the inverse
mappings are

SAf, To'®) = ST, o), (33b)
SAf, T7'8) = ST/, ), (34b)
SAf. T;'8) = SAT.Y, 8), (35b)
S«(f, Ta'8) = ST/, 8 (36b)

Sf, T7'g) — S(T;'f. )
= S(T/Y, T g) — S(T;%, T, 'g), (37b)
SAT.Y, &) — S,(f, T:'g)
= ST, T,'g — S(T.'f, T;'g). (38b)
VL. THE INTERACTING GREEN’S FUNCTION

We now obtain the smeared Green’s functions for
the interacting Dirac equation

DpSE(x, y) = 8(x — y), (39a)
DgSE(x, y) = 8(x — ), (402)
where the differentials act on x and
Dp=(—iy 3+ m+ B)
and
DBS?(xa y) = 6(x - ,V), (39b)
DpSZ(x,y) = 8(x — y), (40b)

where the differentials act on y. We now define the
two distributions

SrB(f, g = Sr(T:lf’ 2 (41a)
SaB(f’ g) = a(T;]f’ ) (41b)

and we show that these are the required retarded and
advanced Green’s functions, respectively.

That the above defined distributions satisfy the
correct equations (39) and (40) follows from the
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identities (33b) and (34b) and the fact that

T;'Dpf = T;'Dpf = Df, (42)
so that
DpS(f, 8) = S(T;* Dy f, 8)
= S.(Df, g)
= (1, g)-

The proof for the other expressions follows in a
similar manner.

That these distributions have the correct support
properties follows from (29a) and (29b). Thus, if

Visuppf Nsuppg = ¢ (43a)
or
suppf N V_supp g = ¢, (43b)
then
SP(f.8) =0, (44)

since S, has support in the forward light cone. This
proves that SZ has the same support as S,, namely,
the forward light cone.

Similarly, one shows that S5 has the same support,
the backward light cone, as S, . Therefore, SZ and S5
are indeed the retarded and advanced Green’s func-
tions, respectively, for the operator Dy.

VII. LOCALITY—COMMUTATION RELATIONS

We constructed y;, so that

[win(.f), win(g)*]+ = lS'r(f; g) - iSa(f! g)-
Also, we showed that

(f) = viu(T7),
so that

[v(): w(®)*]y = iS(T7S, T;'g) — ST, T;'9)
= iS,.(T:lf, g) - iSa(f’ T:lg)
= lSr(Tr—lfs g) - iSa(Tt;lf’ g)
= iSF(f, g) — iS(f, ).
This proves that the interpolating field is local. We
have used the identities (37b) and (34b) and Egs.
(41a) and (41b).
We now show that the in-field and the out-field
satisfy the same commutation relations, that is,

Wout(f)s Your(®)*1+ = [¥in(f), ¥ia(8)*]. (45)
We recall that
w(f) = pu(T7 ),
Your( ) = (T.f).
Therefore,
Voutlf) = pun(T; Tof) (46)
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and

[Wout(f)’ 1)Uouls(g)*]+ = [Win(Tr_lT;zf)’ win(T:lTaf*)]+
= iS(T7T.f, T T,g)
- isa(T:lTZlf’ T:l Tq'zg)
But from (37b) and (38b) we conclude that

Sr(T:lf’ Tr_lg) — Sa(Tr_ f’ T;lg)
= SAT.Y, T'g) — SAT.f, T.'g) (47)
and, hence, that

ST TS, T T,g) — Su(T7' TS, T; ' T,0)
= Sr(f’ g) - Sa(f’ g), (48)

which proves our assertion that the out-field and the
in-field satisfy the same commutation relations.

VIII. UNITARITY OF THE S MATRIX—THE
OUT-VACUUM

Since the out-field and the in-field satisfy the same
commutation relations, we need only show that, corre-
sponding to the out-field, there exists a vacuum state
in the Hilbert space of in-states to conclude that the
two fields are unitarily equivalent.’® The unitary
operator connecting them is the S matrix. Recall that
the in-field was explicitly constructed tohave a vacuum
state (corresponding to no particles being present).

We now show that the out-field has a vacuum. As
we saw before,

tpout(f) = "pin(Tr—lTizf)'
We first show that

T =1+ f, (49)
where supp f, < supp B.
But
T;'T,f = Dg, (50)
where g is the solution of
Dpg = T.f (51)
corresponding to zero initial conditions.
A particular integral of (51) is
gparticular =f * Sa' (52)
So
g§=S*S:+ g, (53)
where
Dpgo =10 (54)
with initial conditions f * (S, — S,).
Hence,
o = Dgo = —goB (55)

10 1., Gérding and A. S. Wightman, Proc. Natl. Acad. Sci. U.S.
40, 617 (1954).
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and
supp fo < supp B,

as claimed.

If f+ is a positive-frequency test function [that is,
the Fourier transform f*(p,,p) of f* vanishes for
o < 0], then by construction

Pin(f PR = 0. (56)
We now show that the equation
wo31t(f+)(D(t))ut = (57
has a solution
QY e HI™,

Using a complete orthonormal set of basis vectors,
as described previously, we look for a solution of the
form

OB, = 3 alpghe bl i)
nr
X Blaien, - anmains s 8o (P1s " s Py G1s = * 5 dy)-
(58)
We suppress the indices and simply write
Doy = > a,, b7 (59)
We now set "
Your DGy = 0.
Then we get
Pi(f* + )P0 =0, (60)

and component by component this reads

an+l,rfde(p)
X {z o + D) +f:(p)]ua(p)b‘"+*"’}

= = e X a g g )b
(61)

If we take the inner product of this expression with
itself, we get

|an,r—1‘2

a, rzln r=——— K., 62
(i1l L, (n + Dy met (62)
where
Ly = ‘ [ 42,03 (70) +750p)
X b((:k+a11,7:)1, ey ankn,Bilsstt t Bely)
2
(ppl""spn"ha""qr)' (63)




580

and
r
Kn,r—l = Z(_l)”-'-ﬂ.lfg-(—qj)vﬁj(Qj)
§=1
(n,r-1) .
X b(:l;:}’ ©, @nkn,Brly, e, ﬁ,l;‘. s Bely)

2

X (P1,"‘,p:,.,q1,' "qj""’qr) .

(64)

Using (62), we can express |a,,, ,|? in terms of |a, o|®
and |a,, ,.,|® in terms of |a,,|%. But if we consider the
expression

('Pln(f + +f 0+)d)in)(n_1,0)
= f dnm(p){g ) +f:<p)1u,(p)}

X Q- en P Py " s Pa) (65)
and use (60), we get
a,0=0, n>1, (662)
and from the adjoint of (65) we get
a9, =0, r>1 (66b)

Therefore, the only nonvanishing coefficients are of
the form a,,_, and we call them a,,. The conditions (66)
state that particles are created and destroyed only in
pairs.

We must now estimate /,,, ,., and K, ,. Inte-
grating out the variables that can be done trivially, we
get

I 7n+1,n41
- “ f dn,,.(p){g /() +f:<p)]ua(p)}

2

x [(n+ DN Fdet b (oo bk (Prid)]

(67)
: n+1
L5 f I7HP) + T4 (@)D (DI A2 (p)
n41:22
(68)
1
e ) ©9)

The first inequality comes from the fact that, in
squaring the determinant, the cross terms obtained
are either zero or positive due to the orthogonality
of the basis functions.

In the expression for X, , , we expand fo+ (—9:)v5,(25)
in terms of the basis vectors for H{~:

Fi(=a)vs(a) = ilc,b;,;,:,(q». (70)
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Then,
Kun=@+1DI3Cln + 1t
x det [bya,(@1): -+ * s by k@m0l (71)

=mn+1IICS (72)
. = (n + 1) [6,/* < oo; (73)
since fres,
combining the estimates (69) and (73), we get that
& g
2 |a'n|2 _el 2
L Ian+l| S n + 1 02 .
et
% = 0. (74)
2
Then,
Ia 1|2 S ____Ia()lz — p2(n+1) (75)
u S m4 )
ence,
2\n
S ot < lao* ST = jagt & < o,
n:
(D?mt € Hin

and the out-field has a vacuum state. It is clear that the
out-field is irreducible since it satisfies the free Dirac
equation and therefore the S matrix is unitary.

IX. CONCLUSION

We have considered the theory of a Dirac field
interacting with a classical electromagnetic field. We
have shown that the interpolating field exists and is
local and furthermore that there is a unitary S matrix.
The theory is completely free of any divergences and,
hence, no renormalization is needed. This is due to the
fact that the field equations are linear and it is not
necessary to give a meaning to products of field
operators. If one wishes to define local observables
such as the current, then a renormalization is needed.
This renormalization amounts to extracting the
““correct singular part” from the product of distribu-
tions. No statement was made about the definition of
such quantities.

The essential point (that seems to have been missed
up till now) is that, in a simple theory of this sort, the
question of the existence of the fields can be clearly
separated from the question of how one should define
local observables.
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A new approach to the solution of transport problems, based on the ideas introduced into transport
theory by Ambarzumian, Chandrasekhar, and Case, is discussed. To simplify the discussion, the restriction
to plane geometry and one-speed isotropic scattering is made. However, the method can be applied
in any geometry with any scattering model, so long as a complete set of infinite-medium eigenfunctions is
known. First, the solution for the surface distributions is sought. (In a number of applications this is all
that is required.) By using the infinite-medium eigenfunctions, a system of singular integral equations
together with the uniqueness conditions is derived for the surface distributions in a simple and straight-
forward way. This system is the basis of the theory. It can be reduced to a system of Fredholm integral
equations or to a system of nonlinear integral equations, suitable for numerical computations. Once the
surface distributions are known, the complete solution can be found by quadrature by using the full-
range completeness and orthogonality properties of the infinite-medium eigenfunctions. The method is
compared with the standard methods of invariant imbedding, singular eigenfunctions, and a new

MARCH 1969

procedure recently developed by Case.

I. INTRODUCTION

In the past 50 years or so, a number of methods
have been devised for solving the neutron (or radia-
tion) transport equations. Excluding strictly approxi-
mation procedures such as spherical-harmonics
expansions, discrete-ordinate methods, etc.,'—® the
most important schemes are the Wiener-Hopf method,
which is described in detail in Ref. 2, the invariant-
imbedding technique, first introduced to transport
theory by Ambarzumian* and developed extensively
by Chandrasekhar! and others,® and the Case eigen-
function-expansion method.3:¢

Historically, the first exact method was the Wiener—
Hopf method. Because it was basically simpler, the
invariant-imbedding method became more popular
after its introduction. Eventually, the eigenfunction-
expansion approach became more widely used than
either of those methods for a number of reasons
which are discussed below. (The Wiener-Hopf
method is in fact identical with Case’s method in the
sense that any problem which can be solved by one
method can be solved also by the other. Because
Case’s method is simpler and more familiar, we will
not discuss the Wiener—Hopf method further.)

* Work supported by the National Science Foundation.

t On leave from the University of Ljubljana, Yugoslavia.

1 Present address: Dept. of Physics, Virginia Polytechnic Institute,
Blacksburg, Virginia 24060.

1 S. Chandrasekhar, Radiative Transfer (Oxford University Press,
London, 1950).

* B. Davison, Neutron Transport Theory (Oxford University
Press, London, 1957).

3 K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-
Wesley Publ. Co., Inc., Reading, Mass., 1967).

4 V. A. Ambarzumian, Theoretical Astrophysics (Pergamon Press,
Inc., New York, 1958).

8 R. E. Bellman, H. H. Kagiwada, R. E. Kalaba, and M. C.
Prestrud, ‘‘Invariant Imbedding and Time-Dependent Transport

Processes,” The Rand Corporation, R-423-ARPA, 1964.
¢ K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960).
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We first note that the traditional derivations of the
equations of invariant imbedding are based upon
intuitive physical arguments which, by virtue of the
known existence of unique solutions of the transport
equations,” are, in fact, spurious. However, this
approach has some real advantages for numerical
computation. On the other hand, it does not give
complete knowledge of the neutron distribution in a
given medium,but only the reflected and transmitted
intensities. (Admittedly, in a number of applications
these are all that are required.)

A really more serious disadvantage of the invariant-
imbedding equations is that they are, in general, not
uniquely soluble. To guarantee a unique solution,
additional conditions must be imposed.! These
conditions cannot be obtained from the original
invariant-imbedding arguments, and so must be
introduced in a somewhat arbitrary manner.

The Case method,® on the other hand, has the
virtue of simplicity and familiarity, since it is based on
an eigenfunction-expansion technique which is already
well known to physicists from applications in “classi-
cal” boundary-value problems. Furthermore, no
intuitive arguments and no extraneous conditions are
necessary in order to derive the equations and to
guarantee unique solutions. However, by straight-
forward application of this method, more information
is frequently obtained than is really required (as, for
example, the neutron distribution everywhere rather
than at a surface) and reducing the results to numerics
is highly nontrivial .8

The major purpose of the present paper is to
rederive the nonlinear integral equations of invariant

? K. M. Case and P. F. Zweifel, J. Math. Phys. 4, 1367 (1963).

8 M. R. Mendelson, thesis, The University of Michigan, 1964.



582

imbedding and the uniqueness conditions in a fashion
which does not suffer from the deficiencies noted above.
This is accomplished by using the Case infinite-
medium eigenfunctions. The nonlinear integral equa-
tions follow from a system of singular integral
equations, which are themselves derived in a simple
and straightforward way from Case’s eigenfunctions.
It is interesting to compare our derivation with those
of Sobolev,? Busbridge,® and Mullikin.1!

We deal primarily with slab problems—in the
limit, of course, half-space results are obtained. The
familiar restriction to plane geometry and one-speed
isotropic scattering is made. However, the method
can be applied in any geometry with any scattering
model (e.g., multivelocity anisotropic scattering) so
long as a complete set of infinite-medium eigenfunc-
tions is known.

The results we obtain are not new. However, we do
feel that our approach yields a coherent, mathemati-
cally satisfying, and simple derivation of singular
integral equations and equivalent invariant-imbedding
nonlinear integral equations, together with the con-
ditions which guarantee unique solution.

In Sec. II, we give a brief review of Case’s eigenfunc-
tions and their properties. Then, in Sec. I1I, the system
of singular integral equations and the nonlinear integral
equations—together with the conditions guaranteeing
uniqueness—are derived for the slab. In Sec. IV, some
remarks are made for the half-space problems,

II. THE CASE EIGENFUNCTIONS

We begin with the Case eigenfunctions of the one-
speed one-dimensional transport equation with iso-
tropic scattering

(u% +1) v =2 [vwmar.

These eigenfunctions may be written in the form®#®

th v(x, 1) = (v, we ", (2a)
w1
$op) = 7P -vi—” + 2000 — ), ve(—1,1),
(2b)
_n_1
Htro, ) == wF (2¢)

flltﬁ(%,u)d,u=1, yE(=1,1), »= dr. (2d)

? V. V. Sobolev, A Treatise on Radiative Transfer (D. Van Nos-
trand Inc., Princeton, N.J., 1963).

101, W. Busbridge, The Mathematics of Radiative Transfer
(Cambridge University Press, London, 1960).

11 T, W. Mullikin, Astrophys. J. 136, 627 (1962); 139, 379, 1267
(1964).
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Here the discrete eigenvalue v, is a root of the dis-
persion function

1
Ay =13 % 3)
2Jaz—u
The quantity A(v) which appears in Eq. (2b) is
related to the boundary values of the dispersion
function A(z) on the branch cut (—1,1). In fact,

Ay) = §[A*(») + A ()], 4
where

AX(y) = lim A(y £ ie),

0<e—0

We note that ¢, the mean number of neutrons
emitted per collision, will always be assumed to be
such that the slab is “‘subcritical.”” For ¢ < 1, this
is certainly true for all slab thickness.

The eigenfunctions are orthogonal in the sense that

f_ 1u¢(v, WP, p) dp =0, v £ (6)

In fact, the normalization integrals are also known:

f_ o W du = £NGD,  (7a)

ve(—1,1). %)

jf‘“ﬁ(% W', w) du = N»)d(» — "), v»e(—1,1),

" (7b)
where
__.E 2 a[\(z)
N(’Vo = 5 Yo az z=vo: (83)
N(®») = vAT(»)A(»). (8b)

(All of the above results, which are well known, are
restated merely for convenience.)

We now consider the solution of the so-called
albedo problem for a slab. This is the problem of
determining the distribution of neutrons everywhere
in a source-free slab due to an incident beam. We seek
the solution, denoted as (0, uy — X, u; 7), to the
homogeneous transport equation (1) subject to the
boundary conditions

PO, o —>0, u; 7) = 0ty — p), >0, u>0,
"P(Oa .“o - T, _,u; T) = 0, ,u > 0, (9)

where 7 is the thickness of a slab.
We expand the solution ¢(0, uy — x, u; 7) in terms
of the eigenfunctions. That is,

(0, po —> x, p3 7)
= A(vp)$(vg, e~ + A(—vo)P(—,, p)e/™

+£1A(v)¢(v, we " dy. (10)

The Case procedure is to determine the expansion
coefficient as discussed earlier.
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However, by using the set of eigenfunctions in
another way, we are led at once to a system of singular
integral equations for the reflected and transmitted
intensities.

III. DERIVATION OF INVARIANT-IMBEDDING
EQUATIONS

A. Albedo Problem for a Slab

Let us first consider the solution of the albedo
problem defined in the previous section, for it will be
shown that the solution of any problem can be ex-
pressed in terms of the albedo solution (Sec. III.B).
We consider a slab whose left-hand surface is at
x = 0, and whose right-hand surface is at x = 7.

We are primarily interested in the reflected and the
transmitted distributions (0, o — 0, —u; 7) and
w(O, go— 1, 4;7), @ >0. From the reciprocity
theorem for one-speed theory®12 it follows that these
distributions satisfy the relations

w0, po— 0, —u; 7) = puep(0, u —0, —py; 7), (11)

O, o = 7, p; 1) = pey(0, p — 7, py; 7),
>0, w>0. (12)
In view of these relations, it is convenient to

introduce so-called Ambarzumian-Chandrasekhar’s
S and T functions, defined as?

A/2)S(7; po» 1) = w0, o~ 0, —pu; 7y  (13)

and
(120)T(7; o, @) + 8(ug — we ™"
=90, pp— 7, u;7). (14)
Both functions are symmetric:
S(r; o, 1) = S(7; s fho)s (15)
T(7; o> ) = T(7; 4 tho)- (16)

The reflected and transmitted distributions of an
albedo problem 9(0, —u; 7) and w(r, u;7), u > 0,
for a given incident distribution %(0, u; 1), u# > 0,
can be then expressed as

1 1 ? ! ’
WO, ~57) = - f S(rs 1y (O, '3 7) ity (17)
w7, w5 7) = (0, u; e "
1 1 ’ ’ ’
+—f T(r; i, l)9(0, s 7) dit,
2u Jo
u>0. (18)

We now derive a system of singular integral

12 K. M. Case, Rev. Mod. Phys. 29, 651 (1957).
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equations for S and T by using the intuitive invariant-
imbedding arguments,13-14

Let us take any exponentially decreasing infinite-
medium eigenfunction

$(v, e, v e(0,1), (19)

The function ¢(v, u)e=*" describes a distribution of
neutrons for the infinite medium. At x =0, the
angular density ¢(v, —u), u > 0, can be thought of as
resulting from the reflection of the “‘incident” distri-
bution ¢(», u), p > 0, on the slab of thickness =, and
from the transmission of the “incident” distribution
d(v, —u)e=", >0, at x = 7, through the same
slab. Therefore, in view of Egs. (17) and (18), we have

[t — e NgG, —p)

1 ! 7 1 '
= —f S(rsp's Wélv, w') du
2u Jo

—r/v

Yy=17.

4
2p
u>0, »€(0,1), (20
Similarly, by taking any exponentially increasing
eigenfunction
(ﬁ(—’p’ ‘u)ex/v’ v € (0, 1)’ v = Y,
and reasoning as before, we get

(7" — Mg, w)

~7/v

=2 L S ' )=, ) di

J; T(r; i, /‘)ﬁb("” —u') du’',

Y =19.

(21)

2p
1 1
+— f T(r; w', wyd(v, p') du',
2u Jo
u>0, ve(0,1), v=19. (22)

For »e (0, 1), the above equations constitute a
system of singular integral equations for S and 7,
while for v = v, we obtain two conditions which must
be satisfied by S and T.

Because Eqs. (20) and (22) are the basis for our
further discussion, we now rederive them rigorously,
without appealing to the above intuitive invariant-
imbedding arguments. Actually, the rigorous deriva-
tion is even simpler than the intuitive one given above.

To see this, let us define an albedo problem by the
following boundary conditions:

(0, u; ) = (v, p),
"/)(T’ —U; T) = ¢('Va _:u)e_r/v’

u>0, ve(,1), r=9, 0<x<r. (23)
13 8. Pahor and I. Kuscer, Astrophys. J. 143, 888 (1966).
14 § Pahor, Nucl. Sci. Eng. 29, 248 (1967).
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It can be easily verified by inspection that the
unique solution of this particular problem is simply

Y(x, us ) = ¢, :u)e_z/v (24)
(because it is a solution of the transport equation and
obeys the boundary conditions).

By applying Eqs. (17) and (18) to this solution, we
get Eqgs. (20) and (21). This represents a rigorous
derivation of Eqs. (20) and (21). The same system of
singular integral equations, including anisotropic
scattering, was already derived by Sobolev® and
Mullikin.'! However, our derivation of these equations
is much simpler than that of Sobolev and Mullikin;
furthermore, it is evident how the described technique
could be applied to any geometry and scattering model,
once the complete set of infinite medium eigenfunctions
is known. (Even if the set is not complete, we obtain
in this way some information on the surface distri-
bution. However, the resulting equations are not
uniquely soluble.)

It is interesting to compare the present approach
with the approach recently developed by Case,'
where the infinite-medium Green’s function is used as
a starting point. In both cases, first the integral equa-
tions for the surface distributions are derived. How-
ever, the corresponding equations are different,
though equivalent, and the kernels of Eqs. (20) and
(21), yielded by the present method, are somewhat
simpler.

The functions S(7; ug, ¢) and T(r; u,, #) can be
expressed in terms of Ambarzumian-Chandrasekhar’s
X(p) and Y(u) functions of a single variable, with =
as a parameter, which are more suitable for numerical
computations than S(r; u,, u) and T(7; o, @).

Let us integrate Eqs. (20) and (22) over y from 0
to 1. Defining new X(u) and Y(u) functions as

1! , du’
X(ﬂ)=1+-f5(f;u,u)—”7, 25)
2 Jo 7]

— 1 1 , d ’

Y(u) = e ’“+—fT(f;u,mi,, (26)

2 Jo )7

and using the normalization condition (2d), we get a
system of equations for X(u) and Y(u): -

1 1
1= [ XG0 ) '+ €[ Y80, ~) di

) . 27N
1= f X()$(o, ) did + & f Y(u) (o, 1) di
ye©, 1), »=r. (28)

15 K. M. Case, Proceedings of the Symposium on Transport Theory,
April, 1967 (American Mathematical Society, Providence, R.L) (to
be published).
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By introducing new functions Z(u) and W(u) as

Z(p) = X(w) + Y(w), (29)

W(p) = X(p) — Y(w), (30)

we obtain for these functions two uncoupled equations

1
L4 = f Z()0o, 1) dit

+ e "L Z(p)(v, —p') dp’s  (31)

L= e = [ WG ) di

- e—T/VJ; W) d(v, —p') dw’,

v€(0,1), r»=195, (32)

Singular integral equations, such as Eq. (31) or Eq.
(32), with the condition for » = v, included, are equiv-
alent to certain Fredholm integral equations.!® These
Fredholm integral equations were studied in detail by
Leonard and Mullikin'? and they derived conditions
which guarantee the existence and uniqueness of the
solution. In our case of isotropic scattering, these con-
ditions are satisfied for all subcritical ¢ and certainly
for ¢ < 1. Therefore, also Egs. (31) and (32), Egs.
(27) and (28), and Eqgs. (20) and (22) are uniquely
soluble.

What remains to be done is to express S(; go, &)
and T(7; yg, p) in terms of X(u) and Y(u). In deriving
these relations, we obtain for X(u) and Y(u) a system
of nonlinear integral equations which are convenient
for numerical computations.

We introduce two new functions R(r; u,, #) and

U(7; tho» 10) as

1 1
(___ + _) S(7; po, ) = cR(7; yg, 1), (33)
Mo H

(L B 1) T(r; po, ) = cU(r; pto, ), (34)
bo f

and we substitute them for S(r; yo, ) and T(; uo, 1)
in Eqs. (20) and (22). By using the explicit form of
eigenfunctions (2b) and (2c) for » € (0, 1) and v = »,,
we get, after a partial-fraction analysis and taking into

18 N. 1. Muskelishvili, Singular Integral Equations (P. Noordhoff
Ltd., Groningen, The Netherlands, 1953).
17 A. Leonard and T. W. Mullikin, J. Math. Phys. 5, 399 (1964).
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account Egs. (25) and (26), the following four
equations:

X(u) — e7"Y ()
= A»)R(r; », p) + C_”pL R_(”’_i‘_ﬁ) dw’

v — i
Ua:p, )
-3
e X(p) — Y(p)
1 . !
= —A0)U(r; v, 1) = %PJ UG i) 4

—1/v
2

du'e (35)

v+ u
o v—u

1 R
— EZ’ e—r/vj R(T’.u 3 f‘) d[l,,,
2 o v+ u

X(i) — €Y ()
C ’i’o

(36)

LR(m; i, /;,)d,

14

2 Vo — M

- C’Vof
2 Je
Y(u)
- [ e,
2Jo v—yu

1 P
— & e_’/""f R w1 di’. (38)
2 o v+ u

U(’l’,,u M)d ’ —'rivo (37)
v + 1/

e "“X(/l) —_—

Now, if we first multiply Eq. (27) by X{x) and
subtract Eq. (28) muitiplied by Y(u), then multiply
Eq. (27) by Y(u) and subtract Eq. (28) multiplied by
X(u), we get equations identical to Egs. (35) to (38),
except that _

R(7; o> 1) > X)X (o) — Y1) Y(no),  (39)
U(r; o> 1) ~ Y(@)X(po) — V(o)X (w).  (40)

Thus, the above bilinear expressions are solutions
of Eqgs. (35)-(38). These solutions are also unique,
because Eqgs. (35)-(38) uniquely determine R(r; yq, 1)
and U(7; gy, ).

By expressing S(r; o, #) and T(r; o, #) in Eqgs.
(25) and (26) in terms of X(u) and Y(u) [via Eqgs. (39),
(40), (33), and (34)], we get a system of nonlinear
integral equations for X () and Y(u),

X(u) = 1+CM X)X () - Y(M)Y(,u)d e
u+u
Y(i) = e + zf I’(ﬂ)X(M)—X(H)Y(M)
0 p—

(42)
with the conditions, which must be satisfied by X(u)
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and Y(u),
cvo X(,u) gy 4 cvo v f X 4y (a3)
0 vy — 0% + 4
_ ___.XW g+ 2 [ T g qan
2 Jo Yo + :u" 2 0% ™ ‘u

following from Egs. (27) and (28) for ¥ = v,.

Let us now also show that the system of nonlinear
integral equations (41) and (42), together with the
conditions (43) and (44), uniquely determine X{(u)
and Y(u).

First, we note that X(u) and Y(u) can be analytically
continued outside the interval (0, 1), by using Egs.
(41) and (42). It can be easily verified'® that if X{(u)
and Y(u) satisfy Eqs. (41) and (42), but not necessarily
(43) and (44), they also satisfy the integral equations

ADX(2) =1 — ZXE{"L
_ EE_ —r/z ! Y(ﬂ)
¢ .L__z+yd”’ 45
1
ADY(E) = ””*[1 -c—; o-———:(i”L d,u]
_ze (" Y(w _
ZLZ_”d,;, zé(—1,1). (46)

By applying the Plemelj formula’® to the above equa-
tions for ze(0,1), we get the singular integral
equations (27) and (28). Since these singular integral
equations, together with the conditions (43) and (44),
uniquely determine X(u) and Y(u), the same is true
for the nonlinear integral equations (41) and (42)
combined with the conditions (43) and (44).

We can now easily prove that X{(z) and Y{(z) are
analytic functions in the whole complex plane,
except at z =0, where they have an essential sin~
gularity.

Since A(z) = A(—z), we see at once from Egs. (45)
and (46) that X(z) and Y(z) satisfy the relation®

Y(z) = e"*X(~z), 47

which is valid in the whole complex plane. In view of
Eqgs. (41), (42), (45), (46), and the conditions (43) and
(44), the X(z) and Y(z) could be singular only for
z = —v, and z € (—1,0). However, since X(z) and
Y(z) are analytic for z=v, and z&€(0,1), z =0
excluded, the same is true also for z = ~v, and
z € (—1, 0), because of Eq. (47), while it follows from
Eqgs. (41) and (42) that, for z = 0, the functions X(2)
and Y(z) have an essential singularity.
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B. Green’s Function for a Slab

We now show how other slab problems can be
solved with the help of the solution for the albedo
problem. Evidently, what we need is the solution of
the Green’s function problem, defined by the non-
homogeneous transport equation

0
(Ma— + I)G(xo:,uo_’x’,LHT)
X

1
c 1] ’
=-f G(Xg, pro— %, 4’5 7) dp
2 J

+ 0(g — w)d(xo — x), 0 < xp <7, (48)
with boundary conditions
G(xo’,uo_’o:/UT):O, H>0,
G(xg, ho—>7, —p;7) =0, u>0. (49)

In order to determine the emergent distributions
G(xo, o — 0, —p; 7) and G(x,, ptg — 7, p; 7), ¢ > 0,
we need the infinite-medium Green’s function
G(xq, pho — X, ; ) which satisfies Eq. (48). This
function can be solved in terms of Case’s eigen-
functions®® and is, therefore, considered as known.

Let us seek the solution of our problem in the form

G(Xgs pro—> X, t; 7)
= G(xo, pto = X, pt; ©) + p(x, u; 7). (50)

By substituting Eq. (50) into Eqgs. (48) and (49), it
follows that the unknown function (x, g#; v) must
satisfy the homogeneous transport equation (1) and
the boundary conditions

v, p; 1) = —G(x0, o = 0, p; ), p >0,
p> 0.

(6D

In this way, the Green’s function problem for a
slab is reduced to determining the infinite-medium
Green’s function and to solving two albedo problems
discussed in the previous section.

v, —u,7) = —G(xo, o > 7, —Y4; 00),

C. Distribution Inside a Slab

Once the surface distributions for a slab problem
are known, the inside distribution can be determined
by using the full-range completeness and orthogonality
relations of Case’s eigenfunctions. In view of the
results of the previous section, it is sufficient to show
how the albedo problem, defined by Egs. (1) and (9),
can be solved completely in terms of the function
S(7; py, ) or T(r; yy, u) and Case’s eigenfunctions.

We start with the eigenfunction expansion given
by Eq. (10). By using the full-range orthogonality
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relations of Case’s eigenfunctions (7a), (7b), and (6),
we can determine the expansion coefficients with the
help of the function S(r; u,, ), for instance, by
setting x = 0 in Eq. (10). In this way we get

NGIAG) = o ) = f S(r o i), 1) d,

ve(—1,1), (52)

On the other hand, by using the function 7(r; p,, x)
and setting x = 7 in Eq. (10), we obtain

N@)A®) = pod(v, po)e”M//ro)
+ é‘ef/vj; T(T; Mo ,U)QS(‘V, /‘) dlu’

ve(—1,1), »= 4v. (53)

By using Eqs. (20) and (22), satisfied by S(7; , )
and T(r; ug, #), it can be easily verified that the
rhs of Eqs. (52) and (53) are indeed identical.

y= £v.

IV. HALF-SPACE PROBLEMS

We now briefly discuss half-space problems and
show how they can be solved exactly in closed form.
The equations for the half-space problems can be
formally obtained from the slab equations of the
previous section by limiting = to infinity and writing

lim S(7; pho, ) = (o, 1), (54)
lim X(p) = H(uw), (5%)
lim T(r; py, p) =0, (56)
lim ¥Y(u) = 0. (57

(We assume, of course, that ¢ < 1.) The resulting
half-space equations are much simpler than the
equations of the previous section. In fact, it will be
shown that a closed-form solution for H(x) can be
obtained. Once H(u) is known, all other half-space
problems can be solved exactly in terms of H(x) and
Case’s eigenfunctions.

To show that, let us consider the explicit form of the
singular integral equation for the function H{x):

1
HE) =1-2p[ HB 4 (sg)
2 Joy—up
together with the condition
1
0=1-f H® 4 (59)

2 0Py — U

resulting from Eq. (27) of the previous section by
letting = approach infinity.

We assume that a solution of Eq. (58) exists and
that it satisfies a Hélder condition!® for u € (0, 1) and
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the condition (59). Guided by the form of the singular
integral equation (58), we define an analytic function
F(z) in the complex plane cut from —1 to 1 as
1
ARDF(z) =14+ Z f (G (60)
2Jdop — z
Since A(z) is analytic in the whole cut plane, with
A(z) # 0, except for z = £v,, the same is true also
for F(z), in view of our assumption on H(u) for
u € (0, 1).18 For z = +v,, A(z) has simple zeros, so
F(z) may have simple poles there. However, it follows
from Eq. (59) that F(2) is analytic also for z = »,.
By applying the Plemelj formula® to Eq. (60), and
taking into account Egs. (58) and (4), it follows that

Ft(x) =F(x) = H(x), x€(0,1), (61)

Fr)A+(x) = F-(0)A-(x), xe(=1,0). (62)

We see from Eq. (61) that F(z) is the analytic
continuation of H(u), u € (0, 1). Therefore,

and

H(z) = F(2) (63)
and H(z) is analytic in whole complex plane, cut from
—1 to 0, except for z = —w,, where it may have a

simple pole.

Let us now consider the product H(z)H(—z)A(2).
This is an even function of z, analytic in the whole
complex plane cut from —1 to 1, since H(z) has at
most a simple pole for z = —w»,. Moreover, this
product is, in view of Eq. (60), also continuous across
the cut (—1, 1), with H%(0)A(0) = 1, as follows from
Egs. (58) and (3). Hence H(z)H(—2z)A(2) is analytic
in the whole complex plane and we have

H(H(—2)A{2) = 1. 64

Two important results follow at once from the above
relation. First, we see that H(z) has indeed a simple
pole for z = —w,. Second, by combining Egs. (60)
and (64), we get the nonlinear integral equation for the
function H(z):

cz (* H(y) _ _
H(z)[l + 2L—z+#dy] =1, z¢(—1,0). (65)

Now, we turn our attention to Eq. (62). We see that
H(z) is also the solution of the homogeneous Hilbert
problem.!® By requiring that the solution is analytic
in the whole complex plane, cut from —1 to 0, with
a simple pole at z = —w,, we can solve this problem
uniquely in a closed form. We obtain'®

z ([t AT(x)  dx
P [Zm' o1n A (x)(z + x)x:l.

(66)

H(z) = ex
(2) L+ 2me

18 §, Pahor, Nucl. Sci. Eng. 26, 192 (1966).
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In deriving the above solution we have also justified
the assumptions, made in the beginning of this discus-
sion, that a solution of Eq. (58) exists and satisfies a
Haolder condition for u € (0, 1).

It is obvious now, from the results of the previous
section, how to express the emergent distribution for
the albedo problem in terms of the function H(x) and
how to determine the emergent distribution for the
half-space Green’s function problem.

However, there is the so-called Milne problem,
characteristic for the half-space, which should be
mentioned. It turns out that for the half-space the
homogeneous transport equation (1) has solutions
even for a zero incident distribution, if we drop the
condition that solutions are bounded at infinity. We
may say that in this case we have sources at infinity.

The Milne problems [whose solution is defined as
w(x, u; )] are conveniently defined by the homo-
geneous transport equation (1) and the boundary
conditions

90, u;9) =0, p>0,
W(xa u; ’V) -> ¢(_"” ‘u)ea:/v’

x—> o0, »€(0,1), (67)

VY= 1.

We want to determine the emergent distribution
w0, —u;»), 4> 0. To do that, let us define the
following ““albedo” problem:

'P(O’ :u) = ¢(_"” :u)’ u> 0,

x/v

Y(x, 1) — $(—v, pe™”,

x—> o0, ve(0,1), v=19, (68)
Obviously, the solution of this problem is
px, ) = $(—», we”, pe(=1,1). (69)

Let us decompose the solution p(x, u) into two parts:

p(x, ) = pi(x, @) + palx, w), (70)
where
(0, ) =0, u>0,
pi(x, ) —> $(—», we®, x— oo, (71)
and
v(0, ) = $(—»,p), p >0,
Po(x, ) =0, x— 0, (72)

with ;(x, u) and w,(x, u) satisfying the transport
equation (1). Evidently, ;(x, u) is just the solution of
our Milne problem, while y,(x, u) is the solution of a
“proper” albedo problem with y,(c0, u) = 0.
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Therefore, we may apply Eq. (17), with r = 0, to
9,(0, p). In this way we get

(0, —p) = é(v, p)
. 1
= ‘1‘[ SG, o0, W) dy', >0, (73)

2u Jo

— (0, —u; )

or, in view of Eq. (72),

WO, =i 3) = 40 ) = - [ S, (=, 1) i,

u>0, »e(0,1), (74)

vy = v,.

Now, we express the function S(u’, ) in Eq. (74)
in terms in the function H(u) by using Eqgs. (33) and
(39). By taking into account Egs. (2¢), (2d), and (65),
it follows that (0, —u; v) can be expressed in terms
of the function H(z) as

0 —p:n=CSp_2_ H(p) o
YO0, —u;v) = 2P T HG )+ A»)o(y — w),
w> 0, v€(0,1), v=1v. (75

Of course, the only physically meaningful solution
is that for » = »,. However, the other solutions are
useful for constructing the half-space solutions inside
the medium,

Once the surface distribution for any particular
half-space problem is known, the complete solution
can be obtained by using the full-range orthogonality
relations (6), (7a), and (7b).

For instance, let us construct the complete solution
of the albedo problem. This solution, denoted as
(0, ug — x, p), satisfies the transport equation (1) and
the boundary conditions

(0, gy — 0, u) = 8(uy — ), >0,

w(oa Mo —> X, /u‘)_')oy X —> 0. (76)

The emergent distribution 9(0, uy —0, —u), u >0,
can be expressed in terms of the function S(u,, ),
in view of Eq. (13), as

(0, o — 0, —p) = (1/21)S(pto , 40)-

Because of the condition (76) at infinity, we expand
(0, sy — x, u) only in terms of the exponentially
decreasing eigenfunctions

Aro)$(vo, e
+ﬁ, AG)$(v, e dv. (78)

an

v(O0, po = x, p) =

By setting x = 0 and expressing 9(0, uo — 0, —u)
using Eq. (77), we determine the exparsion coéfficients
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as has been explained. Taking into account Eq. (74),
we finally get

1 0, ; /v
— (0, o —> x, p) = LMQ‘#(”O:/‘V vo

Ho N(o)
+J. ’P(O N(Iu)o’ 'V) ¢( ,u)e—z/v d’ll, (79)

and this represents the complete solution of the half-
space albedo problem.

V. CONCLUSION

The method presented in this paper is based on the
ideas introduced into transport theory by Ambar-
zumian, Chandrasekhar, and Case. First, the solution
for the surface distributions is sought. (In a number of
applications this is all that is required.) By using the
infinite-medium eigenfunctions, a system of singular
integral equations together with the uniqueness
conditions is derived for the surface distributions in a
simple and straightforward way. This system is the
basis of the whole theory.

One could stop there and determine the surface
distributions by solving numerically the system of
singular integral equations combined with the unique-
ness conditions. Or, this system can be reduced to
certain uncoupled Fredholm integral equations which
can be then used for numerical computations. Finally,
the surface distributions can be also computed by
using the nonlinear integral equations. It is evident
that the question of how to compute the surface distri-
butions is the most important one, since once these
are known, the complete solution can be found by
quadrature.

As far as we know, the system of singular integral
equations (27) and (28) (v = %, included) has not been
used to compute X(u) and Y(u). For numerical
computations, this system can be rearranged so that
the principle-value integrals disappear. Then it could
be solved approximately, for instance, by reducing it
to a system of linear algebraic equations.

The other possibility, to solve numerically the above
mentioned Fredholm integral equations, was con-
sidered by Leonard and Mullikin.?” They showed that
these Fredholm integral equations converge rapidly
under iteration for all ¢ and =. Unfortunately, the
kernels of these equations are not simple functions
and to compute them requires quite a lot of work.

So, it seems that the simplest way to obtain numeri-
cal values for the surface distributions is the straight-
forward iteration of the nonlinear integral equations
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(41) and (42). This was done successfully by Chandra-
sekhar and others.'*® Since the system (41) and (42)
is not uniquely soluble, the conditions (43) and
(44) should be used as a check. At the same time,
this would give an estimate of the accuracy of the
iterations.

19 S. Chandrasekhar, D. Elbert, and A. Franklin, Astrophys. J.
115, 244 (1952).
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The nonlinear realizations of the chiral group SU(2) ® SU(2) are studied from a geometric point of
view. The three-dimensional nonlinear realization, associated with the pion field, is considered as a group
of coordinate transformations in a three-dimensional isospin space of constant curvature, leaving invari-
ant the line element. Spinor realizations in general coordinates are constructed by combined coordinate-
spin-space transformations in analogy to Pauli’s method for spinors in general relativity. The description
of vector mesons and possible chiral-invariant Lagrangians, which yield the various nonlinear models in

specific frames of general coordinates, are discussed.

1. INTRODUCTION

Chiral-invariant Lagrangians are currently used asa
practical tool to study the implications of current
algebra.!? The Lagrangians are to be constructed as
functionals of fields, which have definite transforma-
tion properties under the chiral group SU(2) ® SU(2).
Because there does not exist a three-dimensional
linear representation of the group, it has been sug-
gested®* that the pion field transforms according to
the three-dimensional nonlinear realization. This
implies that chiral symmetry is a pure interaction
symmetry not shared by the asymptotic fields.

A systematic development of the nonlinear realiza-
tions can depart from different points of view. While
the transformation laws are nonlinear, the transforma-
tions are still implemented by unitary operators in
quantum theory. Weinberg has studied the most
general form for the commutators of generators and
fields.® On the other hand, for a better understanding
of the mathematical nature of nonlinear realizations,
it seems worthwhile to keep the analogy to linear
representations as close as possible.

1 S. Weinberg, Phys. Rev. Letters 18, 188 (1967).

2B. W. Lee and H. T. Nieh, Phys. Rev. 166, 1507 (1968).
3 J. Schwinger, Phys. Letters 24B, 473 (1967).
.4J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967).

5 S. Weinberg, Phys, Rev, 166, 1568 (1968).

A nonlinear realization is a representation of the
group in a curved instead of Euclidean space. We show
in Sec. 2 that the chiral group is the invariance group
of the metric in a three-dimensional space with
constant curvature K = 1/f2. This “fundamental”
nonlinear realization is associated with the pion field.
While the field components are the coordinates in the
curved space, space-time derivatives are tangents
and transform as contravariant vectors under co-
ordinate transformations. The Riemannian geometry
of the curved space replaces the Euclidean geometry
of linear-representation spaces. Following Pauli’s
treatment of spinors in general relativity,® we study in
Sec. 3 spinor realizations of the chiral group in general
coordinates by combined coordinate-spin space
transformations. The realizations associated with
vector mesons are discussed in Sec. 4.

The various nonlinear models treated in the litera-
ture?2 result from a specific choice of general pion
coordinates. This is in complete agreement with
Weinberg,® but we think that our more geometric
" s W. Pauli, Ann. Phys. (Leipzig) 18, 337 (1933).

7 G. Kramer, H. Rollnik, and B. Stech, Z. Physik 154, 564 (1959).

8 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).

% F. Girsey, Nuovo Cimento 16, 230 (1960).

19 F. Giirsey, Ann. Phys. (N.Y.) 12, 91 (1961).

11 P, Chang and F. Giirsey, Phys. Rev. 164, 1752 (1967).
121, S. Brown, Phys. Rev. 163, 1802 (1967).
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it seems worthwhile to keep the analogy to linear
representations as close as possible.

1 S. Weinberg, Phys. Rev. Letters 18, 188 (1967).

2B. W. Lee and H. T. Nieh, Phys. Rev. 166, 1507 (1968).
3 J. Schwinger, Phys. Letters 24B, 473 (1967).
.4J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967).

5 S. Weinberg, Phys, Rev, 166, 1568 (1968).

A nonlinear realization is a representation of the
group in a curved instead of Euclidean space. We show
in Sec. 2 that the chiral group is the invariance group
of the metric in a three-dimensional space with
constant curvature K = 1/f2. This “fundamental”
nonlinear realization is associated with the pion field.
While the field components are the coordinates in the
curved space, space-time derivatives are tangents
and transform as contravariant vectors under co-
ordinate transformations. The Riemannian geometry
of the curved space replaces the Euclidean geometry
of linear-representation spaces. Following Pauli’s
treatment of spinors in general relativity,® we study in
Sec. 3 spinor realizations of the chiral group in general
coordinates by combined coordinate-spin space
transformations. The realizations associated with
vector mesons are discussed in Sec. 4.

The various nonlinear models treated in the litera-
ture?2 result from a specific choice of general pion
coordinates. This is in complete agreement with
Weinberg,® but we think that our more geometric
" s W. Pauli, Ann. Phys. (Leipzig) 18, 337 (1933).

7 G. Kramer, H. Rollnik, and B. Stech, Z. Physik 154, 564 (1959).

8 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).

% F. Girsey, Nuovo Cimento 16, 230 (1960).

19 F. Giirsey, Ann. Phys. (N.Y.) 12, 91 (1961).

11 P, Chang and F. Giirsey, Phys. Rev. 164, 1752 (1967).
121, S. Brown, Phys. Rev. 163, 1802 (1967).
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point of view might help towards a better understand-
ing of nonlinear realizations and open the way for the
study of other symmetry groups.

2. PIONS

We start with the ¢ model,®!® j.e., a real four-
component field p*(x) (x =0, 1, 2, 3) in the (, )
representation of SU(2) ® SU(2). This means that at
every space-time point x the components p*(x) span a
four-dimensional Euclidean space E; and have the
transformation law

P = Rip, @1
where R is an orthogonal 4 x 4 matrix such that
RRT=1; |R|=1. 2.2
Because
Pr.=s" =+ () 2.3)

is invariant under (2.1), the three-dimensional surface
of the upper or lower half-sphere of radius f,

PO = (-,

pP=T, 2.9

is mapped onto itself by (2.1). Equation (2.4) gives a
special parameterization of a three-dimensional curved
space V¥, with constant curvature X = 1/f% We take
the parameters #* (i = 1, 2, 3), i.e., the coordinates
in V3, as the three components of the pion field.
This is a generalization of the usual setup, where the
field components are coordinates mn an Euclidean
space. The group SU(2) ® SU(2) is represented in
V'3 by the coordinate transformations

n'l = Rir' + Ri(f? — m)t. 2.5
The representation of the isospin subgroup (R} = 0)
is still linear. The inner geometry of ¥ is concerned
with the properties which are independent of the
embedding into the space E;. Its fundamental
quantity is the metric tensor

ap apa T,y
=4, —k
o' dnt +f2 —

if we use the parameterization (2.4). g is a covariant
tensor with the general transformation law

dn" On*

galm) = (2.6)

ga(m') = grs(ﬂ') rr 2.7
under coordinate transformatlons
't = 7'i(xm). 2.8)

The contravariant tensor g'* is determined by

878 =8; = 01. (2.9)

13 J, Schwinger, Ann. Phys. (N.Y.) 2, 407 (1957).
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It can easily be checked that the transformations (2.5)
leave the metric invariant

gulm') = gu(m), (2.10)
e., SU(2) ® SU(2) is the invariance group of the
quadratic form

gu(m) dnt dn® = ds* (2.11)
in V.

Each component of the space-time derivative
0,7 (u =0, 1, 2, 3) is a contravariant vector with
respect to coordinate transformations in F with' the
transformation law

on'

0,n'" = — 9,7 (2.12)

on*
The corresponding contravariant vector is defined by
0,m; = gy 0,m" (2.13)

Hence, the only choice for an [SU(2) ® SU(2)}-
invariant Lagrangian of second order in 9,7 is

L,, = }g(m0,n'0"x* = 10, motn’.  (2.14)
The nonlinear models treated in the literature? 12
correspond to different systems of coordinates in V.
Weinberg® calls this a redefinition of the pion field.
With (2.6) we obtain
1 (. 0,m)m . 0"n)
- o

A transformation to

L. = %auﬂa’lﬂ +

, (2.15)

where w is the isovector =,
stereographic coordinates 7,

=t

5 w
= (2.16)
leads to
Fal?) = —2E__ @17)
' 1+ ®*/4f* ‘
and

_1om.0"
214 mY4AFY
which is another nonlinear model. The Lagrangians
(2.15) and (2.18) are form-invariant under SU(2) ®

SU(2) because of (2.10).
The covariant field equations of (2.14) read

L (2.18)

* + { ' }auwma"w" =0, (2.19)

mn
where {,%,} is a Christoffel symbol of the second kind.
The field equation (2.19) is a direct generalization of
the flat isospin-space equation

Om = 0. (2.20)
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While 9,7 is a contravariant vector, a second space-
time differentiation must be performed in an invariant
fashion. The invariant Bianchi derivative of a vector
at is defined by

D, = af @, = d,a* + { k‘l}aka,m’, @.21)
where
; oa’ i) %
R 222
e anl+{kl}“ (2.22)

is the usual covariant differentiation. If a* depends
explicitly on x,
a' = a{(r(x), x), (2.23)

we write

D, = 0,a' + a},0,7, (2.24)
where 0, acts only on the explicitly appearing varia-
bles x. Then D,a’ transforms as a contravariant
vector. Hence, we may write instead of (2.19):

Dua“fr" = D,,D"w" =0, (2.25)
if we define
D*f = o*f (2.26)

for a scalar f.

3. NUCLEONS

Our next task is to induce a representation of
SU(2) ® SU(2) in the two-dimensional spin space of
the J = } representation of the isotopic SU(2). To do
so, we generalize a method developed by Pauli® for
spinors in general relativity.

The two-dimensional spin space is related to the
three-dimensional Euclidean space E; of the I =1
representation by the Clifford algebra

Eg: [7;, 7l = 20. 3.1

Instead of (3.1), we consider the Clifford algebra of ¥,

Vsi  [Tiw), T¥(n)], = 2g%(m), (3.2)

where the I''(7) are 2 X 2 spin matrices depending

on the pion field . We define the transformation law

of the I'* under coordinate transformations in ¥; by
X aﬂ_li

I"(w") = — I'(=). 33

(=) P (m) (33

Because the SU(2) ® SU(2) transformations (2.5)

leave the metric tensor unchanged, there must exist a

nonsingular matrix § for every transformation (2.5)

so that

(=) = S7'I'{(#’)S. G4

If we define the combined coordinate-spin space

transformation laws of SU(2) ® SU(2) spinors and
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the I' matrices by
y(') = Sy(m), y*(n') = y*(m)S7,
V{(a") = SI"{(#")S™ = I'(w), (3.5)

bilinear quantities constructed with the I' transform as
ordinary tensors, e.g.,

YA )y (7)) = ¢ (M (m)y(m)

o'
o7
A representation of the Clifford algebra (3.2) can be
obtained in the form

Li(m) = hin(7) T,

him(My () = ga(m). (3.8)

It must be emphasized that only the first index of 4,,,
is covariant under coordinate transformations. The
conditions (3.8) do determine the coefficients #4,,,
only up to an orthogonal transformation acting on the
second index. We take the solution corresponding to
the expansion

(3.6)

3.7
with

8ix = O + Pur»

him = (gtm)% = (6im + %(pm + - ')' (3-9)
In case of (2.6) we have
_(f2 _ e}
by = 8 +1= =TV (3.10)

I
m(f* — )

We now turn to the representation of infinitesimal
SU(2) ® SU(2) transformations in the spin space.
The isotopic subgroup need not be discussed. It

has the usual representation. For infinitesimal chiral
transformations we may write, according to (2.5),

7't = nt 4 SA¥(m), @3.11)
If we put
S=1+4T, (3.12)
we obtain, from (3.3) and (3.4),
;  00A* oI
—[T, T =% —— — — §A%, 3.13
[T, T%(m)] o 3 (3.13)

By differentiation of (3.2) we find that the derivatives
of I'* have the structure

aFi agri

a_rrl = %Fr_a';'r? + [Al, I“.])
where the spin-space operator A, is determined up to
the product of the identity and a gradient function,

if we add the integrability conditions

a2Pi aZI‘i

onlon™ - dn™dmt

(3.14)

(3.15)
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We find
1 or?
A= —=Ty, =] 3.16
e (3.6)
The solution of (3.13) is
: - aéA’
T = ApPA' + 310, T ] G317

a generalization of the well-known spmor-transforma-
tion law for linear transformations. If we take

AF = (f2 — n2)t (3.18)

and use (2.6), we arrive at Weinberg’s transformation
law® for our particular choice of coordinates in V5:

1
n A -
f+ (- n2t
In order to introduce a covariant derivation of spinors,
we first consider the usual covariant derivative of I'¢:

T=¢"

€ i€, — T

(3.19)

oI i
t | 3.20
= 67r’+{lk} (3.20)
Because

we conclude by comparison with (3.14) that there
must exist an isospin matrix £, so that

T, = [Q,, T, (3.22)

It is given by

n a n
Q=4+ }I™T ]ai‘ = —3[[,, T3] (3.23)

With Pauli,® we define a covariant spinor differentia-
tion (denoted by “./”) by the following conditions:

(a) F = 1-‘[|l + [Fi’ Ql] =0,

(b) (¥'Ty), = viT + v Ty, (329
© @), = (@ Ty),.
These conditions lead to
oy
Y= a_, - Qup,
oyt
yh=—"+vQ. (3.25)

a l
It is then clear that an invariant space-time differentia-
tion of a spinor has to be defined by
D,y =0,y — 9,m7Qyp,

Dyt = 0,4" + v*Q9,n, (3.26)

where

0y
2,y —awF+a,,zp,

if p depends explicitly on x.

(3.27)
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The Lagrangian
L,, = —piy,D"p + mpy, (3.28)
where y is a four-component space-time spinor and a

two-component isospinor, leads to the invariant field
equation

(—=iy,D"* + m)p = 0. (3.29)
If we use the coordinate system (2.6), we find
1
Q, = iggmir, - (3-30)
AF+ (=)
1
Dy=0p—it-(O,mxm )——w,

S of +(fF — =t

(3.31)

which coincides with Weinberg’s ‘“‘covariant deriva-
tive”® and corresponds to Giirsey’s second nonlinear
model.)! Equations (2.25) and (3.29) are free-field
equations, covariant under SU(2) ® SU(2) in an
isospin space of constant curvature K = 1/f%. The
m— interaction and the #—N interaction embedded
in (2.25) and (3.29), respectively, is induced and
completely determined by the curvature. In the limit
Jf— oo, the space becomes flat, the interactions
vanish, and the symmetry group SU(2) ® SU(2) is
contracted to isotopic SU(2).

The most simple form for interacting pion and
nucleon fields is the sum of (2.14) and (3.28):

L= —p(—iy D'+ m)y + 30,m0“7". (3.32)
While the field equations for the nucleon field remain

unchanged,
(—iy- D"+ my =0, (3.33)

there appears an additional term in the pion field
equation,

O +{ }a AP = AR iy [T, Tl
(3.34)

Ry = g"(MR ;1) (3.35)
is the Riemannian curvature tensor depending only
on the pion field.

All interaction terms of (3.32) are due to the curva-
ture of the pion-isospin space and vanish in the flat-
space limit f— oco. But we may add further terms
that do not have this property. A chiral-invariant
“trilinear” interaction term must be of the form

where

Ly = gpyuysl(m)yd m, (3.36)
It reduces to the gradient coupling term
L; = gpy,ysvy - 0w (3.37)

in the flat-space limit.
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4. p MESONS

The p meson is usually introduced instead of the
direct vector interaction of pion pairs in the covariant
derivative of the y field

D,y = 0,y — ige, * (T/2)yp. “.1n

To guarantee the covariance of (4.1) under spin-space
transformations

D,Sy = SD,y, 4.2)

p, has to obey a particular transformation law that
can be deduced from the transformation law of the
interaction term in (3.26):

Dyy=20,p — 0,m'Q (7). 4.3)

The spin-space operator 2, is defined by (3.22).
Because the matrices I(7) have the same functional
dependance in all coordinate systems related by
chiral transformations [see Eq. (3.5)]:

P”i(ﬂ') —_ Fi(‘n"),
Q; in the primed system is given by

L)y, = ("), T(=")].

4.4

4.5)
Hence,

D,y =0,y — 0,7"'Q(=")y.
The interaction term in (4.3) may be written as
au"lQl(") = %(Duh;’n("))hjn(")i[‘rm ’ Tn]'
Because of

(4.6)

@a.7

hfnhln = 6mn’ (48)

the quantity

(Duh;’n(ﬂ))hjn(‘”) - gOPu,mn(") (49)
is a skew symmetric tensor that may be replaced by the
p-meson field in the spirit of (4.1). g, is some coupling
constant. We have already remarked earlier that the
indices m, n are, in contrast to j, not covariant with
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respect to general coordinate transformations in V.
Let us now discuss the transformation properties of
the p field. According to (4.6) we have in a primed
system

(Dyhn(n Nhiu(7') = 8opy,malT)-
Referring to (2.10) and (3.8), we see that

hy (7 (') = gu(n') = by () (7') = gi(n').
(4.11)

Hence, there must exist an orthogonal matrix §
such that

(4.10)

him(m) = Spehip (7). 4.12)
For infinitesimal transformations it is found to be
S=14+T, T=Ty, 4.13)

This should be compared with the spin-space trans-
formation matrix in the spinor case (3.12) that can be
written as

(tl)mn = iemln'

T = Ty(r,/2). (4.14)

The transformation law for the p-meson field now
follows from (4.10) and (4.12). Using an obvious
matrix notation we may write

Zopu(m') = Sgop(m)ST + (2,981 (4.15)

Hence, the p field does not transform as a tensor under
spin-space transformations nor does the curl of the
p field. But the quantity

Fuv = avpu - aupv + gO(Pnpv - Pvpp) (4'16)

does transform as a tensor

Fuv('n") = SF,,(m)S. 4.17)
This leads to the invariant kinetic Lagrangian
Lpp = %(FﬂvFuv)s (4.18)

used by Schwinger® and Weinberg.®
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The ladder app_roximation Bethe-Salpeter equation for (i) a bound spin-0 boson-boson system of zero
total mass and (ii) a bound spin-} fermion-antifermion system of zero total mass is solved for a four-

dimensional square-well potential.

1. INTRODUCTION

The only known exact solutions of the ladder-
approximation Bethe-Salpeter equation®- for a bound
spin-} fermion-antifermion system, expressible in
terms of rational or commonly occurring higher
transcendental functions, are for zero total mass and
with the mass of the exchange particle also zero.>-5
Attention is therefore becoming directed to numerical
approximation methods and interesting results have
already been obtained.®” So far, field-theoretical
potentials have been used, and these have a singu-
larity?-8-? serious enough to modify considerably the
form of the wavefunctions at the origin of the Euclid-
ean relative-coordinate space in which the problem is
described after the Wick rotation!® has been performed.
One consequence is the familiar “Goldstein problem”
and it appears that in order to overcome it one must in
some fashion cut off the high momenta.l*-22 It has
seemed worthwhile, therefore, to investigate a model
nonsingular potential since, as Mandelstam has
shown,® this gives rise to a discrete set of coupling
constants and problems at the origin of relative-co-
ordinate space are avoided. We choose the four-
dimensional square-well potential as the simplest to
deal with analytically. As well, however, this choice
introduces a high momentum cutoff in a very real way;
we show in Sec. 3 that in place of the single-particle
exchange k2 asymptotic momentum dependence, the
square well gives k=2%J(k4) so that the k2 dependence
is modulated by an oscillating factor of magnitude
k-t We perform the analysis for zero total mass since,

1 H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1951).
# M. Gell-Mann and F. E. Low, Phys. Rev. 84, 350 (1951).
3J. S. Goldstein, Phys. Rev. 91, 1516 (1953).
4 A. Bastai, L. Bertocchi, G. Furlan, and M. Tonin, Nuovo
Cimento 30, 1532 (1963).
5 W. Kummer, Nuovo Cimento 31, 219 (1964).
¢ P. Narayanaswamy and A. Pagnamenta, Nuovo Cimento 53A,
635 (1968).
7 C. H. Llewellyn Smith [submitted to Ann. Phys. (N.Y.)].
8 A, Bastai, L. Bertocchi, S. Fubini, G. Furlan, and M. Tonin,
Nuovo Cimento 30, 1512 (1963).
? S, Mandelstam, Proc. Roy. Soc. (London) A233, 248 (1955).
10 G. C. Wick, Phys. Rev. 96, 1124 (1954).
11 Reference 6, p. 652.
12 An alternative possibility has been considered by the present
author (submitted to J. Math. Phys.).

in this case, exact analytical solutions are found for
all Dirac-space sectors for all types of coupling and
for all angular momenta, in both the internal and the
external regions, and the numerical work is reduced to
matching the values and gradients of the internal and
external forms for each variable at the well boundary.
We arrive at relationships between well width and
well depth in order that the system described has zero
total mass. It is hoped that the solutions form the
starting point for a perturbation treatment of bound
systems with small but nonvanishing total mass E.

The notation and conventions in the following
sections are those of a previous paper!® hereafter
referred to as I. In Sec. 2, the parity and charge-parity
propetties of the zero-mass solutions in I are derived.
In Sec. 3 we consider a boson-boson system with a
square well and compare the results with those for a
potential due to particle exchange. Sections 4 and 5
detail properties of the square well for a fermion-
antifermion system and the analytical solutions of the
corresponding Bethe-Salpeter equation. Finally in
Sec. 6 we consider certain numerical solutions.

2. PARITY AND CHARGE CONJUGATION
PROPERTIES

We wish to identify the operators T, € which,
acting on the wavefunction y(x,, x,), are equivalent,
respectively, to the Hilbert-space parity operator P
and charge conjugation operator C acting on the
state vector |B); i.e.,

Ty = (Ol T{y(x)P(x2)}P |B),
Cx = (Ol T{y(x)P(v2)}C | B).

Using the well-known commutation properties of
C, P with y, p, we find, indeed,!* that

Ty = Parlxt, D, @
éx = CXT(xZa xl)C—I, (3)

where x; = (—x,;, (x),), X, = (—X,, (x,),), a sub-
script T stands for “transpose,” and C is a 4 X 4

Y

13 R. F. Keam, J. Math. Phys. 9, 1462 (1968).
14 Confer J. Harte, Nuovo Cimento 45A, 179 (1966).
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matrix satisfying

Ct=C?1, Cp= -G,
@)

C,C=—y,;m.

In terms of the wavefunction in the relative co-
ordinate f(x) [cf. Eq. (I.6)] these become

Tf(x, x) = Puf (—X, x4, ()
Cf(x, x4) = Cfp(—%, —x)C. (©)

From (6) we can deduce that
C = (- 1)1(.'K+3)~6, )

where the operators R, B are as defined in I. §
commutes with B35, VU, R, G; but
§JF = JFF 8)
and there are similar relations with J* replaced by
L¥ or SE.

In Eq. (I.54), namely

f1+i_Jm = z (j+j—m+m—. I Jm)fi+j—m+m_ s (9)
mtm”

we wrote down the form of a general solution of the
ladder approximation Wick-rotated Bethe-Salpeter
equation for a massless bound system of a spin-}
fermion and spin-} antifermion of equal mass, where
the suffices in the left member are the quantum num-
bers corresponding respectively to the operators
M3, ()2, I8 J,.

In the S-V sector (where, say, j* =j~ =) the
explicit form of /£, is found by substituting into the
right member of (9) from Eq. (1.30).

In the 7-A sector, Case A gives the disjoint solu-
tions

s55n =3 Gimtme | am)| 240 + vy
x | S0ttt | I B
mgt
+ z_(.llm?m; I jm_)ij+m;_Z:ns—}
+ia® 3 G+ b imim| jm)
X (j + ¥ dmymy | jm™)
X Zi+imz+m;_i75Am,+m,_ + (J + 1)_%a2(R)

x 3 (= timim}|jm?)
X (j — 3 mym; | jm™)

X Zi—‘}mx"'mz_inAm,'*'m,_:l 1 (10)
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TaBLE I. Parity and charge parity of solutions
of the Bethe-Salpeter equation.

Solution ~ Parity  Charge parity
sV (_ l)J (_ 1)2i
T (-1 (=DE (#0)
r4—- (_1)J+1 (_1)2i+1
gTA-f- (_1)1 (_])21+1 (J #% 0)
gTA— (_1)J+1 (_1)2i+1 (J # 0)
VA GV N GV

B = 3 Gimm™ | Im27Qj + DHe®)
x | 3 (Glmimt | m)Z e,
- z_(jlml—ms— I jm—)zjm+ml—z:n,_}. (11)

Cases B and C similarly give solutions f74, ,  and

T4 - To obtain parity eigenfunctions we must take

the linear combinations
TA+ T4 74
giriiom =fimram £fi1i0m-
In the P sector there is just the solution

ﬁ'Jm = p(R) ;_(jjm_’_m_] Jm)Zim+m_%75' (13)

(12)

The parity and charge parity of these solutions, all
of which have total angular momentum J, are given in
Table I. (The suffices j¥j~Jm are omitted.)

3. BOSON-BOSON SYSTEM WITH SQUARE
WELL

Written as a differential equation in relative co-
ordinates, the ladder-approximation Wick-rotated
Bethe—Salpeter equation for a system of two spinless
bosons of equal mass m bound to zero total mass is

(@O — mYf(x) = —AVf(x), (14)

where U is the potential function and 1 a coupling
constant. Writing the potential due to exchange of
spinless quanta of mass u explicitly, we have 4 = g?/
(4m)? and?®®

—1U = 2m)~ f "R 4 )t atk

=(2n)® f wR‘le(Kz + u?"J(KR) dK
= (u/R)K(uR)
U(g, R). (15)

15 The notation used throughout for the various higher tran-

scendental functions is that of Handbook of Mathematical Functions,

M. Abramowitz and I. A. Stegun, Eds. (Dover Publications, Inc.,

New York, 1965).



596

Here R is the radial coordinate in configuration space,
and K the corresponding radial coordinate in the
Euclidean relative-momentum space.

Separating (14) in four-dimensional spherical-polar
coordinates (R, v, 0, ¢), we have solutions of the
form?1®

f(x) = gn(R)‘inm(w’ 03 ¢)’ (16)
where
& 3d _n(n+2) o ey
{ e } 2.(R) = — Vg, (R),

)
and n is a nonnegative integer.
We now define the potential to be a square well of
depth W and radius 4 = a/m when

AMN=—-W, 0<R<A4,

1
AU =0, R > A. (18)

Let us take p = mR as the independent variable
and write

4 2+a

dy = — % =1 Dy, (19)
dp P m
A = djdy = d3ds, (20)

where j = 4n. If we then put « = Wm™*, Eq. (17) for
the square well becomes
A—-1Pg=xg, 0<p<a,
A - g =0, p>a,

(21a)
(21b)

where we have dropped the suffix » from g,, . Solutions
of both (21a) and (21b) may be found by comparison
with the equation investigated in the Appendix A.
In the external region (p > a), only solutions g,
vanishing as p — oo are acceptable and we have

8. = C1Ky(p) + Cop™1Ky;1(p)

for some constants C;, C,. In the internal region
(p < a), we must select solutions g; of (21a) which
remain finite as p — 0. For « > 0, one such solution
is

(22

gn = p o1 (np), (23)

where 7 = (1 + «})}. Another solution g;, has a
form depending on «:
8ie = Iy(p),
8ia = P Uyn(IBlp)y 0< k<1,
gie = pY,
8z = P Vara(Bp)s
where 8 = («¥ — 1)}

k=0,

249

k=1,

k>1,

18 For an explicit form of the function {2y, see,e.g., C. Schwartz,
Phys. Rev. 137, B717 (1965), Eq. (13). (Qqip = [nim).)
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Fic. 1. Curves of zero total mass for two spin-0 bosons each of
mass m interacting through a square-well potential of radius a/m
and depth «m®.

For « <0,
ga = Re(p™Jy;,1(8p)), 25)
82 = Im(P_lsz+1(ﬂP))-
Then for all cases
g = Cagin + Cign (26)

for some constants Cy, Cy.

Since (17) is a fourth-order differential equation,
we must match the values at p = a of g,, g; and of
their first, second, and third derivatives. Three of
these relations determine the ratios of C,, C,, Ci,
and C,, and the fourth determines a discrete set of
depths that the well must have for a given width in
order that the bound state has zero total mass.

Testing the cases « > 0 for j = 0 with a computer
reveals that solutions exist only for « > 1, and the
zero-total-mass curves for small values of «, a are
shown in Fig. 1. We have not attempted to test the
case k < 0.17

It would be interesting if we could match in some
fashion the results for the square well with those for
the theoretical potential of Eq. (15). Certainly there
should be qualitative agreement. In relative-momen-
tum space it is a matter of comparing:

i) Field theoretical potential , 27
® p K + 4 @n
2 2
(ii) Square-well potential an Z Js (%) (28)
4K m

We assume that the least value of « for a given a
corresponds to the physical case and restrict our
attention to the curve marked “1” in Fig. 1. Its
general shape suggests that the quantity 4 = a*(x — 1)

17 The remarks at the end of Sec. 6 are applicable here and indicate
that solutions are likely to be found for « < 0.
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F1G. 2. The quantity A = 4% — 1) for curve “1” of Fig. 1, plotted
as a function of «.

may be slowly varying, and in Fig. 2 we plot 4 as a
function of «. Presumably, well depth corresponds to
coupling strength, and if we choose k = A/2m?, since
h does not vanish as « — 1, we have for A — 2m? that
a — . This result is physically reasonable since
A = 2m? corresponds to the exchange particle mass u
vanishing!® and the field-theoretical potential, there-
fore, having infinite range. We can put the correspond-
ence between the ranges of the two potentials on a
more definite basis by choosing a = &(m/u) for some
constant £. Narayanaswamy and Pagnamenta!® have
given computed values of 4 for varying m/u at zero
total mass, and it appears that in order to obtain the
same computed value of A at m/u = 1 we must take
&2 ~ 30; but if we wish to obtain the same computed
value of 2 at m/u = 2 we must take &2 ~ 20. Thus, the
agreement is more qualitative than quantitative.
From the definitions of 4 and a we have
A 1 4
=2t
which is to be compared with Eq. (18) of Ref. 6.

(29)

4. FERMION-ANTIFERMION SQUARE-WELL
POTENTIAL
The ladder-approximation Wick-rotated Bethe—
Salpeter equation for a spin-} fermion-antifermion
system of total mass E is [Eq. (I.8)]**:

(7 10— ,“aEh + ma)f(x)
X (v 0+ mEyy + my) = —AVf(x), (30)
where m,, m, are, respectively, the fermion and

antifermion masses.
Absorbing A into U we put for the general four-

18 See Ref. 6, p. 640, Table I and p. 647, Fig. 1.
188 Through a typographical error, the left member of this
equation was given incorrectly in Eq. (I.8).
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dimensional radial potential function [cf. Eq. (I.12)]:
AU =3 V(RL. (31)

We now define the potential to be a square well of
depth V, radius a/m, and interaction type { when

ViR) = —Vé;, 0L R<alm,

Vi(R) =0, R > ajm. (32)

We consider only the equal-mass case m, = m, = m
and, putting « = V/m?, we define in the interior
region

ay = —(m?® + AV)/m?

= cin - 1,

33

where the c;; are the coefficients of Table I in I.

In nonrelativistic quantum theory the sign that a
potential term should have in order that the force
field be attractive is unambiguous. This is not the case,
however, for a relativistic theory such as we are
considering here, specifically because E occurs
quadratically in the left member of (30), whereas 4
appears linearly in the right member. There is as yet
no guarantee of the sign of dE/dA and, indeed, for
two members E, , E, of a discrete energy spectrum, no
guarantee for a given A that dE,[dA and dE,/d) have
even the same sign. A direct test, therefore, as to
whether the potential is attractive for a particular
sign of the potential term is simply to see if a bound
state does exist for that sign. Consequently in the
following work we examine for both signs of V (or «)
whether zero-mass solutions exist.

Granted this point we note, however, that field
theoretical interaction Lagrangians corresponding to
each interaction type i do give a quite definite sign
for U. In fact for an exchange field A* of type i
(where i = S, V, 4, or P) whose quanta have mass yu,
the right member of (30) becomes 4eAU(x, R)L'; f(x),
where interaction type 7, interaction Lagrangian €, and
¢ are as shown in Table II and A = g2/(4w)? as before.

The sign of € depends simply on whether i appears
explicitly in front of the expression for the Hermitian
£ as listed, since in ladder approximation the potential
comes from the lowest-order contributing term in the
S-matrix expansion and this contains the square of £.

TasLE II. Corresponding forms for

i, £,and e
i £ €
S £pASy 1
4 8Py uALy ~1
A gy')iysy,,A;}w 1
P igpysAty -1
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The tensor interaction has been excluded from the
above comparisons, since the interaction Lagrangian
L7 = g, ALy, which would be the direct analog of
those appearing in Table II, is intrinsically different.
The exchange-field contribution to £, comes only
from the antisymmetric part of AZ,, and this corre-
sponds to the reducible D% 1 D representation of
the proper Lorentz group, i.e., a spin-1 field. But
basically a spin-1 field is a vector representation, so
that, in order to describe it by second-rank tensor
components A7, the latter necessarily involve
derivatives of the basic vector field components. In
other words £, describes a derivative coupling which
implies a singularity of the potential of even higher
order at the origin. It is exemplified by the electro-
magnetic field where AL, = F, = 9,4, — d,4,, and
where F,,, A, have their usual meanings.

5. FORMAL ANALYTICAL SOLUTIONS

When E vanishes, Eq. (30) splits into Dirac-space
S-V, T-A4, and P sectors. Angular variables may be
separated and the equation reduces to sets of coupled
radial equations which in I are written down explicitly
for the various possible cases. In what follows, each
set is solved analytically in the interior and exterior
regions for the potential (32).

A. S-V Sector
Using (19) and (20), Eqgs. (I.43) become
(A — a,))s + 2(djv, + dgv,) = 0,
dy{djor + 20 + D@5, + )} = (% + Dagvy,
di{—d yv, + 2j(djvs + 9)} = (% + Doyyos,
0<p<a, j#0, (34

R. F. KEAM

in the interior region and are of the same form in the
exterior region but with a;;, «,, replaced by —1.
If v,, v, are eliminated we find

{AZ — (ot + 2 + DA + “il“iz}s =0, (3%

the solutions of which follow by comparison with the
equation investigated in the Appendix A.

Given a solution for s, solutions for v, , v, are found
from the equations

(2 + 1)(dod§ + ap)o, = —(j + Ddy(A — a;y — s,
(2 + D(Fd=pv, + 0y = —jdi(A — oy ~ 2)s, (36)

which readily follow from (34). Mandelstam’s
analysis® shows that a solution will be physically
acceptable only if for some positive e it is O(R*) as
R — 0, and a detailed check shows that s, v, , v, must
in fact all be bounded for the square-well potential as
R —0.

The various possible real forms of coupled physi-
cally acceptable formal solutions are displayed in
Table I1I.

When the roots of the quadratic equation corre-
sponding to (35) are real and unequal, to any positive
root 7% corresponds a solution (a), to any negative
root —f? corresponds a solution (b), and to a
zero root (when o;, 7 0) corresponds a solution (c).
The two roots give two distinct solutions, and a third
is given by (d) or (e) according as a,, is positive or
negative. When «;, = 0, instead of (c) and (d) or (e),
we have (f) and (g).

When the roots of the quadratic equation are real
and equal, if they are positive we have: (a), (h), and
(d) or (e); and, if negative: (b), (i), and (d) or ().

When the roots are complex, we have from the
consideration of this case in the Appendix and from
the reality of the operators in (36) that two real

TasLE III. Solutions of the coupled equations (34).

Ug

s vy
1 1/j
;I2i+l(al) E(Jj-: 1)(0‘41 -7 )— Iyj45(00)
1 1
}’;JH+1(6) 5(211 + )(“u + 89 - Jz!+s(¢7)
pY 0
0 P—1121+2(°‘¢}3P)
0 P Y (L))
( j + 1)p¥ {(“n — 4)/[8¢; + 1)]}10“'+l

1
nly;(0y) (21 F 1) [3(ois — 1D esia(00) — _1121+=(0'1)]

J+

1
B ($75) B + Bhsea@) = ot 5 )

1 f 1
_(fj{l-_l) (ot — 1%) ; L(oyp

1
~ 7)o + 30
@) ©

o, =1np (a)

c=fp (b)

P_IJzi(“,}gP) 23>0 @)
—p Uy;(|eis]¥ p) %3 <0 (¢)
éj(au + 2)ptitt (f)
( J ) . ) 1
‘27'_‘_—1 (3o ~ 9DLy1(0) — 7 —Izl("x)] (h)

~ (5757 B + B9t + 72 5 o ®
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solutions are obtained from the real and imaginary
parts of (b) and the third solution is (d) or (e).

The nature of the roots for the various ranges and
values of « for each type of interaction is detailed in
Table IV. The general physically acceptable solution in
any particular case will then be some linear combina-
tion of the corresponding three formal solutions.

Solutions for the exterior region may be found by
putting « = 0 in (34) et seg. and selecting forms which
vanish as p— co. The three acceptable forms are
displayed in Eq. (37) where for brevity we have
omitted the argument p of each modified Bessel

TABLE IV. The character of the roots of the
quadratic equation corresponding to (35).

K Roots

S interaction

>1 + +
=1 + 0 (e = ;3 = 0)
<1l,>0 + +
=1 + + (equal)
<0 complex

V interaction
>1 + -
= + 0 (o, = 0)
<1 >0 + +
= + +  (equal)
<0, >-—% complex
= —% + +  (equal

—-4>-t + +

= —% + 0 (ous = 0)
< -3} + -

T interaction
>3 + -
=3 + 0 (x:=0
<% >0 -+ +
=0 + +  (equal
<0,> —% complex
= —3 - —  (equal)
<-% - -

A interaction
>3 + +
= + 0 (22 = 0)
=1 + 0 (x;=0)
<% >0 + +
=0 + +  (equaD
<0,> —12  complex
=—12 - —  (equal)
< —12 - -

P interaction

\Y
+

= + 0 (u;=0)
<1,>0 + +

=0 + +  (equal)
<0,> -1 + +

= -1 + 0 (=0
< -1 + -
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function:

(@ (b) (©
s=(2j+ DKy — p'Kyi11 p K1 P Ko
vy = (j + DKpjia P Ksjre 0, (37)
Uy = jKy; 0 piKy;
When j = 0, in place of (34) we have

d?g(do’s + 20)) = a8,

dy(dfo, + 25) = oy, (38)

0<p<a,

and the corresponding exterior region equations
obtained by putting « = 0. We may again derive
Eq. (35). Formal solutions corresponding to Table
III (a), (b), (c), (f), (h), and (i) may be derived and
are in fact identical to the forms found for s and », in
that table when we put j = 0 there. Exterior-region
formal solutions corresponding to (37) are:

@ (b)
s=pK, K, (39)
U == P—le p—1K2 + Kl‘

B. T-4 Sector

From Eq. (1.46), for Case A, j £ 0, we find in the
interior region that w satisfies

{2 — (a3 + g + DA + aaw =0, (40)

which is very similar to Eq. (35). One can follow the
argument for the S-V sector from Eq. (35) to Eq. (37);
but with the replacements s - w, v; — a;, vy — a,,
®i —> g, Kgy —> Ay, AN explicit factor j = an explicit
factor (j + 1), an explicit factor (2j + 1) is unaltered,
and exponents and Bessel-function orders are un-
altered. There is a single exception—the analog of
the form for v, in Table III (f) is

o3+ 4+ 1 25+
8+ 1)

The nature of the roots for the various ranges and
values of « for each type of interaction is shown in
Table V.,

We defer consideration of w and of the j = 0 case
[Eqs. (I.47) and (I.52)] and treat these with the P-
sector solutions below.

From Eq. (1.46) for Case B we find that in the
interior region g satisfies

a1=

{Af — (s + a0 + DBy + ax}a =0, (41)
where A, =d}df =dydf. A, is also A with j
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TaBLE V. The character of the roots of the quadratic equation corresponding to (40).

K Roots

« Roots

S interaction

>1 + +
=1 + 0 (%3 = g = 0)
<1,>0 + +
=0 +  + (equal)
<0 complex

V interaction
>4 + -
=4 + 0 (2 =0)
<§ >0 + +
=0 + + (equal)
<0,> —4 complex
= —4 - - (equal)
< —4 - -

T or A interaction

>4 - -
= - - (equal)
<4,>0 complex
= + + (equal)
= —} + 0 (0;3 =0for T

oy = 0 for 4)
< -3 + -

P interaction

>1 + —
=1 + 0 (d“ = 0)
<L>0 + +
={ + + (equab)
<0,> -1 + +
== + 0 (% =0)
< -1 + -

replaced by j + 4. The analysis proceeds as for Case
A, and the forms of solution are displayed in Table
VI. Each form is the direct analog of the solution
appearing in Table III which is indexed by the same
letter [(a), (b), etc.]. The exterior-region solutions are

(@) (b) ©
a= Ky pKpps p 7 Kojpes
t = Koo 2p7 Ky 0, 42)
t, = Ky; 0 2p71K5;01 -

It is not necessary to consider the T—A4-sector Case
C of I separately, because of the symmetry shown in
that paper to exist between Cases B and C.

C. P Sector
From Eq. (I.53) p satisfies
A+ asp=0 0Lp<aq, “3)
for which the only solutions bounded as p — 0 are

a; >0, p=o0Wy,(0), o= (ua)tp, (44a)
a5 =0, p=p%, (44b)
a5 <0, p= ‘7_112:'+1(‘7), o= (—“is)}/h (44¢)

The exterior-region solution is

P = p ' Ks;1(p)- (45)

From Egs. (1.47) and (I.52), the 7--A4-sector Case A
equations for w and q,, respectively, are

A+ agw=0, j#0,
Ay + 2)a, =0, j=0

(46)
(47

in the interior region. The solution of each follows
immediately from (44) upon replacing a5 with o3, o4
respectively, and also j by 4 in the latter case. In the
exterior region, w satisfies (45) and

a, = p~1Ky(p). (48)

6. NUMERICAL RESULTS

We consider first the cases discussed in Sec. 5C of
this paper.

The boundary conditions relating internal and
external solutions are that the radial functions and
their derivatives are continuous at the well radius
p = a. Thus for a5 positive, from (44) and (45) we

TasLE VI. Solutions of the 7-4 Sector, Case B equations.

a I Iz
et AP (o)) oy — 7907 as45(0y) (i — )07 a514(00) (@
P Vas42(0) (o + PO Uay45(0) — (e + BH03111(0) (b)
i+ 0 8(j + Dp¥fos ©
0 P a.'+s(°‘}}| )] —p Vagn (“?a P @
0 o ases(sslt p) p M35 (|2l p) @©
@+ D 0 $/+ e + D ®

1a441(01)
BJ3141(0)

3000 — P as40(0)) — 207 [3j44(04)
oy + BWis4a(0) — 067254545(0)

(e — 1Ma5(0,) — N*oh,(0) (h)
=32y + BY1i(0) — P07 0444(0) (i)
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TABLE VII. Numerical values of z, ,.

s j=0 ) 1 i
a=1 1 2.65 3.92 5.18 6.40

2 5.64 7.07 8.44 9.78

3 8.73 10.21 11.64 13.03

4 11.85 13.35 14.81 16.23

5 14.97 16.49 17.97 19.42
a=2 1 2.88 4.07 5.27 6.47

2 5.79 7.16 8.51 9.82

3 8.83 10.28 11.68 13.06

4 11.93 13.40 14.85 16.26

S 15.04 16.54 18.00 19.44

have at p = a, putting = ()},
K, (a JoiBa
K3j1(a) J2111(Ba)

Since the left member is positive for all values of a, 8
must be chosen so that Jy,(fa)/Jy;,1(Ba) is negative.
If j, , is the sth positive zero of J,(z)*:

jv,s <jV+I.a <jv,s+1 ‘

From this it follows that zJ,,(z)/Jy,,(z) decreases

from zero to minus infinity as z goes from j,, , to

Jas+1,s- Thus given a, there is a solution of (49) for

some value of fa lying between j,, , and j,, , | for each
=1, 2, . Furthermore, if z, , is this value,

ﬂ = zi,s/a (50)

and since z, , varies only over the small range j,; , <
Z; , < Jas+r,s» WE have approximately

B al

for each of the (discrete infinity of) values of g
corresponding to a given a. This approximation is
least good for small j and s; z, , varies by about 609,
over the complete range of a, but for example, z; 4
has a 109 variation and z; 55 a 2%, variation. Numer-
ical values for some z; , are shown in Table VII for
two values of a.

When a5 is negative we have I instead of J functions
in the right member of (49). But (49) then has no
solution, since its left and right members are, respec-
tively, positive and negative. A somewhat similar
result follows when oy == 0. Solutions therefore
exist only for a;; > 0. For S, T, and P interactions
(i =1, 3, 5) this implies that the well depth « must
exceed a certain value «,, (1, §, 1, respectively) in order
that the system can bind to zero mass. For « > «,,

19 See Ref. 15, p. 370, inequality (9.5.2).
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there are infinite series of widths a possible, and from
(50)

at = zi, 1 o 1

Cis K — Ky

(1)

K — Kp,

The similarity to results for the boson-boson system
of Sec. 3 is clear with z?  being the analog of A. In
contrast to 4, z; , is,however, strictly bounded. For V'
and A interactions, only negative values of « less
than —}(= —«;,, say) give zero-mass states and in
place of (51) we have

2 . 1 . 1
ot = —t . (52)
(e e’ — Ky " K — Ky
where «¥’ = —«. Comparing the signs of « with the

signs of ¢ in Sec. 4, we see that the exchange potentials
there correspond with square-well potentials that
produce bound states (of zero mass) for S or V
interactions, but not 4 or P interactions. Let us
consider this more carefully. In place of (43), the
exchange potential gives rise to the radial-differential
equation

(A — 1g(p) = —deceh- L - Kl(ﬂ : p) £(p). (53)
mp m

For 4 > 29 = (2j + 1)*/(4€c;5), neither solution satis-
fies the Mandelstam criterion at the origin. For 4 <
Ay, one solution does not satisfy the Mandelstam
criterion and the other does. However, at least for
u = 0, the latter solution increases at infinity and is
therefore unacceptable. Hence we have the “Gold-
stein problem.”

If we try to match the field-theoretical potential
with the square well, it seems natural to associate the
dividing value 4, with «, or «, . Consequently we

assume
e 1T+ 1D
l_c,-l: 4ec,y :l ’
or

x = 4edj(2j + 12 (54)

If we again take a = £(m/u) we obtain as the analog
of (29):

A=+ 1)2[1 PR :I (55)

_—Z .
2 g “is
4c;5 E m

Since A must be positive, this result can obtain, as
mentioned above, only for S or V interactions.

We see that, even allowing a cutoff procedure by
matching with a square well, one cannot obtain
P-sector zero-mass states with 4 or P interactions
and, in particular, no 0~ state is produced this way.



30 2 i« 6 J . %

-2

-3

A

-4

F1G. 3. Curves of zero total mass for a spin-} fermion-anti-
fermion 0+ system with a vector-interaction square-well potential
of radius a/m and depth exm?.

For w, only §, T, P interactions can produce
bound states and, of these, only S has the same well-
depth sign as for the exchange potential.

From (47), for a, with j = 0, there is no bound
state with a T interaction and of the others only §
and P interactions agree with the exchange potential
signs.

As a further example let us consider the numerical
solutions for j = 0 in the S~V sector for each inter-
action type. According to Table I, the bound system
has J =0, positive parity, and positive charge
parity. Using a computer for all regions of « where the
corresponding quadratic has real roots (see Table IV
for these regions), we find sets of solutions for zero
total mass in the following seven cases:

(i)  Vinteraction « > }

(i)* V interaction x < —}%
(iif) T interaction « > §
(iv) T interaction x < —%
(v) A interaction k < —12
(vi) P interaction « > 1
(vii)* P interaction x < —1.

The asterisks mark cases where the well has the same
sign as the corresponding model field-theoretical
potential. Graphs of well-width vs well-depth for
cases (ii) and (vii) are given in Figs. 3 and 4 respec-
tively. The curves are clearly again of the approximate
form of (51).

Defining h, = —a*(x + }), hp = —a*(x + 1) for
(i) and (vii) we demonstrate the comparatively small
variation of these quantities in Fig. 5 for the curve of
smallest a for given «. Also, using analytical forms
for the functions involved near the origin, we have

R. F. KEAM

been able to obtain the result that asymptotically as
a—0, h, > 1%, h, —8.

It is clear that for V, T, and P interactions the
potential is attractive for both signs of «.

No attempt has been made to carry out numerical
calculations for regions where the corresponding
quadratic has complex solutions, but we can perhaps
gain some idea of what to expect by the following
considerations. We notice that no zero-mass solutions
are found for cases where the corresponding quadratic
has real roots which are either both positive or one
positive and one zero. On the other hand, zero-mass
solutions are always found where there are real roots
at least one of which is negative and where the
corresponding range of « is infinite. Positive roots
correspond to monotonic functions and negative
roots to oscillating functions in the interior of the well.
For complex arguments the functions are of the type
ReJ, (z), ImJ,(z), and asymptotically

ReJ (z) ~ (2mr)~tersintlal ¢og 6,
ImJ (2) ~ (2mr)~2ersin UaD(x/(x]) sin 6,
where

z = re®,

6=rcosa+ §lo| — ¥n + P

Thus for « # 4, both ReJ, (z) and ImJ, (z) are oscillat-
ing. From this it seems likely that massless bound
states will be found for the S interaction when « < 0,
but not for the complex regions for the V or T
interactions. With the 4 interaction the region 0 >
x > —12 may give massless states, since it is contig-
uous to the infinite region « < —12 which does have
such states. Neither for the S nor the A4 interaction,
however, must we necessarily expect that solutions
will be found right up to the region boundary at « — 0.

-1 .

-3

-

Fi1G. 4. Curves of zero total mass for a spin-} fermion-anti-
fermion O+ system with a pseudoscalar-interaction square-well
potential of radius a/m and depth exm?®.
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Fig. 5. The quantities 44, A, for the curves of least a for given
x from Figs. 3 and 4 respectively, plotted as a function of «. The
asymptotic values h, — 32(4h,, — 6.86), h, — 8 are indicated.
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APPENDIX
Let the quadratic equation
FX)=X24+2bX+c=0 (AD)

have real coefficients b, ¢ and suppose its roots are

—p?, —y? so that we may write
X+ 26X +c= X+ X+ (A2

Consider the general fourth-order differential equation
in A with real coefficients

F(A)f(p) = 0.

The character of its solutions depends on that of the
roots of (Al) and we consider the various cases
separately.

(A3)

Case A: ¢ # 0, b — ¢ # 0. 2, ? are nonzero and
unequal and the solutions of (A3) are those of

A+p)f=0, (A4)

603
together with those of
A+y)f=0. (AS)
A complete set is therefore given by
P i1 (Bp), P Yeia(Bp),
P a11(yp)s P Yia(vp), (A6)

where f, y are convenient square roots of the possibly
complex quantities §2, 2.

If b2 — ¢ > 0 then B2, 92 are real, and if they are
positive then taking the positive square roots gives the
set (A6) of solutions in real form. If (say) 2 is negative,
the solutions of (A3) obtained from (A4) are real if we
take them to be

p i1 (IBl p)s P Koya(IBI p)- (A7)
If 2—c<0, y=F and since J,(2) =J,(2),
Y,(2) = Y,(2), a real complete set of solutions is
Re(p752(8p))s  Im(py;,1(Bp)),
Re(p71Yy;14(8p)), Im(pY,,4(6p)),
and we suppose —i7 < arg (f) < .

(A8)

Case B: ¢ # 0, b* — ¢ = 0. Equation (A3) becomes
A+ pYf=0. (A9)

If f; satisfies (A4), it satisfies (A9); and it is easily
shown that [9/9(8%)]f; also satisfies (A9). A complete
real set for g positive is, therefore,

P Vaia(Bp)s P Y0(Bp)s  Joi(Bp),  Yai(Bp)

(A10)
and, for #% negative,
P Lia(181 p), P72 Ky11 (18] p),
Li(18l p),  Kai(1B) p)-

Case C: ¢ = 0, b # 0. Just one root of (Al) van-
ishes and the corresponding solutions are

(Al1)

p2.1" P—2(i+1)‘

(A12)

Case D: ¢ = 0, b = 0. The complete set of solutions
is
23

P2(i+l), pY,

p—zj’ P—2(1+1)_ (A13)
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A simple method is presented for the evaluation of time-dependent thermal averages relating to the

Debye-Waller form.

Recently, Terwiel! has presented a method of evalu-
ating averages of the Debye—Waller form

(€% = TrePHSTr e P2, B = 1]kpT,
H=73ofaa,+3), =3 (Ca,+ Da}),
[aia a;] = 6i;i’ [ai, ai] = 0’ etc., (1)

which, apart from the cyclic property of the trace,
employs only the relations

ePHg.efH = efoq, (22)
e*a,e = g, — AD;. 2b)

One calculates {e?) by using the expression
F(3) = (") )
and by utilizing the properties of the differential form
dFldA =3 f;. ©)

Terwiel’s approach to the calculation of thermal
averages—illustrated in relations (2) through (4)—
is not limited solely to the evaluation of expressions
in the Debye—Waller form involving only a thermal
factor. For example, his methods can easily be ex-
tended to include an evaluation of K(z), such that

K@) = le dwe K (w),

were K(z) is the transform of the radiative spectral-
absorption function K(w) corresponding to the
absorption of external radiation by a defect or
impurity electron trapped in a crystalline lattice. In
fact, it is possible to calculate a variety of thermally
averaged multiple-time functions by using an ex-
tension of his procedure.

To see how this can be done, first consider a general
time-dependent thermal average (4(g, p; {t})), subject
to the conditions?

(A(g, p; {1}y = II (A(q, p; {1},

1 R. H. Terwiel, J. Math. Phys. 8, 926 (1967).

? Defining {***); = TreBHi- - -[Tre-PHi H, = w;(aIa; -+ 3), one
can substitute {A4,); for {4,) in (5a). Relation (5a) is applicable to any
operator function capable of being factored over the index i.

(5a)

ALg, p; {t}) = eH@iatllen). .. glloty),
P = q are integers, (5b)
0g, ) = 0l ™, 6,(q) = cg)a; + di(g)al,
(5¢)
[6:a), 6,(¢")] = 0. (5d)

We are particularly interested in the sequence
(A(1, p; {t})). In the case of the example® just men-
tioned, K(¢) would become (A(1, 2; {t})), with

(1) = —[v(g) — vy,
d(1) = [vg) — v}/ w;,
c(2) = —[ve) — v(g))/w;,
di(2) = [ve) — v/ w;,

where v,(g) and v,(e) are the distortions in the equilib-
rium position of the ith lattice mode with the trapped
electron in the ground (g) and excited (e) states,
respectively. In place of Terwiel’s expressions (2b),
(3), and (4), we use

eo,(q)aie—o.-(a) = a, — d(q), eo;(a)a;fe—a;(a) = a;r + ¢q),

(6

(d]d1 )X A1, p; {t1}) = £i(1, p; {1}). M

With the aid of (1), (5¢), and (6), we first write the
commutator expressions

[a,-(t), eﬂ:ﬂ‘(a.t')] — idi(q)e—4m;(t—t’)e:ta((q,t’), (8a)
[a,T(t), eﬂ.-(a,t’)] — ;-Fc‘_(q)eim;(t—t’)e:l:&(q.t')’ (8b)

and

from which we obtain

lai1), Alq, p; {tD] = i d(x)e ™=t 4, (q, p; (1),

&=q

(92)
[a!(t), Adg, p; (1] = — écf(x)e"“’“’"""’At(q, p; {1},
(9b)

3 See, e.g., M. Lax, J. Chem. Phys. 20, 1752 (1952); J. J. Markham,
Rev. Mod. Phys. 31, 956 (1959).
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upon applying (5b). Using (2a), (9a), and the cyclic
property of the trace, we then obtain the expression

(A1, g; {tPaDALq + 1, p; {t})
= [N;‘ i di(x)e—iw;(t—tx)
=1

FN+D S d,-<x)e-""’f"-tz’] AL, p; (D),

o=g+1
N, = (> — 1)’ (10)
An equivalent expression is constructed for a](¢) from
(10) by interchanging N, and N; 4 1, replacing
d,(x) by ¢,(x), and affixing a positive sign to the time-
dependent exponential. Applying the identity

0;(q,t,) = ethqeOi(q) —iHtq

e
to A,(1,p;{t}), we differentiate A,(1, p; {t}) with
respect to ¢, to obtain
£, p3 {t) = ioA (1, g; {DdLgal(ty) — clqat,)

— c(@)d{(D)ALg + 1, p; {t})y (11)
with the aid of (8a) and (8b) and (7). Inserting (10)

along with the equivalent expression for a](¢) into (11)
we arrive at a first-order differential equation:

e

d .
ar, (A, p; {t})

g—1
= iwi{z [d,(q)c,(x)(Nz + l)eiwi(ta—tx)
z=1
— ¢(q)d(x)Ne @ittt
»
+ 3 [dig)cx)Ne et

r=g¢+1
— (@)W, + 1)e-"wf“«—‘z’1}<A,~(1, p; {t))

whose solution using (5d) may be expressed as

<A,-(1,p;{t})>=exp{ Z Z @@ INegr (o 1)

¢l= a'=1

+ (N, + Dgity 1y )1} (12)
in terms of an ordered function

gi(tys tg) = eFoltt) g 5 g,
= 1, q= q’,
— e:i:img(tq'—tq)’ 4<q.

If we arbitrarily assign, for example,

3 zei(q)—AB—I'IZ(Ca + D)),

i a=1

then employing (5a) and (12) we get
(A, p; {0)) = F(B) = exp [w S €D, coth %ﬁw{l,
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in agreement with Terwiel. An alternate form for
(A;(1, p; {t})) may be obtained from (12) by defining
a constant

M(q) = (") = exp [$c(q)d|(q) coth $fw,] (13a)

and a time-dependent function

Gig,4q';t, — tg)

= <eoi(q'tq)eoi(q"t"')>/Mi(Q)Mi(q’)

= exp {c{q)d(q) N ) 4 (N, + 1)e~ ittt}
(13b)

In terms of (13a) and (13b), expression (12) becomes

A, p {0y =TI [ M [

a=1

@ 1T 60, x: 6, = 10
(14

If expressions for averages involving products of
A, a, and a' are desired (such as one encounters in
electron-lattice theory upon introducing a canonical
transformation to displace the phonon oscillators?),
we can define

ci(q) = z'qéi(q)’ dz(q) = 3'qdi(q)’ (15)

such that, after differentiating with respect to 4, and,
using (11), we can construct the relations

0(a;; q, Ay, t)e% @t
iIf 1 d_ 1
= - = —_— 4 ; 0.(0 tg)
[:w @, & da 4o J
= g (1), (16a)
0(a]; 4, 4,, ty)e% @t
Ir 1t d 1
= ~ -3 —— 9i(a,t,)
[iwd(q) di, " d(q) dl + c(q)]e
Qetal(t,). (16b)

For example, consider the average
(@O a ) e (1),

Applying (16a) and (16b), we conclude that
(e""(l""a,-(tl)e”‘w"”)az(tg))

= 0(a;; 1, &y, 1)0(a]; 2, Ay, t)XALL, 2; {1},
and upon inserting (14) we obtain
(eo‘(1"‘)a,(tl)eo‘(z't’)a:-r(tz))

= 0(a;; 1, &y, 1)0(a]; 2, Ay, t)M1)M(2)
X G(1,2; 1, — ty),

4 E. O. Kane, Phys. Rev. 119, 40 (1960).
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which can be evaluated by using (13a) and (13b). A
large variety of thermal averages can be evaluated in
a similar fashion by using combinations of (16a),
(16b), and (8a), (8b) in conjunction with (5a), (14),
(13a), and (13b).
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A unitary irreducible class of representations of the conformal group is constructed and reduced with
respect to the Poincaré group to see which unitary irreducible representations of the Poincaré group it
contains. In particular, it is shown that this class of representations of the conformal group does not con-
tain the continuous-spin representations of the Poincaré group. It is concluded that the representations of
the conformal group cannot be used to eliminate the continuous-spin representations.

I. INTRODUCTION

In the past several years there has been a renewed
interest in the conformal group, not only because of
its relationship to Maxwell’s equations’ and the
corresponding quantum-mechanical mass-zero wave
equations,? but also because of its possible use with
non-mass-zero particles.® The fact that the Poincaré
group is a subgroup of the conformal group has
raised the question of how representations of the
Poincaré group are contained in representations of the
conformal group; in general, one has tried to answer
this question by using Lie algebra techniques.* In this
work, purely group-theoretical techniques are used,
relying heavily on Mackey’s induced representation
theory.® 1t is well known that all of the unitary
irreducible representations of the Poincaré group can
be written as induced representations®; it is not as

1 T. Fulton, F. Rohrlich, and L. Witten, Rev. Mod. Phys. 34,
442 (1962), and references cited therein.

2 L. Gross, J. Math. Phys. §, 687 (1964); J. Wess, Nuovo Cimento
18, 1086 (1960).

3 H. A. Kastrup, Phys. Rev. 150, 1183 (1966); references to
Kastrup’s earlier work on the conformal group are given in this
reference.

4Y. Murai, Progr. Theoret. Phys. (Kyoto) 9, 147 (1953) and 11,
441 (1954); A. Kihlberg, V. F. Muller, and F. Halbwachs, Commun.
Math. Phys. 3, 194 (1966); M. L. Graev, Dokl. Akad. Nauk SSSR
98, 517 (1954); A. Esteve and P. G. Sona, Nuovo Cimento 32, 473
(1964); L. H. Thomas, Ann. Math. 42, 113 (1941); J. Fischer and
R. Raczka, Commun. Math. Phys. 3, 233 (1966); 4, 8 (1967).

5 G. W. Mackey, The Theory of Group Representations,
{Department of Mathematics, The University of Chicago, Chicago,
Ill., 1955); Am. J. Math. 73, 576 (1951).

¢ E. P. Wigner, Ann. Math. 40, 149 (1939); P. Moussa and R.
Stora, Lectures in Theoretical Physics (University of Colorado Press,
Boulder, Colorado, 1964). Vol. VlIa.

well known that large classes of unitary irreducible
representations of semisimple Lie groups (including, in
particular, the conformal group) can also be written
as induced representations.

The relationship of representations of the Poincaré
group to those of the conformal group also leads to the
following question: By an appropriate choice of repre-
sentations of the conformal group, is it possible to
eliminate the continuous-spin mass-zero representa-
tions of the Poincaré group ? In his classic analysis of
the Poincaré group Wigner® showed that for the
mass-zero representations, two types of spin repre-
sentations arise: those corresponding to a discrete spin
which are associated with such particles as the photon
and neutrino, and those corresponding to a continuous
spin which seem to have no counterpart in nature,
because, perhaps, they would have peculiar physical
properties.”

Now, whenever a representation of a group is
decomposed into the representations of a subgroup,
not all of the representations of the subgroup appear.
The question to be raised here is whether or not the
continuous-spin representations are contained in
representations of the conformal group, and it is, in
fact, shown in Sec. IV that not only the continuous-
spin, but also the discrete-spin representations do not
appear in a class of irreducible representations of the
conformal group.

In order to show this result it is first necessary, in

7 E. P. Wigner, Theoretical Physics 1AEA, Vienna, 1963), p. 70.
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reference.
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R. Raczka, Commun. Math. Phys. 3, 233 (1966); 4, 8 (1967).

5 G. W. Mackey, The Theory of Group Representations,
{Department of Mathematics, The University of Chicago, Chicago,
Ill., 1955); Am. J. Math. 73, 576 (1951).

¢ E. P. Wigner, Ann. Math. 40, 149 (1939); P. Moussa and R.
Stora, Lectures in Theoretical Physics (University of Colorado Press,
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representations of semisimple Lie groups (including, in
particular, the conformal group) can also be written
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The relationship of representations of the Poincaré
group to those of the conformal group also leads to the
following question: By an appropriate choice of repre-
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eliminate the continuous-spin mass-zero representa-
tions of the Poincaré group ? In his classic analysis of
the Poincaré group Wigner® showed that for the
mass-zero representations, two types of spin repre-
sentations arise: those corresponding to a discrete spin
which are associated with such particles as the photon
and neutrino, and those corresponding to a continuous
spin which seem to have no counterpart in nature,
because, perhaps, they would have peculiar physical
properties.”

Now, whenever a representation of a group is
decomposed into the representations of a subgroup,
not all of the representations of the subgroup appear.
The question to be raised here is whether or not the
continuous-spin representations are contained in
representations of the conformal group, and it is, in
fact, shown in Sec. IV that not only the continuous-
spin, but also the discrete-spin representations do not
appear in a class of irreducible representations of the
conformal group.

In order to show this result it is first necessary, in

7 E. P. Wigner, Theoretical Physics 1AEA, Vienna, 1963), p. 70.
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Sec. II, to analyze the conformal group, while in
Sec. III those elements of Mackey’s theory which are
needed are presented. Finally, in Sec. IV one class of
unitary irreducible representations of the conformal
group, the principal nondegenerate series, is analyzed.

II. FINITE-DIMENSIONAL (NONUNITARY)
REPRESENTATIONS OF THE CONFORMAL
AND POINCARE GROUPS

The conformal group SO(4, 2) is usually defined®
as the set of 6 x 6 matrices leaving invariant the

form
1

or, what is equivalent,

-1

-1

(four plus ones, two minus ones). The conformal
group is a 15-parameter semisimple Lie group which
contains the 10-parameter Poincaré group.

L 2t e
P=|-piT" 131 T | =
RETLT 1T 1447

where T means transpose and I, is the j-dimensional
identity matrix. It is readily checked that Eq. (4) is a
representation of the Poincaré group and that, fur-
ther, it leaves invariant the form

—1

—1

It is shown in Sec. III that it is necessary to know
the Iwasawa decomposition® for the conformal group
in order to generate the requisite unitary irreducible

8 Y. Murai, Progr. Theoret. Phys. (Kyoto) 11, 443 (1954).

? R. Hermann, Lie Groups for Physicists (W. A. Benjamin, Inc.,

New York, 1966); A. Kihlberg, V. F. Muller, and F. Halbwachs,
Commun. Math. Phys. 3, 194 (1966).
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To show that the Poincaré group, defined as
X*t=LX"+ T puv=0,123, 0))

where L% is a Lorentz transformation and T* a
translation, is indeed a subgroup of the conformal
group, Murai® introduces a 6-dimensional vector 74,
A=0,1,2,3,5,6, such that, under a linear trans-
formation of 74, the form (n*)? + (9®)? + (%2 —
(1"% + (7°)? — (%)% is left invariant. Murai sets

6 S5\—1 6 5
+17 =9
X"=77"(1l_——) s 3 XX =7, (2)
V2 o 7+
where
-1
1 2 RYV
&y = , X°'= gqu X7,

1

and shows that this leads to the following set of
transformations [Eqs. (3) and (4) of Ref. 8]:

" = L’ + 277G + o),
7' =n° — 2 AT — ATT,0F + 1),
% =8 4+ 27 ATt + ITFT (P + 7).
These transformations are all linear and can be
replaced by a matrix. Thus, a 6-dimensional non-

unitary matrix representation of the Poincaré group
is

3

I, o-tre ot \ (L5 0 0
S R LA A | I )
[2—iTu]T iTz 1 + i‘T2 0 2

representations. The Iwasawa decomposition is written
as ANK,,, where A4 is a noncompact Abelian sub-
group, N is a nilpotent subgroup, and K,, is the
maximal compact subgroup. A can be written as!®

(cosh « sinh oc) 0
sinh a cosh «
0 12 0 ’ (5)
0 (cosh p sinh p)
sinh p cosh p

where « and p are real parameters. The maximal com-
pact subgroup of the conformal group is SO(4) ®
SO(2) [where SO(n) is the orthogonal group in n
dimensions with determinant one]; it is sufficient to
know that four of the six parameters of N are the

10 W. H. Klink, J. Math. Phys. 9, 1669 (1968).
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translations of the Poincaré group

I, I R
T=|-pR%" 1—312 —11° ©)
AT it 14T

In Sec. IV it proves convenient to have another
decomposition for the conformal group besides the
Iwasawa decomposition. This decomposition corre-
sponds to the one usually given for the Lie algebra®
of the conformal group, in which there are, besides
the six-parameter Lorentz transformations and the
four-parameter translations of Eq. (4), another four-
parameter translation called C and a scalar trans-
formation S. These transformations have the matrix
representation

I, © 0
S=|0 coshp sinhp |,
0 sinhp coshp
1, =2%c 2t
c=|pdor 1-31c2 1 (6)
ealeg R o B

The decompositions of the conformal group given

WILLIAM H. KLINK

thus far have been matrix decompositions. One final
way of writing the conformal group, which is essential
in the following analysis, is as a transformation group,
written symbolically as

X" =fHX", g); Q)

f* is a nonlinear function carrying the point X" into
X'* under the action of a group element g.

To get the form of f*, we invert Eq. (2) to find #*,
7®, 7° as a function of X*, g, X*X* = X2 Thus,

" = @IVDIX*IQ2 + X)),
7* =2 — X9/Q2 + X' (®)

Now, the elements of the conformal group given in
Egs. (4) and (6) carry the 6-dimensional vector
nd = (9*, %% 7% linearly into the vector #'4 =
(n'*, n'%, '®). Denoting any of these elements by the
matrix O4, we have

't 0y 08 0%\ (v
n* =0y 0f o5)|n° ©)
n° 0} 05 0y \p°

Replacing the % and %’ variables by X and X’ variables
of Eq. (8) gives

@XM+ X\ (o4 0 08\ [G2HIXHQ2 + Xk
[2=X3Q+ XD, =0, 0§ 0F]| 12— X2+ X | (10)
7" 0, 03 05 n°
Finally, after some tedious algebra, the transformation from X* to X"# can be written as
w_ 0:x” + ¥t —0r + 093X + 32k + o) (11
27405 + 09X” + }(—0% — 08 + 03 + OD(X®) + 4(0% + Of + OF + 0%
Letting K, = (£0} £+ 0§ + 0; + 03) gives
yon — 2KT0LX" + 2PKI(—0f + 0pix® + 2HK5(0F + % 12

K05 + 09X + K_K73X% + 1

and this is chosen as the canonical form of the transformation f*.

As a check on the form of f*, when O4 is restricted to elements of the Poincaré group, Eq. (12) must re-
duce to Eq. (1). To see that this indeed happens, set O} = L%, Ot = Of = 2-i7Te, —0% = 08 = 2-iT,,
and K, = £(1 — }T?) + }T? — }T% + }T?so that K, = 2, K_ = 0. Then substituting into Eq. (12) gives

X"
= LAX" + T,
in agreement with Eq. (1).

To get the form of f# corresponding to the scalar
element in Eq. (6), set 0% = 6%, 0% = 04 = 0, O} =

_ 2071 + 3@k =2t + 2 traxd) + atetre + 2t
- 1 =2, + 2T +1

(13)

0% =0,K, = 2(cosh p + sinh p) = 2e?,and K_ = 0.
Then,

X't = X"/ep = ¢ " X¥ (14)
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which is the usual form of the dilation transformation
as given, for example, in Murai.®?

Finally, there is the element C of Eq. (6); for this
element 0% = ¢, —0¢ = 0# = 2-1C+, 05 = 0 =
2-1C,, K, = 2, and K_ = C*C, = C?, so that

o X4 10 tonaxd
C,X* + 1C°3X") + 1
XM+ 03X
X HICEX) + 1

(15)

The set of transformations (15) are called special

x*
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conformal transformations,! and it is not hard to
check that combining the transformations (15) with
those of the Lorentz transformations gives a nonlinear-
transformation group representation of the Poincaré
group, as is already easily ascertained by looking at
the commutation relations of the Lie algebra corre-
sponding to the group elements C and L¥.2

To get all the elements in the canonical form (12), it
is merely necessary to combine (13) and (14) to get

X'* = e PLiX" + T*, (16)
which, with (15), gives
_ (7L} + T*C)X” + (e PLC” + 4T*CH(3X®) + T* an

CX' 4+ 1C3XH + 1

as the form of the conformal group which will be used
throughout this paper.

III. THE DECOMPOSITION OF INDUCED
REPRESENTATIONS

The classes of unitary irreducible representations
being considered in this paper are all induced repre-
sentations. It has been shown® that all unitary irre-
ducible representations of the Poincaré group can be
written as induced representations, while large classes
of unitary irreducible representations of the conformal
group can be written as induced representations.'?

Therefore, this section deals with the notion of
induced representations and how it is possible to
decompose a reducible induced representation into a
direct integral of irreducible induced representations.
All of the ideas sketched here can be found in Mackey’s
lecture notes.'?

Let G be a given noncompact group (in this paper,
G is the conformal group) and H, a subgroup of G
(H, is given in Sec. IV and varies with the classes
of representations of G being considered.) Let J€;
be an irreducible representation of H, acting on the
vector space U(¥,). Consider functions f which map
elements g of G* into VU(¥,):

g-1> V%), f(g)eV(ky), (18)
such that f satisfies the condition f(h,g) = ¥, (h)f (g).

11 H. A. Kastrup, Phys. Rev. 150, 1183 (1966); J. Rosen, ‘“‘On
Conformal Groups and Transformations of Trajectories under the
Space-time Conformal Group,” Brown University preprint,
NYO0-2262TA-151, 1966.

12 E. M. Stein, High Energy Physics and Elementary Particles
(IAEA, Vienna, 1965); see also M. L. Graev, Ref. 4.

13 G, W. Mackey, Ref. 5, pp. 13561

14 L ower-case letters denote individual elements of a group while
capital letters denote sets of elements. Script letters denote either
representations of the groups or the spaces on which these repre-
sentations operate.

This set of functions forms a new vector space ‘fT(Jﬁl):

V) = {f| /(@) e V@Y, [(lmg) = Ry(h)f ()
forall heH,, geG} (19)

The representation UXi(g")f(g) = p(g’, 2)f(gg’) on
the vector space ‘1AI(J€1) is called the induced repre-
sentation of G. The function p(g’, g) is chosen in such
a way as to make U%1(g’) a unitary representation.
However, in order to make U%i(g) a unitary
representation on V(¥,), it is first necessary to make
<0 (J,) into a Hilbert space.

o (J€,) is readily made into a Hilbert space for the
class of representations being considered in this paper,
namely, the principal nondegenerate series of repre-
sentations. For this class of representations, an inner
product is defined as

(@, 1) = L/H F@ (@) du,

where * means complex conjugation and du is the
measure associated with G/H,, which is inherited
from the Haar measure of G.1°

After H, has been chosen so as to induce a unitary
irreducible representation U%:(G) of G, we are inter-
ested in seeing how U¥1(G) decomposes into unitary
irreducible representations of a subgroup H, of G (in
this paper H, is the Poincaré group).

Mackey has shown!® how to decompose U¥1(H,)
into direct integrals over double cosets

G= g ngDHz,

(20)

where {gp} are elements of G not in H; or H, so that
Uiy 2 [dulgpUH); (1)

15 See Ref. 13, p. 119, for the proper definition of the measure dp
and the function p(g’, g).
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here du(gp) is the double coset measure, ~ means
“is equivalent to,” and §p is the representation
¥.(gp Jp g7") of the group Jp, = g7'Hyigp, N H,. In
general, U32(H,) isnotanirreducible representation of
H,, so that it is necessary to further decompose
U32(H,) into irreducible induced representations of
H,.

The calculation of Jp is fairly difficult with the
definition of Jp, given above. For that reason, we
actually compute J, in the following way. Combine
H,gp with Jp so that

HigpJp = Higpgp Higp N HigpH,,

which gives H,gpJp = Higp N HigpH,. Now, in
general, H,gphs, h, € H, sends gp, into a new double
coset Hygp . If D' £ D, then H gy, N H,gp is empty,
so that it is necessary to find those A, such that
H,gph, = H,gp. The set of all &, leaving the double
coset g invariant is precisely J, 1%; that is,

JD = {hz | hz € Hg, ngDh2 = ngD}' (22)

It is sufficient to actually calculate gph, = Mgp.
Thus, the procedure in Sec. IV is to find H,, decom-
pose G into right cosets g, with respect to Hy, such
that

G = U Hyg,, (23)
c
and then compute g, = h,g,-. The double cosets are
a subset of the right cosets and, further, those double
cosets which are left invariant under the action of 4,
generate the subgroup Jp,.

Finally, it is necessary to decompose U32(H,) of (21)
into irreducible representations of H,. Since we are
concerned with whether the continuous-spin repre-
sentations of the Poincaré group are actually con-
tained in U%2(H,), it ‘s sufficient to use the Frobenius
reciprocity theorem,'” which says that if §p, is an
irreducible representation of Jp, then UY*(H,) is
contained as many times in U%2(H,) as UMs(Jp)
contains §p. Here M and s are the unitary irreducible
representation labels of the Poincaré group.

IV. ANALYSIS OF THE PRINCIPAL NONDE-
GENERATE SERIES OF REPRESENTATIONS
OF THE CONFORMAL GROUP

For the principal nondegenerate series of repre-
sentations of the conformal group, H; = ANC(A4),'®
where

C(4) ={k|keK,, ak = ka forall ae 4}. (24)

1& This result is carried out in the appendix using homogeneous
spaces. See I. M. Gel'fand and M. A. Naimark, Unitdre Darstel-
lungen der Klassischen Gruppen (Akademie-Verlag, Berlin, 1957).

17 See Ref. 13, p. 129.

18 See Ref. 12 and references cited therein.
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The form of A4 is given in Eq. (5); in general, « is not
equal to p, so that those elements of K,, which com-
mute with 4 can be written as

() (25)
1, 0 0 I, 0 0
={o so@ o)=1{o ( co's 0 sin 6 )
—sin 6 cos 6
o 0 I 0 0 I,

Four of the six elements of N are the translations of
the Poincaré group, Eq. (4); the other two elements
are the nilpotent elements of the Lorentz group. To
write these elements explicitly, it is convenient to con-
sider the covering group SL(2,c) of the Lorentz
group.!® Then the o parameter in A [Eq. (5)] and the
6 parameter of C(A) can be written together as

W o), oy complex, with cosh a = }(loy|® + [oy|7?)
and arg «; = 10. Further, the two remaining nilpotent
elements of N can be written in SL(2, ¢) as (3 #1»),
1 complex. Combining these four elements gives

- B
L, = ( _1).
0 o]

Call L, those Lorentz transformations corresponding
to the elements L, ; also label all elements of H, with
the subscript 1. Then it is possible to write H, as a
transformation group, so that

(26)

Hy:X™ = e"LEX" + T 27)

H, is a 9-parameter group, corresponding to the four
elements T4, the four elements L, as determined by
L, of Eq. (26), and the scalar e~*1.

Once H, is chosen, a convenient choice of right-
coset labels is )

" YV ne1y?2
{g}: X" = L‘;“X +2C (22X ),
CX'+3iCEXH+1

(28)

where L, is the Lorentz transformation corresponding
to the covering group element

£c=(l
C

The decomposition of SL(2, ¢) into L, and L, corre-
sponds to the decomposition given in Ref. 19 and is,
in fact, used to induce a class of representations of the
group SL(2, ¢).

It can now be shown that in combining H,, Eq.
(27), with {g }, Eq. (28) uniquely covers every element

(1)) , ¢ complex. 29)

- 19 M, A, Naimark, Linear Representations of the Lorentz Group
(Pergamon Press, Inc., New York, 1964), p. 120.
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g = hig,: X" = fHX", g) = e MLLX" + TH,
w_ _ LuX®+ C'GXY)
CoX? + 1CT (XY + 1 (30)
m_ CPBILLX" + CAXI] |
T CXT+3C(GX) + 1 v
(LY LY, + THCHX™ + [ PLELLC® + TIRCHRX® + T 1)

C.X*+ 1C(3Xx) + 1

Comparing this with the canonical form of the con-
formal group (17), we see that

T¢ = T*,

e LA LY, + TYC, = e *LL 4+ THC,, (32)
so that
efLt =eLYL), + TiC, — T*C,
= MLy LY,
(33)
Pr=ps

LiL;, = L.
But this last expression corresponds precisely to the
decomposition of SL(2,¢) = L,L, of Eqgs. (26) and
(29). Thus, Eqgs. (32) and (33) uniquely specify any
group element of the conformal group.

Before calculating the double cosets g, it is neces-
sary to know how A, € H, sends a right-coset element
into another coset element; thus, we must calculate
g.hy = hyg. . But Eqgs. (32) and (33) show how to take
any element of the conformal group and see what
right coset it is in. Thus, it is only necessary to calcu-
late g.hy, = g.

Now, Eq. (1) is the transformation group for H,,
the Poincaré group. g, is given by Eq. (28), so that we
have

I3 3% el y 2
g = gchgiX”“ = chX + 2C (EX ) ,
CX"+ 1C3X®H+1
X" =LyLX*+ T3,

(34)
where the L}, T, are the 10 parameters of H,. Then,

b = —LolzaX" + Lo Ts + 3CHLyX" + T9)°

CUL3X* + T°) + $C°H(LE X" + T + 1

_ (L5} + CPT)LLX" + C(3X") + [L4 T3 + C'3T)]

(35)

[C, + BCOHT, L3 X" + 3C*(3X®) + D(C*, T%)

where D(C*, T3) = C,Tf + §C*GTY + 1.

To get Eq. (35) in canonical form, it is necessary to divide the numerator and denominator by D(C*, T3).

Thus,

X"H =

Lges + omyux+ Lo Xy -[L" T; + C* 13}
p " 7" Tp 2 T pl” 2 |

1

1 C?
~(c, + =T
D( *3 2")

Comparing Eq. (36) with Eq. (17), we see that

1 c’
~(c, + =T )Ls
S(e+ S m)

corresponds to C,,
1 T3
—_ L"VT" + C* _.2]
D[ o 2

corresponds to 7%, and e™?L4 + T*C, corresponds to

1
D [L0% + C*T, L3, .

1 C?x? (36)
yXE 4 — =4
: D22 "

Therefore, using Eqgs. (32) and (33), we get that the
equation g1, = h, g, can be written as

1 C? v
= C+—- T 2 (37)
D(C*, T%) 2"

for the transformation of C, into C,. The trans-
formation of L, into L, under the action of H, is also
easily obtained, but is quite complicated and, further-
more, is not needed in the rest of the analysis. It is
sufficient to note that, if T, is zero, then

hy

c,—C,

L
Ly, ——> Lt LLLi =LyLi..  (38)
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But Eq. (38) can be written in the covering group
representation as

L-2>L; LL=LL. (39
In matrix notation, this becomes
10 1 0
LG 5= 200 w
c 1/\y, & 0 ot/ \¢' 1
so that
oy + Bic’
( 221 52 )___(1 .31 131) (41)
cay + p; cPa + 8, coagt ot

Therefore, under the action of L,, cay + y, = c'a7l,
cfs + 6, = o7 so that
c—-—>L2 o =L2T Ve s Y2
cfs + 8,

Now, before choosing the double cosets, let us see
if any of the right cosets are left invariant under the
action of T%. With L}, = 4}, Eq. (37) shows that, in
order for C= to equal C,, it is necessary that

J[D(C* T =1 and (CHT,, = 0.
But calculating C.C* = C'?in Eq. (37) gives
C"* = C[D(C", TH), 43)

so that setting C? equal to zero means C"? also is zero.
Thus, if C2 = 0, there is no transformation s, which
carries C* to C'* such that C’* has a length different
from zero. Therefore, the equation ($C?)T,, = 0 can
be satisfied only if T, = 0, so that T, = 0 is the only
translation vector which leaves C* invariant and, thus,
there are no elements of T3, in the subgroup J,, [Eq.
(22)1.

The same result does not hold for Ly, however. If
T, is set equal to zero, D(C*, T4) = 1 and Eq. (37)
shows that C, = C,L;,. If C, is chosen as

C,=(1,0,0,0), 44)

then the rotation subgroup SO(3) of L; leaves C,
invariant.

The question, then, is whether the rotation sub-
group of L, also leaves L, invariant. Now, the covering
group of SO(3) is SU(2),'® so that we must check
whether SU(2) = (_g% 53), laal® + |B,]2 = 1 leaves
¢ of Eq. (42) invariant:

sU@ L, _ % B3
cfa + a3 ’

Clearly, only the identity element oy =1, 8, =0
leaves c invariant. However, if ¢ = 0, Eq. (45) becomes

(42)

45

8U(2)

¢=0—>c" = —ff/af, (46)
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so that, if B == 0, ¢ = 0 is left invariant. But , =0
corresponds to the subgroup SO(2) of SO(3), so we
have just found that the subgroup SO(2) of L, leaves
the cosets C, = (1, 0, 0, 0) and ¢ = 0 invariant.

We thus choose as our double coset g, precisely
this element2®

0
oL=(y 1) c=0000. @

It only remains to be seen if g, H, carries g, into
every right coset g.. Equation (42) shows that if
¢ =0, ¢’ = y,/8,, so that ¢’ can take on any complex
value, since y, is arbitrary. Further, the pure Lorentz
transformations carry C, = (1, 0, 0, 0) into an arbi-
trary C; such that C’2 = 1. To get an arbitrary length
for C,, note that Eq. (43) shows that, even if C? = 1,
C?* = 1/[D(C*, T%)] and, since T% is arbitrary, it is
possible to make C’? any length desired.

Thus, it has been shown that, with g, given in Eq.
(47), the subgroup Jp is SO(2). We now use this
fact to decompose U¥1(H,). In order to decompose
U%a(H,), it is necessary to give the representation
¥, of H; = ANC(A). Since A and C(4) form an
Abelian subgroup and N is nilpotent, X, is

a a “ L {
'm»&=wwﬁé)mw, @8)

o]
where «, is defined in Eq. (26) and p, corresponds to
the scalar element of Eq. (27). Thus, the principal
nondegenerate series of representations of the con-
formal group require three labels: two continuous
ones, ¢, and ¢,; and one, m, an integer or half-
integer. From Eq. (48) and (21), it follows that

¥p = (u/lu)™ = ™ (49)

which is an irreducible representation of J;, = SO(2).
Thus, since there is only one double coset, the
Mackey subgroup theorem, Eq. (21), says that

U%i(H,) = U™ H,) o~ U3s(H,) = U™(H,). (50)

We wish to see whether any of the mass-zero
representations of the Poincaré group occur in the
reducible representation U™(H,), induced by the
subgroup Jp = SO(2). Now Rideau® has carried out
the decomposition of the regular representation of
the Poincaré group and finds that the mass-zero
representations do not occur in this decomposition.
But the regular representation can be written as
an induced representation, induced by the identity

20 There are other double cosets, but they are not relevant in our
analysis, These double cosets have been tabulated by E. Thieleker
(private communication).

31 G, Rideau, Commun. Math. Phys. 3, 218 (1966).
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subgroup of the Poincaré group. Further, by using
Mackey’s notion of “inducing by stages,” 22 we can
write the regular representation of the Poincaré
group equivalently as being induced by the regular
representation of SO(2). Now by the Frobenius
reciprocity theorem,!? each representation of SO(2),
labeled by m =0, +1, +£2,---, occurs once in
the regular representation of SO(2). Therefore, since
the mass-zero representations do not occur in the
regular representation of the Poincaré group, they
do not occur in any of the representations U™(H,)
induced by the subgroup SO(2).

V. CONCLUSION

At first sight, it seems rather puzzling that the
conformal group, the group leaving the sourceless
Maxwell equations invariant, should not single out
the mass-zero representations of the Poincaré group.
Certainly in the case of the principal nondegenerate
series the mass-zero representations do not even
appear.

What seems to be happening is that different classes
of representations of the conformal group single out
either mass-zero or non-mass-zero representations of
the Poincaré group. Thus, considering those five
elements of the conformal group not appearing in the
Poincaré group, namely the dilations [Eq. (14)] and
the four vector accelerations [Eq. (15)], it is clear that
these five elements treat the mass-zero and non-mass-
zero representations very differently. Since mass-zero
systems travel at the speed of light, the acceleration
operators obviously transform them differently from
non-mass-zero systems. Also, the dilation operator
can change the mass scale for a non-mass-zero
system, whereas it cannot for a mass-zero system.

Further, it is to be noted that the inducing sub-
group of the mass-zero representation, consisting of
the translations 7, [Eq. (1)], SO(2) [Eq. (25)], and the
nilpotent element 3, of Eq. (26)—all are contained in
N and C(4) [see Eq. (27)]. This suggests that the
representations of the subgroup inducing the mass-
zero representations of the Poincaré group also
generate a class of representations of the conformal

2% See Ref. 13, p. 121,
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group. This class of representations contains only
mass-zero representations of the Poincaré group and
No non-mass-zero representations.?

The statements of the last two paragraphs have not
been proven; nevertheless, it seems safe to conclude
that it is impossible to split the continuous-spin
representations off from the other “‘physical’’ Poincaré
group representations (including the finite-spin mass-
zero representations) by choosing appropriate repre-
sentations of the conformal group.
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APPENDIX A

The results of Eq. (22) can be shown most clearly
by using the notion of homogeneous spaces.® Con-
sider a group G, and a subgroup H,, and call A the
homogeneous space G/H,. Then a point m can be
identified with a right coset H,g. The stabilizer point
mqy of M corresponds to the identity coset H, .

Now consider the action of elements g of G on
points m of Mo:mg = m’ € M. In particular, mH, =
m,. To show that J;, consists of those elements of H,
which leave H,gy, invariant, define m;, = mygp; then,

ngBIngD = moH,gp
= Mygp

= mD’

(51)

so that g7'Hgp leaves my, invariant. Therefore, the
intersection of gp'H,gp, with H, (which defines J)
acting on my, gives

mD[gBIngD N Hy]l = mp N mpH,, (52)

and in order for this not to be empty, mph, must
equal my, for some h, € H,. The set of these h, € H,
then gives Jp,.

3 Note Added in Proof: A class of representations of the conformal
group containing only mass-zero representations of the Poincaré
group is given by G. Mack and I. Todorov, “Irreducibility of the
Ladder Representations of U(2,2) when restricted to its Poincaré
Subgroup” IAEA Preprint 1C-68-86, Trieste, Italy, 1968.
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While powers of distributions in general do not exist, [D,]J* and [D_]" are the exceptions among all D
functions; they do exist and are given explicitly. A ‘‘modified” power [ D], based on the representation of
Dy as analytic functionals can be defined. It exists for a// homogeneous Dr, i.e., for D.., D, and D, . The
relation of [D4], to [D]* is given, and explicit expressions are found in x space and in p space. The
Kéllén-Lehmann-Umezawa-Kamefuchi representation of these distributions is derived. The extent to
which these considerations are applicable to the Ap(x, m), m > 0, is discussed.

1. INTRODUCTION

It is well known that the ordinary product of two
distributions at the same argument is, in general,
not defined. The convolution product exists, but only
under rather limiting conditions. The great physical
importance of these distributions, usually called
“Green’s functions” in field theory, requires one to
pay special attention to the few exceptional cases
where the ordinary product involving these functions is
defined. In particular, the distributions [A ]*(x, m)
are known to exist! for all positive integers n. In the
present paper we consider, among other distributions,
the m = 0 case of the above, i.e., [D_]"(x).

However, the fact that these distributions can be
expressed as limits of analytic functionals? permits one
to define the power of such a distribution as the limit
of the power of that analytic functional. We then have
to distinguish between the power so defined (modified
power) and the usual definition of power (direct
power); this is done in Sec. 2. The modified power
exists for a larger class of distributions than the direct
power. It is so defined that it is equal to the direct
power in those cases where both exist.

While we are directing our attention here to modi-
fied powers of the distributions Dr(x), i.€., to x space,
it is important to recall that modified powers of
distributions in p space have been defined earlier.?
The similarity in form of the distributions Dy(x) and
Dr(p), as is evident from the appendix of the work by
Rohrlich and Strocchi,® permits one to relate the two.
Such relations exist both in x space and in p space
(Sec. 3). Finally, the spectral representations of the
various powers are given in Sec. 4. The last section
generalizes these considerations to the Ar(x, m) with
m> 0,

1 Walter E. Thirring, Principles of Quantum Electrodynamics
(Academic Press Inc., New York, 1958), Appendix II.

2 V. Georgé and F. Rohrlich, J. Math. Phys. 8, 1748 (1967).

# F. Rohrlich and F. Strocchi, Phys. Rev. 139, B476 (1965).

2. DIRECT AND MODIFIED POWERS

The usual definition of Dp(x) in terms of its Fourier-
integral representation is given in Ref. 4, whose
notation we follow. An alternative but completely
equivalent definition is given in Ref. 3, namely,

nrDr(x) = @"ix") .. @1
Here Cy is a contour in the complex x° plane, given in
Ref. 3, and g =1 for Cr=C,, C, C,, Cg, Ciy,
Cir, np = 2, and 7, = if2. Equation (2.1) expresses
symbolically the fact that Dp(x) is obtained as the
limit of an analytic functional as the complex contour
Cr approaches the real axis. For details the reader is
referred to Ref. 2.
Concentrating first on D_(x), we see that one can
define a “modified power” of D, (x) by

[D.](x) = [F@="ix) " [zc, - 22

The choice of phase factor is 2 matter of convenience.
This power is clearly to be distinguished from

[D.J'(x) = [F@n"ix") [z, )", 23)
which we call “direct power.” There is, of course, no
reason why (2.2) and (2.3), provided they exist, should
be equal.

Before discussing the existence of these expressions
we recall that Dr., the p-space representation of the
D functions, is given by*

Dr(p) = @m)*p~*y.- 2.4)

The modified power of D was studied in Ref. 2.
More specifically, the distribution DE(p) was defined
there by

Di(p) = @m0 e 2.3)
and this is related to the modified power by
[Drl(p) = [1/(4=*)" 1D ™(p). 26

4 J. M. Jauch and F. Rohrlich, Theory of Photons and Electrons
(Addison-Wesley Publ. Co., Reading, Mass., 1959; second, corrected,
printing), Appendix I.
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There is a one-to-one relation between the contours
Cr and Cp (if both refer to the same complex plane):

FC,,.=Cun, C=C, FCyp=70C,,
—C,=Cp, £Cupnr=Cigns» Cp=0C. (27)

Now the existence of (2.5) has been discussed? and it
was found that D} exists only for those contours Cp.
which are not pinched in the limit in which the poles
coalesce. This means that (2.5) does not exist for
Dy, Dry, D, D%, and n > 0.

This information also answers the questions con-
cerning the existence of the modified powers of Dp(x).
Using (2.7), we see that the modified powers of all the
homogeneous Dr(x) do exist and those for the
inhomogeneous Dl'(x) ([DIA]n » [DlR]n ’ [Dl’]n s [DA]n s
[Dg),) do not exist. “Homogeneous” and ‘“‘inhomo-
geneous” refer here to the differential equations which
the Dy satisfy.

The existing modified powers thus (for n > 1) are

[D,1,(%)
= ( )(277) Dk

" (Fa [ TR

€(x0)6(n—1)(x ):|
(2.8)

— 1)

[D,(x) = (4# %) = (ﬁ)"(zwfﬁ"*(x)
- (4%)"(’1—2_—-& (x0T, (2.9)
(D1, = (557) - (217)(277)20"-‘@

Ly (1Y
={—}R|5]- 2.10)
(2772) (xz) (
The explicit expressions are taken from Ref. 2. One
easily verifies the following interrelations between the
modified powers forn > 1:

[D+]2n + [D—]2n = 2(‘%)”[D1]2m (2.11)
[D.len— + [D_lon1 = [Dlons, (2.12)
[D,)s, — [D_l2y = —[Dlens (2.13)
[D+]2n—1 — [D_lepna = i(_%)n_l[Dl]m;—l' (2.14)

We now turn to the question of existence of direct
powers. The direct powers of D, (x) were considered
by Klaiber.® His result (in our notation) is

1Y 1
D Y"(x) = (F lim .
[D1'(x) ( 47T2i)€—>+0 [x* — (x° F i)’
Comparison with (2.2) shows that the direct and

(2.15)

5 B. Klaiber, Nuovo Cimento 36, 165 (1965).
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modified powers are equal:

[D.L]"(x) = [Dyl,(x). (2.16)
It follows that the modified powers of D and D,
[Eqgs. (2.9) and (2.10)] can be expressed in terms of the
direct powers of D, and D_ via (2.11) to (2.14).

The direct powers of D and D,, however, do not
exist. This follows from the fact that the cross terms
[D,J[D_), which occur in [D]* = [D, + D_]" and
[iD]" = [D, — D_}", are undefined for all k, I > 1.

It is obvious that the existence of the direct powers
of D, and D_ permits the existence of analytic
functionals of D, and D_. Furthermore, “modified
analytic functionals” of all homogeneous D functions
exist as series of modified powers.

3. FOURIER TRANSFORM

In (2.6) we had the modified power [Dr], of Dy.
This distribution must be carefully distinguished from
the Fourier transform of the modified power of Dr,
i.e., [Dr], . We have®

Pl = f e[ D, ],(x) d'

Ly —ww n

1y 2 yn—1
_ ( 47721_) @)D k(—p)
1y 2 0y -1
=% (F o) UMD,
n>1. (3.1)
From Ref. 2 we learn that
D3(x) = 16mn — Dinl n>1 @32
Thus,
. 1\ 604 p")8(—pA(Ipl/4)" "
D - L
[D.].(p) :F(:F 4 2) 8mi(n — 2)! (n — 1)!

" (£ p)6(=p") 1p%"

27i(n — 2! (n — 1!’
n>1. (3.3)

The distributions [D,], and [D_]. thus have no

common support for any m,n > 1. Similarly, one
finds

1 V-
=F(F
( 167T2i)

[D], (p) = (47*))™"(2m)* D"*(—p)
_ ( 1 )"‘1 «@o(=p) 1P >1
167%) 2mi(n — 2)!(n — 1)1’ ’
(3.4)

=[D_1,(p) — (=)"[D,],(p), n>1, (3.5

¢ The first of Egs. (4.11), Ref. 2, is used here. A misprint distorted
this equation which should read A} ,(x) = +6(£xDAYx) =
260 £ x)AK(x).
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in agreement with (2.12) and (2.13). Finally,
~ 1 n—1 a1
D1 0) = (55) 20E'C-P)
27
_ ( By )"*1 6(=r") I
87 2m(n — 2)!(n — 1)!
= 12)"(D_1,(p) + (—)"[D:1. (P,
n>1. (3.7
The direct powers of D are related to the modified
powers in p space the same way as in x space, (2.16):
[D.1(p) = [Ds]a(p). (3.8)
While no other Dr functions have direct powers, as
mentioned before, there are Dy functions which do.
Writing (2.8) with argument p and setting n = 1, we
obtain, by taking the direct power,
[D.4/p1(p) = (Fi)"[DLI(p)
= (F)"(F4="))"2m)* Diyp(p)
= [D~A/R]n(p)'
In the last equality, we used (2.6).

(3.6)

3.9

4. THE KLUK REPRESENTATION OF [Dr],

The result (3.3) leads to the Kallén-Lehmann—
Umezawa-Kamefuchi (KLUK) representation of
[D,]*(x). The Fourier transform of (3.3) gives

[DL]"(x) = f ¢ D, J(p) dp

1
@2n)*
_ 1y 1 ti
- (¥ 167r2i) (n =2 (n = 1! Q2n)°

XJ‘eim:O(:l:Po)(s(Pz + K2)K2n—4 d-lp dK2

- (¢ 161#2;')"_1(,: — 2)!](n — 1!

X ( AL(x, )P di?, 4.1)
JO
which agrees with Ref. 5. Similarly,
1y 1
D =
[D1() (16772:) (n— 2 (n — 1)!
XJ- A(x, k)" di?, 4.2)
0
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1yt 1
0 = (55) =51

Xf Ay(x, kD) dil 4.3)
0

From (4.1) and (3.9) it follows that for the direct
power of D, we get

Y B 1
[D )" (p) = :Fl(16772) (n—2)!(n—1)!

Xf A (p, K" diP 4.4
0

5. THE POWERS OF Ap(x, m)

Since the Ap(x,m), m > 0, cannot be written as
analytic functionals similar to (2.1), modified powers
cannot be defined in the same way. The direct powers
of A (x, m) are known to exist. Their KLUK repre-
sentation follows from Thirring’s result!:

A (x, )A(x,b) = :bij;wdpz(a, b, DA, (x, k),
di® [(* — a* — b — (2ab)*]

167#° «?

X 0[«* — (a + b)’).

dpy(a, b, i) =

(5.1)

One has
[A,1Cx, m) = (&)™ ] " dpo(m, KAL(x, ), (5.2)

where dp,(m, «?) is determined by iteration from
dps(m, k) = dpy(m, m, «*) and

dpo(m®) = f dpa(m, k, %) dpy_a(m, k). (5.3)

No direct powers of other Ar(x,m) exist as in the
m = 0 case. In p space,

~ 1 1
.Ar(P, m) =

—_—— |, 5.3
QmEp+ m? (53

Cr

so that modified powers can be defined. As in (2.6),
we have

A1, m) = (

1 1 "
(2m)* p* + mz)
1 n_l"'n—l
= (4?) Al" (ps m)'

The latter are the distributions given in Ref. 2.

Cr

(5.4)
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A Riemannian space ¥, is said to admit a particular symmetry which we call a “curvature collinea-
tion” (CC) if there exists a vector & for which £.R;,, = 0, where R}, is the Riemann curvature tensor
and £; denotes the Lie derivative. The investigation of this symmetry property of space-time is strongly
motivated by the all-important role of the Riemannian curvature tensor in the theory of general relativity.
For space-times with zero Ricci tensor, it follows that the more familiar symmetries such as projective
and conformal collineations (including affine collineations, motions, conformal and homothetic motions)
are subcases of CC. Ina ¥, with vanishing scalar curvature R, a covariant conservation law generator
is obtained as a consequence of the existence of a CC. This generator is shown to be directly related to a
generator obtained by means of a direct construction by Sachs for null electromagnetic radiation fields.
For pure null-gravitational space-times (implying vanishing Ricci tensor) which admit CC,a similar
covariant conservation law generator is shown to exist. In addition it is found that such space-times admit
the more general generator (recently mentioned by Komar for the case of Killing vectors) of the form
4 —g T#n & £6);m = 0, involving the Bel-Robinson tensor T##m, Also it is found that the identity
of Komar, [V —g(&57 — §59)].;;; = 0, which serves as a covariant generator of field conservation laws
in the theory of general relativity appears in a natural manner as an essentially trivial necessary condition
for the existence of a CC in space-time. In addition it is shown that for a particular class of CC,£:X is
proportional to K, where X is the Riemannian curvature defined at a point in terms of two vectors, one of
which is the CC vector. It is also shown that a space-time which admits certain types of CC also admits
cubic first integrals for mass particles with geodesic trajectories. Finally, a class of null electromagnetic
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space-times is analyzed in detail to obtain the explicit CC vectors which they admit.

1. INTRODUCTION

In accord with the early observations of Néther,!
the existence of certain geometric symmetry properties
described by continuous groups of motions or collinea-
tions lead to conservation laws in the form of first
integrals (i.c., constants of the motion) of a dynamical
system. Indeed, the fundamental importance of groups
of motions (Killing vectors) in space-time and their
relation to the conservation laws of energy, linear
momentum, and angular momentum for particles
and fields is well known.? The relation between the
existence of affine or projective collineations in the
Riemannian space-times of general relativity and
the existence of concomitant particle and field conserva-
tion laws was developed in several recent papers.?

In this paper we are concerned with a symmetry
property of space-time which we call a “curvature
collineation”” (CC). A Riemannian space-time V, is
said ‘to admit a CC if there exists an infinitesimal
transformation X* = x° 4+ ¢&(x) for which £Ri =

* Supported by National Science Foundation Grant No. GP 6876.

1 E. Nother, Nachr. Akad. Wiss. Gottingen. 11 Math. Physik KL,
Vol. 235 (1918).

2 For a 'discussion of the relation between groups of motions
admitted by space-time and conservation laws of particle mechanics
see, for example, W. R. Davis and G. H. Katzin, Am. J. Phys. 30,
750 (1962).

* W. R. Davis and M. K. Moss, Nuovo Cimento 38, 1558 (1965);
G. H. Katzin and J. Levine, J. Math. Phys. 9, 8 (1968).

0, where e is a positive infinitesimal, £ denotes the Lie
derivative with respect to the vector &, and R}, is the
Riemannian curvature tensor. Clearly, the investiga-
tion of this symmetry property is strongly motivated
by the all-important role of the Riemann curvature
tensor in the general theory of relativity.

Our preliminary investigations have led to several
results of physical and geometrical interest. We have
shown that the existence of a certain type of CC leads
directly to the existence of a cubic first integral of a
mass particle with geodesic trajectory. In addition
we have found that if a ¥, with nonvanishing Ricci
tensor R, and with vanishing scalar curvature R
admits a CC then a field conservation law results.
This conservation law is directly related to a conserva-
tion law obtained by Sachs? for null electromagnetic
radiation fields. Also, it is shown that our result can
be extended to pure null gravitation radiation fields
which were also treated by Sachs,

Furthermore, it turns out that the identity of
Komar,® which serves as a covariant generator of
field conservation laws in the theory of general
relativity, appears in a natural manner as an essen-
tially trivial necessary condition for the existence of a
CCinaV,.

¢ R. K. Sachs, Z. Phys. 157, 462 (1960).
5 A. Komar, Phys. Rev. 113, 934 (1959).
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For those space-times with R,; = 0 it is found that,
when they are admitted, projective collineations
(including affine collineations and motions as sub-
cases) and conformal collineations (including con-
formal and homothetic motions as subcases) are
subcases of CC. Thus, it appears that the CC is the
fundamental symmetry property of space-time to
consider in the study of conservation laws pertaining
to gravitational radiation.

Indeed, quite aside from the question of new
conservation laws, it follows that studies of CC could
provide an important invariant classification of
Riemannian space-times which would include and
extend far beyond the familiar classification that has
been given by Petrov® on the basis of groups of
motions.

A general picturesque geometric interpretation of a
CC is difficult to obtain. However it will be shown that
the deformation of the Riemannian curvature K
defined by £X takes a particularly simple form if the
Lie derivative is formed with respect to a particular
type of CC vector. In addition, we give a diagram
(Fig. 1) which shows the relationship between CC
and other more familiar symmetry properties of
space-time.

In this paper we give several theorems concerning
CC in Einstein spaces. Finally, a particular class of
null electromagnetic space-times is analyzed in
detail to obtain the explicit CC vectors which they
admit. In a subsequent paper, we shall treat CC in
conformally flat spaces, including a treatment of the
group structure of the CC.

Throughout this paper we need to refer to the
equations describing motions, affine collineations,
projective collineations, homothetic motions, con-
formal motions, and conformal collineations. We,
therefore, now give a summary of these well-known
space-time symmetries. For most of these symmetries
we find it convenient to express the necessary and
sufficient conditions in several alternative forms. It is
to be understood that the symbol £ denotes Lie
differentiation with respect to a vector £* (sometimes
written £, to stress the vector dependence).

Motion” (M): A V, is said to admit a M provided
there exists a (Killing) vector & such that®

hy=%g,=¢&,+§&,=0. (1.1

¢ See, for example, A. Z. Petrov, ‘‘Invariant Classification of
Gravitational Fields,” in Recent Developments in General Relativity
(The Macmillan Co., New York, 1962), pp. 371-378.

? L. P. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, N.J., 1926).

8 Indices take on values 1, 2, -+ -, #n and the Einstein summation
convention is used. Covariant differentiation is indicated by a
semicolon (;) and partial differentiation by a comma (,).
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Affine Collineation® (AC): A V,, is said to admit an
AC provided there exists a vector & such that

£{ k} = & + ™R},
i
= %gkl(hli;f + hy — 1.2)

where {¥} is the Christoffel symbol of the second kind
and where the Riemannian curvature tensor®

o= ]~ oot (bl = )

Alternatively, the necessary and sufficient condition
(1.2) for an AC may be expressed in the form

hij;l) = Oa

b = 0. (1.3
Obviously every M is an AC. We use the terminology
proper AC (Prop AC) to denote those AC which are
not M.

Projective Collineations* (PC): A V, is said to
admit a PC provided there exists a vector & such that

£IT%, = 0, (1.4)
where the projective connection
; i 1 | h b
e = - 85 + 6 )
" {j J n+ 1( ’{hk} ":hj}
Alternatively, we may express (1.4) in the form
£ ] = o+ tighs (13)
jk
where
¢;j = (n + l)_l ;T,”‘. (1.6)
It follows from (1.5) that for a PC we have
B = 285%0 T+ 8uby; + 859 1.7
In addition we find that for every PC we have
£W§kl = 0, (1.8)

%K. Yano, The Theory of Lie Derivatives and its Applications
(North-Holland Publ. Co., Amsterdam, 1957).

10 The definition of K%, used in this paper is given by Eisenhart
(see Ref. 7) and differs in sign from the definition used by Yano (see
Ref. 9). Throughout this paper we have adjusted equations obtained
from Ref. 9 to be consistent with Eisenhart’s definition of the
curvature tensor.

11 See Ref. 9 and J. A.-Schouten [Ricci-Calculus (Springer-Verlag,
Berlin, 1954), 2nd ed.} for a thorough discussion of PC. Also,
G. H. Katzin and Jack Levine [Tensor, New Series 19, 162 (1968)}
give an alternative derivation of the necessary and sufficient condi-
tions for PC in terms of the Lie derivative of the parameter-independ-
ent form of the path equation.
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W2t ] — /?951%_’:——'
= CC Fgro
P “S(C
5 SPC “SConf C
" AC
"S Conf M
: o]
T M

/W PC- Weg( Pro jective Collineation -£ W',,,FO.
2.PC- Proj ective Co{{meat('on —o{{jik} =8} ¢;k + 81@;.
3. SP( - Speciat Projective Collineation -5 = 8@t 8By, Bu=O.
4 .RC-Ricci Cottineation-& Ry = 0.

5. CC- Curvature Coltineation £ R's=0.
6.5CC- Spec[a/ Curvature Collineation - (o{{,'k})fo.

7 . AC- Affine Cottineation -1 =0.

8 .HM - Homothetic Motion ’fg:ﬁ.?dgu ,& = const.

9. M - MOUOﬂ _d{gij:O.

10. 5 Conf C- Specz'a( Conforma( Co/(ineat(on —o{{/‘ik} = 5,‘ Ot S Cij ~Gix g“'d,u Giin=O.
1.9 Conf M "Spec(c( Conforma( Motion "afq:,» =26q,; ,G;i=O.

2. W Conf C - Weg{ Conforma( Cottineation ~£Cu0.

13. Conf C- Conforma( Cottineation ‘o{{,’J =8ij Ot & Sy~ Gn q'%;».

1. Conf M - Conformat Motion-dg,=26q,.

Fi1G. 1. Relation between space-time symmetries.
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where the Weyl projective curvature tensor is given by
W?ik = R?jk —(n— 1)_1(62R¢5 - 6’;Rik)' 1.9)

By inspection, every AC is a PC (i.e., a PC with ¢.;, =
0). We use the terminology proper PC (Prop PC) to
denote those PC which are not AC.

Conformal Motion® (Conf M): A V,, is said to admit
a Conf M provided there exists a vector & such that

£(glng,) =0, g = |Det (g, (1.10)
Equivalently we have
h,; = 20g,;, (1.11)
where o is a scalar expressible in the form
o= n&,. 1.12)

It follows that every Conf M must satisfy

£{ ! } = blo + 8l0,, — gug 0.  (1.13)
jk

It can also be shown that every Conf M satisfies
£K;, = 0, where the conformal connection K;, is
formed with the relative tensor (g7%/ng,,) in the same
manner that the Christoffel symbol {},} is constructed
with the metric tensor g;,. Alternatively, K, may be
expressed in the form

) i 1/..(m Am - h
i — =& ot . im .
o {jk} n( ’{mk}+ "(mj’ 818 {hm})

We use the notation Proper Conf M (Prop Conf M)
for those Conf M with o # const.

Homothetic Motions® (HM): A V,, is said to admit an
HM if there exists a vector & such that (1.11) holds
with o a nonzero constant.

Conformal Collineations** (Conf C): A V, is said
to admit a Conf C if there exists a vector & for which
(1.13) holds. It follows that every Conf M is a Conf C,
but not necessarily conversely. It can be shown that the
necessary and sufficient condition (1.13) for a Conf C
may be expressed in the equivalent form

h . =20,

ik kO’

and that every Conf C (see Ref. 9, p. 160) must satisfy

(1.14)

£Ch, = 0, (1.15)

where the conformal curvature tensor C%, is defined

12 Y, Tashiro, Math. J. Okayamo Univ. 10, 75 (1960).
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by’

Ciw=Riy+{n—2) (3R — 6:Rii + gaRj — guR’D
+ Rl(n — 1)(n — 2] (88:; — Siga).  (1.16)

[Consistent with the notation of Eisenhart (see Ref.

10) we define the Ricci tensor by R,; = R%,, and the

scalar curvature by R = R:.]

As a means of succinctly summarizing the relations
between the well-known symmetries discussed above
and several additional symmetries which are con-
sidered in this paper, we have constructed a block
diagram (Fig. 1). The diagram should be read in the
following sense: When it exists, (i.e., is admitted by
the ¥,) the symmetry described in any given block is
automatically a subcase of the symmetries described
in those adjacent blocks indicated by the arrows
leading from the given block. Thus for example, if
an HM is admitted by the ¥, then the transformation
which defines the HM also satisfies the requirements
for being a Conf M and AC and so on through the
diagram. Note that the dashed arrows should only be
considered when the Ricci tensor vanishes. The
several blocks containing symmetries which were not
discussed earlier will be explained at appropriate
places in the text.

We remark in passing that there are several interest-
ing possibilities for expanding this diagram in the
sense of defining additional new symmetries. Here,
however, we have limited the diagram to include only
those symmetries which we discuss because of their
relation to CC.

2. NECESSARY AND SUFFICIENT CONDITIONS
FOR CURVATURE COLLINEATIONS

The infinitesimal transformation

X = x' + &(x)dr, 2.0

where Jt is a positive infinitesimal, defines a curvature
collineation (CC) provided the Riemannian space V,
(of general signature) admits a vector field &*(x) such
that

£.R}, = 0. 2.2

In general, the solution to (2.2) consists of a set of
r vectors &, « = 1, -+, r which define an r-param-
eter invariance group.? However, in this paper we
shall not investigate the group properties of CC per se.

Next we present several useful forms for the Lie
derivative of the curvature tensor. Formally, we have
(see Ref. 9):

£R’;hi = R?hi,mfm + R’rcnhié,f? + R’;mi‘f,'r':

k m mgk
+ R.’ihms,i - Rihi ,me

2.3)
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By use of the definition of covariant differentiation,
we obtain

£R?hi = R;chi;mém + anmle + R;cmz‘f';:
+ Ryt — Riifim- (24

If we employ the Bianchi and Ricci identities (see
Ref. 7) and use (1.2), we find (2.4) can be expressed
in the forms

ot (), (L)

£R’,?,,,- = %gkm[(him;a' + hnge — higmda
- (hhm;.i + hm:i;h - hh!;m);i]' (2'6)

By substitution of £R¥,; as given by (2.6) into (2.2)
we obtain (after multiplying by g,; to lower the
index k):

2.5)

and

Theorem 2.1: A necessary and sufficient condition
for a Riemannian space ¥, to admit a CC is that
there exist a transformation of the form (2.1) such
that the vector &° satisfies

(him:j + hma’;i - hi:i;m):h

- (hhm;j + hmi;h - hhj;m);i =0, (2.7)

where
hy =&+ &,

We may express (2.7) in an equivalent but simpler
form by returning to (2.2) and substituting (2.5) into
(2.2) and then using the first expression for £{}}
given by (1.2) along with the Ricci identity to obtain

(éi;mi + 5m;jz’ - §i;a’m);h
- (Eh;m:i + 5m;a‘h - ‘Sh;jm)z

>

=0. (28)

Although (2.8) is a simpler equation than (2.7), we

find (2.7) to be more useful for most of our considera-
tions.

From (2.2) we observe by contracting on the indices

k and i that every CC vector &¢ satisfies

£R;, = 0. 2.9)

In general, if a ¥, admits a vector &' such that (2.9)

holds we say that the ¥, admits a “Ricci collineation™
(RC). Thus,

621
Theorem 2.2: In a ¥, every CC is an RC.

In (2.7) if we interchange the indices j and m and
add the resulting equation to (2.7) we obtain

Theorem 2.3: A necessary condition for a trans-
formation of the form (2.1) to define a CC is that

h h = 0. (2.10)

imyin — Mimini

It is of interest to note that (2.10) could also be
obtained by starting with
(2.11)

By taking the Lie derivative of (2.11) it follows that,
if (2.2) holds, we obtain

giaRlal‘km + g:iaR?km =0.

hiaR?km + hjaR?km = 0 (2'12)

which by means of the Ricci identity reduces to (2.10).

The necessary condition (2.10) for a CC leads
directly to an identity that has been of special interest
in the formulation of the field conservation laws of
general relativity. In particular, if the condition (2.10)
is multiplied by g¥g™g"’, where g = |Detg,|, one
obtains

[g%(gi;i — {;i;i)];ji = {[gi(‘fi;i — ffj;i)];j},.- = 0. (2.13)

This is the covariant identity first discussed in the
literature by Komar® and given further interpretation
by Komar®® and others' in terms of its role as a
conservation law generator when the space-time
admits symmetry properties. Since this tensor expres-
sion is obviously a vanishing identity!® for all &, it
follows that this necessary condition for a CC places
no restriction on &°. Nonetheless, this result empha-
sizes, as expected, that CC are necessarily symmetry
properties of space-time that are embraced by the
group of general curvilinear coordinate transforma-
tions in space-time.!® In this paper, no attempt is
made to explicitly formulate or interpret the field
conservation laws that would follow from (2.13) for

13 A. Komar, Phys. Rev. 127, 1411 (1962).

14 W, R. Davis and M. K. Moss, Nuovo Cimento 27, 1492 (1963);
38, 1531, 1558 (1965).

35 For a derivation of this conservation law generator that is
connected with the transformation properties of the Lagrangian
underlying the variational formulation of general relativity, see
W. R. Davis and M. K. Moss, J. Math. Phys. 7, 975 (1966). Of
course, it is to be recognized that this evident identity can be
obtained in a number of ways not obviously involving its direct
construction with the help of the Ricci identities.

1% In so far as M can be regarded as ‘“‘rigid” displacements in
space—time, it is clear that CC can be regarded as nonrigid deforma-
tions that leave the components of the Riemannian curvature tensor
invariant in detailed functional form.
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space-times that admit CC. However, it is of some
interest to note that, for pure fields of gravitational
radiation, (2.13) would not, in general, lead to
trivial results for “proper”” CC as do their counter-
parts corresponding to M (Killing vectors).” We
discuss CC in V,, with R, = 0 in Sec. 4 and CC for
null metrics in Sec. 7.

3. RELATIONS BETWEEN CC AND OTHER
SYMMETRIES

From the definition (1.1) of a M in a ¥V, it is
immediate that we may state

Theorem 3.1: In a ¥, every M is a CC.

Similarly, from the definition (1.2) of an AC it
follows that we may state

Theorem 3.2: In a V, every AC is a CC.

Also it follows immediately from the definition of
HM that 4, from (1.11) satisfies (1.3) and, hence, as a
consequence of Theorem 3.2 we state

Theorem 3.3: In a V,, every HM is a CC.

From Yano (Ref. 9, p. 167) it is known that, if a
transformation is both a Conf M and a PC, then it is an
HM. Hence, we have the following as a consequence
of Theorem 3.3.

Theorem 3.4: In a V,_ if a transformation is both a
Conf M and a PC then it is a CC.

Next, let us consider under what conditions a PC
is a CC. We therefore require that £{;} be given by
(1.5) and substitute for £{%} in (2.5). If we then
demand that £R¥,, = 0, we obtain

‘5’;9{’;:% - 5;’:‘75;3'1' = 0. 3.1

We set k =/ and sum in (3.1) to obtain ¢, = 0.
We call a projective collineation with ¢, =0 a
special projective collineation (SPC). It follows
immediately by a covariant differentiation of (1.5)
that an SPC satisfies

EGDa=0.

17 Komar (Ref. 13) first pointed out that (§%7 — &%), vanishes
for motion &% if R;; = 0 everywhere.

3.2
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In general, if a ¥, admits a vector &’ such that (3.2)
holds, we say that the ¥V, admits a special curvature
collineation (SCC). Thus, every SPC is a SCC. We
summarize the above by stating

Theorem 3.5: The necessary and sufficient condition
for a PC to be a CC is for

¢;5h =0, 3.3

where ¢, = (n + 1)=&l ; that is, the PC must be
an SPC.

Corollary 3.1: If a V,, admits a SPC then it admits a
parallel field of vectors ¢, = (n + 1)71&!,,, where &
defines the SPC.

We next turn our attention to the conditions for a
Conf C to be a CC. We thus assume the ¥, admits a
Conf C, that is, (1.14) holds. We now use (1.13) to
evaluate £{}} in (2.5) and require that £R¥, = 0. We
immediately obtain

850, = 010.,5s — 818" "0 m; + 8158 "0 = 0. (3.4)
We set k = i and sum in (3.4) to obtain

(T’l - Z)G;J'h + gh]‘gimo';mi = 0. (35)
In (3.5) we multiply by g’* and sum to obtain
g, = 0. (3.6)

It follows from (3.5) and (3.6) that ¢.,; = 0. We call a
conformal collineation with ¢.,, = 0 a special con-
formal collineation (S Conf C).*® It follows immedi-
ately by covariant differentiation of (1.13) that an
S Conf C satisfies (3.2). Thus every S Conf C is a
SCC. We now summarize the above by stating

Theorem 3.6: The necessary and sufficient condition

for a Conf C to be a CC is for

0, =0, (3.7

where o.;, = n~1&,,; that is, the Conf C must be a
S Conf C.

Corollary 3.2: If a V,, admits a S Conf C, then it
admits a parallel field of vectors ¢; = n7'§!;, where
& defines the S Conf C.

We define special conformal motion (S Conf M)
as a Conf M with ¢.;; = 0. Hence, we have

18 [t follows from (1.11) and (1.13) that a special conformal
motion (S Conf M) i.e., a conformal motion with ¢;;; = 0, is'an
S Conf C.
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Theorem 3.7: Every S Conf M is a S Conf C.

By consideration of the deformation £.K of the
Riemannian curvature K under an S Conf M, we are
able to gain a little more insight into this particular
symmetry. We recall the Riemannian curvature
associated with an elementary two-space is the invar-
iant!®

K = em)e(p)REngampn’pn™, (3.8)
where 7’ and p’ are orthogonal unit vectors, and
() and €(p) their indicators. We thus assume the V,
admits an S Conf M with respect to the vector &% and
then define the unit vector #* by

lu‘2 = Ejgi >

where p is a scalar. In addition, we take the unit
vector p’ to be the tangent to a curve such that p’ =
dx‘(/ds, where ds is the differential path parameter.

The deformation in K with respect to & takes the
form

£K = e(e(P)(ERY1)omPn’P'0™
+ R (£8P’ P'n™ 4+ 2R 8amE(P I PP0™

7t = ptE 39

+ 2Rx8amp"E(n )P ™). (3.10)
From Yano (Ref. 9, p. 89), we have
) dx* ; (£ds)
fp=£l—)=—-p——. 3.11
p=t() = S @3.11)

Next we formulate £’ and find by use of (3.9) that

£y =i =&l = —pa'n’.  (3.12)
Our assumption that & defines an S conf M assures us
that £.R}, =0 and £.g,, = 20g,;. Hence, with this
assumption and use of (3.11) and (3.12) we obtain

£K = 2[o — (£ds)[ds — ., m']K. (3.13)
From the fundamental form of the V,,,
ds* = g, dx dx’, (3.14)
we obtain
2ds(£ds) = (£g,;) dx* dx’, (3.15)
which, for a Conf M (see 1.11), reduces to
2ds(£ds) = 20g,; dx' dx’ = 20ds?. (3.16)
Thus in (3.13) we use (£ds)/ds = o to obtain
£K = —2u,m'K = =2[(Ew[u]lK.  (3.17)

From the definition of u? [See Eq. (3.9)], we have
Dy = B+ BE, = 26,8 (.18)

1%J. L. Synge and A. Schild, Tensor Calculus (University of
Toronto Press, Toronto, 1949), p. 95; also Ref. 7, p. 79.
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Therefore, from (3.18) we obtain (using the definition
of 7%):

2u.mt =26 'y’ = (&, + &'’

= (£gin'n’ = 20. (3.19)
Thus (3.17) becomes
2
£K = —20K = — ﬂ%( (3.20)
M

and we find that the deformation in Riemannian
curvature takes a particularly simple form.

Assuming K > 0 in (3.20) we find that, if distances
are stretched by the deformation, then the Riemannian
curvature decreases.

4. CC IN SPECIAL RIEMANNIAN SPACES
A. V, with Vanishing Ricci Tensor
Let us now consider those V, for which

R, = 0. (4.1)

We denote such spaces by V9. From the definition of

the Weyl projective curvature tensor W, , [see Eq.

(1.9)] we find, for a V2, that
W;L‘k = R?fk'

f “4.2)
As mentioned in Sec. 1, it can be shown (Ref. 9,
p. 134) if a V,, admits a PC then the vector & defining

the PC must satisfy £, W7, = 0. Hence, we may state

Theorem 4.1: In a V? (ie., a V, with R; =0)
every PCis a CC.

It follows immediately from Theorem 4.1, Theorem
3.5, and Corollary 3.1 that we may state

Corollary 4.1: If a V? admits a PC, then the PC
must be an SPC.

Corollary 4.2: If a V) admits a PC, then it also
admits a field of parallel vectors.

Next we consider the conformal curvature tensor
Cl. [see Eq. (1.16)] and observe that in a V2:

h  __ RR
Ci:"k - Ri:ik'

(4.3)

As mentioned in Sec. 1, if a ¥, admits a Conf C,
then the vector & defining the Conf C must satisfy
£§CZ?;.,C = 0. Hence, we may state

Theorem 4.2: In a V? every Conf C is a CC.,

It follows immediately from Theorem 4.2, Theorem
3.6, and Corollary 3.2 that we may state
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Corollary 4.3: If a V? admits a Conf C, then the
Conf C must be a S Conf C.

Corollary 4.4: If a V? admits a Conf C, then it
also admits a field of parallel vectors.

B. Einstein Spaces

Next consider a ¥V, which is an Einstein space. It
then follows (assuming R # 0) that

R, = (Rjn)g;; = (n — Drg,,, (4.4)

where « is the scalar curvature which is constant for
n > 2. Let us consider first the case » > 2 and
assume the space admits a Ricci collineation (RC).
It follows from (2.9) and (4.4) that £g,, = 0. Hence
we may state

Theorem 4.3: Every RC in an Einstein space
(R##0,n>2)isan M.

Since every space of constant curvature is an Ein-
stein space we have from Theorem 4.3:

Corollary 4.5: Every RC in a space of constant
curvature (R # 0, n > 2) is an M.

Since every harmonic space is an Einstein space®
we obtain from Theorem 4.3

Corollary 4.6: Every RC in a harmonic space
(R#0,n>2)is an M.

From Theorem 2.2 we know that in a V,, every CC
is a RC. Hence, we have

Corollary 4.7: Every CC in an Einstein space
(R#0,n>2)isan M.

Corollary 4.8: Every CC in a space of constant
curvature (R # 0, n > 2) is an M.

Corollary 4.9: Every CC in a harmonic space
(R#0,n>2)isan M.

Next we consider the case n = 2. Since, for every
V,, Eq. (4.4) is applicable (i.e., every V, is an Einstein
space, and where R is a scalar) we have from (4.4)
and (2.9), assuming the space admits an RC,

(£R)g,, + REg, = 0. 4.5)

20 J. A. Schouten, Ricci-Calculus (Springer-Verlag, Berlin, 1954)
2nd ed., p. 148.

2T, J. Willmore, An Introduction to Differential Geometry
(Clarendon Press, Oxford, 1959), p. 238.

KATZIN, LEVINE, AND DAVIS

Therefore (still assuming R 3 0) we find

£g, = —(£R/R)g;.
Hence we have

(4.6)

Theorem 4.4: Every RC ina V,is a Conf M (or M
as a subcase when £R = 0).

It follows immediately by means of Theorem 2.2
that we may state another result.

Corollary 4.10: Every CCina V,is a Conf M (or M
as subcase when £R = 0).

5. SCC AND FIRST INTEGRALS OF THE
GEODESIC EQUATIONS

We now wish to examine more closely the class of
CC which we have called SCC. It will be recalled
[see Eq. (3.2)] that these symmetries were character-
ized by the existence of a vector £* for which

(sl =

If the £{}} is expressed in terms of the A, by use of
(1.2), it then follows that (5.1) implies

Piss + Pojis = Higind e = 0. (5.2)

By interchanging the indices i and m in (5.2) and
adding the resulting equation to (5.2), we obtain

k.. =0. (5.3)

It is easily seen that (5.3) also implies (5.1); hence,
we may state

(5.1)

im; ik

Theorem 5.1: The necessary and sufficient condition
for a V, to admit an SCC (i.e., a CC such that
(£:41.)),; = 0) is that there exist a vector £ for which
hijy = 0, where by, = &, + &,

If we multiply (5.3) by g™ and sum, we obtain

Aig = E™ i = 0. (5.4)

Hence, we may state

Corollary 5.1: If a V,, admits an SCC then it admits
a parallel field of vectors 4; = &™, ., where & is
defined by (5.1).

It is well known (see Ref. 7) that the necessary and
sufficient condition for the geodesic equation

dp' {i},k ;_dxt
—-— 4+ =09 = T,
s jkpp F ds

y (5.5
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to admit an mth order first integral of the form
At’lia ’ c,,,P“P" (5.6)
... is assumed symmetric on all indices, is*

where 4; ...,
P{A, }=0. 5.7

110 tmitmett

’m = const,

Physically, such integrals are of interest in general
relativity in that they are constants of the motion for
a free mass particle.

For the case m = 1 we find from (5.6) and (5.7)
that the geodesics have linear first integrals

(5.8)

4, p" = const

provided
11 i, T4 (5.9)

We recognize (5.9) to be Killing’s equations or the
necessary and sufficient conditions for the ¥, to admit
a motion [See Eq. (1.1) and Ref. 2].

Similarly for the case m = 2 we find from (5.6)
and (5.7) that the geodesics have quadratic constants
of the motion of the form

'211_

4, ,,pip* = const (5.10)

provided
Ay, + A + A =0. (5.11)

It was recently shown (Ref. 3) that PC and AC are
basicly related to quadratic first integrals in much
the same manner that M are related to linear first
integrals.?®

Taking m = 3 in (5.6) and (5.7), we find the geo-
desics have cubic first integrals of the form

igiy;ig 11338y

A; i pPpp' = const (5.12)
provided
A, © Aigigigiiy T Aigigipty, + Aigigige, = 0. (5.13)
We next define
A = by + By + By (5.14)
and, by means of (5.3), observe that
Ay = 0. (5.15)

Hence, we may state

22 The symbol P{ } indicates the sum of the terms obtained by
cyclic permutation of all free indices within the braces.

28It has been shown (R. Morgan, M.S. Thesis, North Carolina
State University at Raleigh, 1967) that the maximum number of
linearly independent quadratic first integrals admitted by a Minkow-
ski space-time may be directly related to the existence of PC and AC
by means of the ‘‘related integral theorem™ [G. Katzin and J. Levine
(Ref. 3)). Further discussion of first integrals in spaces of constant
curvature may be found in papers by G. Katzin and J. Levine,
Tensor, New Series, 16, 97 (1965); 18, 32 (1967); G. Katzin, J.
Levine, and J. Halsey; 19, 42 (1968).
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Theorem 5.2: If a V,, admits an SCC with respect
to the vector &%, then the geodesics in the V,, admit a
cubic first integral of the form A,,p‘p’p* = const,
where A, is defined by (5.14) and satisfies (5.15).

From Theorem 5.1 and Egs. (5.4), (5.8), and (5.9),
we may write

Theorem 5.3: If a V,, admits an SCC with respect
to the vector &, then the ¥V, also admits an M (Killing
vector) with respect to the vector A%, where 4; = £™. .
and where 4,, = 0. In addition, the geodesics in the
V, admit a linear first integral 4,p’ = const.

In Sec. 3, we found that every SPC is an SCC. Thus,
by means (1.7) and (5.14) (assuming ¢.,, =0 as
required for the PC to be an SPC),we construct the
coefficient 4,,, of the cubic first integral which must
exist and find

Ay = 4GP + giyi + &ri®i)- (5.16)

We notice that (5.16) satisfies (5.15) and the resulting
cubic first integral reduces to

g bap'p'p* = const.

By inspection of (5.17) it is observed that this integral
may be considered as degenerate?? in that it is expres-
sible as the product of the fundamental quadratic
first integral g,p’p’ = 1 and the linear first integral
é..p* = const (which exists because ¢.;, = 0).

Also in Sec. 3 we found that every S Conf C is an
SCC. Thus, by using (1.14) and (5.14), we construct
(using 0., = 0 as required for an § Conf C) the
coefficient 4, of a cubic first integral and obtain

(5.18)

(5.17)

A = 200, 8 + 0,38 + 0,8

which we observe satisfies (5.15). Thus’the resulting
cubic first integral reduces to

0..gnp'p’p* = const. (5.19)

As with the cubic first integral resulting from the
SPC, we also find the cubic first integral resulting
from the V, admitting an S Conf C is degenerate in
that it too is a product of the fundamental quadratic
first integral g;p’p* = 1 and the linear first integral
o,,p* = const (which exists because 0., = 0).
Although we have found that SPC and S Conf C
(which we recall are subcases of SCC) lead to degener-
ate cubic first integrals, we have no reason to suspect
that, in general, all cubic first integrals concomitant
with the existence of SCC in a ¥, are degenerate.

2¢ See W. R. Davis and M. K. Moss, Ref. 3.
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6. A CONSERVATION LAW GENERATOR

CONCOMITANT WITH THE EXISTENCE

OF CCIN ¥V, WITH R=0 AND R; # 0
We assume that a ¥V, with R=0 and R; # 0
admits a Ricci collineation (RC), i.e., we assume
there exists a vector & which satisfies (2.9). It therefore

follows that

£R = £(g*Ry) =

R;£g" = 0. (6.1)

Since f£g* = —gilg™£g, ., we can express (6.1) in

the form
R"£g,. = 0. (6.2)

& + &,y i (6.2), We obtain
RIE = (6.3)

From the twice-contracted Bianchi identity (see Ref.
7, p. 82) we find (using R = 0):

Now, using £g,,, =

Ry, =0. (6.4)
Combining (6.4) with (6.3) gives
(RPE ) = 0. (6.5)

In a space-time with R = 0, the Einstein field
equations take the form

R = «T", (6.6)
where « is a constant and 77" is an energy-momentum

tensor with trace T'= T™ = 0. Substituting (6.6)
in (6.5) gives

Theorem 6.1: If a space-time V,, with R = 0 and
R,; # 0, admits an RC, then there exists a covariant
conservation law generator of the form

@78, = @'T, £),n =0, g=|Detg,l, (6.7
where ¢! is defined by £.R,; = 0.

Since we have already found (see Theorem 2.2)
that every CC is also an RC it follows that we may
state

Corollary 6.1: 1f a space-time ¥, with R = 0 and
R;; # 0 admits a CC, then there exists a covariant
conservation law generator of the form (6.7) where
&' is defined by £.R;,, = 0.

We wish to point out that covariant conservation
law generators of the form of (6.7) were first discussed
by Trautmann®® who showed they held for &t

25 A, Trautmann, ‘‘Conservation Laws of General Relativity” in
Gravitation: An Introduction to Current Research, L. Witten, Ed.
(John Wiley & Sons, Inc., New York, 1962); also, see Bull. Acad.
Polon. Sci. Cl. I1I 4, 675, 679 (1965); 5, 721 (1957).
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representing Conf M in space-times with R = 0 and
for M in space-times with R # 0.

7. CONSERVATION LAWS FOR NULL FIELDS

In this section, we consider the special case of
space-times constituting null-electromagnetic and
pure null-gravitational fields that admit CC. It will
be shown that conservation laws of the type first
directly constructed by Sachs? for these null V,’s
actually follow from a symmetry argument when CC
are admitted.

First the null-electromagnetic case will be con-
sidered; the matter tensor is given by? T% = RY =
uk’k’, where u is a scalar and g, k%’ = 0. It follows
(see Ref. 4) that there is no loss of generality in
taking k' k' = 0. Assuming this type of space-time
admits a CC and using Corollary 6.1 [cf. Eq. (6.3)]
one can write

@T48),, = (GHuk'k'E)), = (uk?), K¢, = 0. (1.1)
Thus, for?? k’&; £ 0 one finds
(gtuk?)., = (atpk?), = (7.2)

which gives the above mentioned conservation law in
the form first found by Sachs. Here we have succeeded
in relating this conservation law to a symmetry
property that may be admitted by null metrics.
Before discussing a nontrivial example of a null-
electromagnetic metric which admits CC, it will be
shown that these considerations can be extended to
the case of a pure null field of gravitational radiation.
In accord with the close analogy that exists between
null-electromagnetic and null-gravitational fields, it
follows that this particular type of V'] is defined by the
Bel-Robinson tensor taking the algebraic form?®
Ti*m = 2R"¥R* ™ = vk’k'k*k™, (1.3)
where » is a scalar and g, k%4’ = 0. For vacuum
spaces V7 (R, = 0) it can be shown that R, =
—R}r = ( abe,;, (3ad)e,,..,R*; and in addition,
when (7.3) holds, we find R,; R”"m =0, R, Rrm =
0 which, along with the full Blanchl identities, imply
Tijkm.

m=0. (7.4)

26 See, for example, J. Ehlers and R. Sachs, Z. Physik 115, 1094
(1959); A. Peres, Phys. Rev. 118, 1105 (1960).

27 Here we note that k’§; cannot, in general, vanish for all the
independent curvature collineation vectors (corresponding to
distinct sets of values of the independent parameters involved in the
solutions &t constituting the CC) which, of course, even include
motions as special cases. This matter will be considered further on
the basis of the specific example of the next section.

28 See Ref. 4 and also 1. Robinson, Report to the Royaumont
Conference 1959 (unpublished).
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With the help of these relations it will now be shown
that

(gT#mE). =0, (1.5)

provided the given null metric admits CC with respect
to the vector &% In addition, it will be shown that
(7.5) is essentially related to a conservation law of the
form (gtvk?)., = (gtvk?),; = 0 which holds for the
case of a pure null-gravitational field. Writing out
(7.5) gives

(géTz‘ikmfk);m — géTijkmEk;m + (g%Tia'lcm);mEk. (7.6)

Clearly, by use of (7.4), the last term in (7.6) vanishes.
Thus (7.5) holds for CC provided it can be shown that

Tijkmfk;m = 2RirisR(krm)sfk;m = 0. (77)
Returning to Sec. 2, it will be recalled that a
necessary condition for a CC was given by [cf. Eq.
(2.12)}:
hkamr:is + hrmRmkjs =0,
where h,,, = &, + §,,.,. If this equation is multi-
plied by g*/ and summed on k and j one finds (using
R, =0):

Sk;mR(m‘ik)r = 07 (78)
for all &* constituting CC of the given space-time.?
Thus (7.8) shows that (7.7) and thereby (7.5) hold
when CC are admitted by pure null-gravitational
metrics. Using (7.8) it immediately follows that one
can also write

(@TonEEE) =0
in addition to Eq. (7.5). Hence the following theorem
can be stated:

Theorem 7.1: If a null V2 [ie., a V] with T#™ =
2RRE™ = ylikik*k™, where k'k; =0 and v is a
nonzero scalar] admits a CC, then the null ¥ admits
a “conservation law’’ of the form

(gtTimE). =0,
or a proper conservation law generator of the form
@TH"E8E) = @TH EES),, = 0.

When CC are admitted by a null ¥}, this theorem,
in turn, implies Sach’s conservation law

(gtk™),, = (gtk™),, = 0,
for®® k7, # 0 with k. k’ = 0. This result immediately
follows by expressing (7.5) in the form
(WK k™ E).,, = (atvk™), kKK, = 0.

29 It is of interest to note that (7.8) is equivalent to the demand
gis£Ré,, = O for space-times in which (7.3) holds.
30 In this connection see Ref. 27 and Ref. 4.
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Also, in this connection, it should be mentioned
that Komar®! has recently pointed out that for a V¢,
Pm = ghTiemg £k with P™, =0 gives a constant
of the motion which generates a “proper canonical
mapping” closely related to that of the linearized
theory providing Killing vectors &’ are admitted. In
terms of Theorem 7.1, it is now seen that this observa-
tion due to Komar can be extended to include the
more general case® of CC for null V?.

8. EXAMPLE OF A V, WHICH ADMITS A CC

We now wish to demonstrate the existence of a type
of space-time which admits a proper CC, that is, a
CC which is not degenerate in the sense of being at the
same time a lesser symmetry such as an M or PC, etc.
The fundamental form of the space-time we wish to
examine is

dst = —(dx')? — (dx®)? — C(u)(dx®)® + (dx")?, (8.1)

where u = x! — x% Physically, (8.1) can be inter-
preted as the line element of a null-electromagnetic
(plane-wave) radiation space-time of the type con-
sidered, for example, by Sach’s (refer to the discussion
of Sec. 7%3). The line element (8.1) is a special case of a
more general ¥, which is known to admit a five-
parameter group of motions.3

A brief outline of the procedure for finding the CC
vector &' admitted by (8.1) is next presented. Starting
with (2.3), the equations to be solved for the £ can be
expressed in the form

£R§kl = R;:kl,mfm - R?;cz'fi,m + Rinszm,a'
+ R;mlém,k + R;.'kmfm,l =0. (8.2)

From the algebraic symmetries on the indices we
find that, in a V,, Eq. (8.2) formally represents 96
equations. Evaluation of these equations by use of the
metric tensor defined by (8.7) leads to the following
set of equations (redundant and trivial equations have

3L A. Komar, Phys. Rev. 164, 1595 (1967).

32 Recall (Sec. 4) we found that in V3 (R;; = 0) that Conf C and
PC are also CC. From Fig. 1 we see that this implies that in a null
V§ that the extension of Komar’s result to inclade CC actually
means that it now is applicable for all the symmetries in the diagram
(excluding RC since R;; = 0).

33 The physical properties of this particular ¥, [Eq. (8.1)] were
investigated by G. C. Duncan, M.S. Thesis, North Carolina State
University at Raleigh, North Carolina, 1966.

34 Petrov (Ref. 6) has shown that the ¥, with metric

ds? = 2 d5* dxt — a()(dx2)? — 2[(%4) dx2 d=® — p()(dR%)® ()
admits a five-parameter group of motions. By making the coordinate
transformation = /\/ 2)xt 4 x4, x2=2x2, =3 =
—(1/\/2)(x1 — x%), we obtain (a) in the form
ds? = —(dx')? — a(u)(dx?)? — 2f(u) dx® dx® — C(u)(dx®)? + (dx*).

(b)
With & = 1 and § = 0, we find (b) reduces to (8.1).
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been omitted):

RS, = 0= £, = 0, (8.3)
ERY, =0=& =0, (8.4)
£R}13 =0=¢&,+4+CE, =0, (8.5)
£Riis = 0= &' 5 + C&, =0, (8.6)
£ER}, =0=£,+ &8 ,=0, (8.7)
£RI; =0=>&, — 5‘,2 =0, (8.8)
£Ry =0=£,+ & ,=0, (8.9)
£RL; =0=§ 5, — C& , =0, (8.10)
£RGyy = 0= &5 — CE , =0, (8.11)
£RY, =0=>8 3 — &5+ C(&,+ ) =0, (8.12)
£R}; = 0=2(8" — &Y,

+ [In (C'Ry9)] (6" — §H =0, (8.13)
£R3;, = 0=> —2(&' — 5‘),4

+ [In (—C7'Ryga)] (61 — &) =10, (8.14)
ERG, =0=>(8' =&Y, — (& - &,

+ [In (=C'Ryg)l (&' — &) =0, (8.15)
£Rys =0=>&, + &, — 28,

— [In Rygi5] (8 — £ =0, (8.16)
£Ry3 =0=>¢§", — 28— F, 4+ 283,

+ [In Rygy5] (&' — £ =0, (8.17)
£R33 = 0= 51,1 + 251,4 — & - 253,3

— [In Ryza] (&' — & =0, (8.18)

and
Rips = _%Ci(c—éc,u),u .

By inspection, we find the following relations
exist between equations of the set (8.3)-(8.18):

2{Eq. (8.15)] — Eq. (8.13) — Eq. (8.14) = 0, (8.19)
Eq. (8.5) — Eq. (8.6) — Eq. (8.8) + Eq. (8.9) = 0,

(8.20)

Eq. (8.17) — Eq. (8.18) + 2[Eq. (8.16)] = 0. (8.21)
Eq. (8.13) — Eq. (8.14) — 2[Eq. (8.16)]

—2[Eq. (8.17)] =0, (8.22)

Eq. (8.5) — Eq. 8.10) — C*Eq. 8.9) =0. (8.23)

By means of (8.19)-(8.23) we may eliminate Egs.
(8.1), (8.11), (8.15), (8.17), and (8.18) from the set
to be solved.

From (8.3) and (8.7) we find &% = &(u, x3).
Equations (8.4) and (8.9) show that &* = £2(u, x?).
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Next we define 4 = &' — &% and by use of (8.8), (8.7),
(8.12), (8.13), and (8.14) we obtain x4 = u(u).

By assuming u # 0 (i.e., 4 3 0) we obtain from
(8.13) that 4 = AT—* where 4 is an arbitrary constant
and T = C'R,yy. Also from the form of g we
observe that (8.5) and (8.6) are equivalent. Using
&t = £ — p we express (8.16) in the form

o+ &, =28, = M), (8.24)
where M(u) = (In Ry,;,) u + u . Integrating (8.5)
with respect to x® gives & = ¢(u, x3) + p(x?, x2, x%),
where ¢ and y are arbitrary functions. With this
expression for £ substituted into (8.24) we are able to
integrate (8.24) and find & = D(u)x® + E(u), where
D and E are arbitrary. Substitution of this value of
& back into (8.5) allows (8.5) to be integrated giving
8 = —~CW[}D , (x*)? + E x| + F(x!, x%, x*), where
F is arbitrary. Then substitution of &' and & into
(8.24) shows that F = }(x! + xH[M ) + 2D(u)] +
P(u, x%), where P is arbitrary. We now summarize the
components of the CC vector for the case p 7 0:

§ = —CWEDW) (%) + E(w),**]

+ 3(x* + x)[2D(u) + M(u)] + P(u, x%), (8.25a)
8 = E(u, x?), (8.25b)
£ = D(u)x® + E(u), (8.25¢)
£ = &' — A[Ryg/C(w)]E, (8.25d)

where A is an arbitrary constant; D(u), E(u), and
P(u, x*) are arbitrary functions; and

e = ]G o+ [ (G2 )

For the case in which u =0, i.e., 4 = 0, which
implies &' = £%, we find the solution (8.25) is still
valid.?®

As a check on the solution we consider the necessary
conditions (2.12) which for the metric (8.1) can be
expressed as

h31 - Oa
h32 - 0’
hy =0,
8.26
hy — Clhgy + by =0, ( )
hie + hye = 0,

h44 + C—_lhsa + h41 — 0.

By use of (8.25) and the definition &;, = &,.. + &,.,,
we verify that Eqs. (8.26) are satisfied.

38 In accord with the comments of Sec. 7 (see Ref. 27), it is easily
seen for the space-time (8.1) that k¢ = 0, where k, = (1, 0,0, —1)
only in the very special case where the parameter 4 = 0 in (8.25).



CURVATURE COLLINEATIONS

We established that the vector &' is, in general, not
a motion vector or affine collineation vector by
showing that, in general, s, # 0 and A, # 0.

A simple calculation shows that, in general,
&% # 0. Thus by Theorems 3.5 and 3.6 we conclude
that in general &’ does not define a Conf M (including
HM) or PC.

It follows that for special choices of the arbitrary
functions that & can be forced to be a motion vector
as expected (see Ref. 34).

Note Added in Proof: We have recently shown
(“Curvature Collineations in Conformally Flat Spaces.
I,” submitted to Tensor, New Series) that the Einstein
static cosmological space-time admits both proper
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CC and proper SCC. In addition, it was found that
a class of field conservation laws could be constructed
as a consequence of this space-time simultaneously,
admitting both a proper SCC and a geodesic con-
gruence with vanishing expansion, rotation, and
shear. This is in accord with the symmetry approach
to the formulation of conservation laws where it can
be shown that there are fundamental connections
between field conservation laws associated with the
kinematic properties of curve congruences and the
symmetry properties admitted by the given space-
time, as already suggested by the results of Sec. 7.
We plan to publish the results of further investiga-
tions in this area in the near future.
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We investigate the eigenvalues of a finite matrix Hamiltonian H = H, + g,V, where H, is diagonal
with eigenvalues 1, 2, - - - , N, and where all the elements of ¥ are equal to 1. We are interested in the case
N ~ . The radius of convergence of the perturbation series is (In N)~*, but nevertheless the exact
eigenvalues of H tend to well-defined limits when N — 0. It is shown that if we defineg = (g7 + In N)~!
and if we let g, — 0 as N — co in such a way that g is constant, then it is possible to obtain a perturbation
series with the “renormalized” coupling constant g, provided that suitable counter terms are introduced.
We also investigate a different model (where V,,, = mn) and show that no such renormalization is

possible there.

I. INTRODUCTION AND SUMMARY

The purpose of this paper is not to produce another
new theory, but only to clarify the concept of renormal-
ization by means of an elementary algebraic model.

The model consists in finding the eigenvalues! of a
sequence of finite matrices A which we write as

H = H, + gV. 6
Here, H, represents a truncated harmonic oscillator?
1
2
H, = . @
N,

* Supported in part by NASA Grant No. NSG-436.

t Permanent address: Department of Physics, Technion—Israel
Institute of Technology, Haifa, Israel.

1In a recent paper, C. M. Bender and T. T. Wu [Phys. Rev.
Letters 21, 406 (1968)] have also investigated the eigenvalues of a
model Hamiltonian.

2 H. A. Buchdahl, Am. J. Phys. 35, 210 (1967).

and Visalsoan N X N matrix which has the property
that V2 diverges (i.e., is not defined) when N — co.

For instance, in Sec. II we take V,,, = 1 (for all m
and n) so that V2 = NV has no limit for N — c0.3

We first investigate the “energy levels” in perturba-
tion theory: in first order, they are all shifted by g,
but the second-order shifts behave as —g2In ¥, i.e.,
diverge for N — oo. On the other hand, an exact
treatment of the problem shows that all the energy
levels, except possibly one, tend to the positive
integers for N — oo, if gy is kept fixed and finite,

However, it is shown in Sec. III that if we let
go— 0 in such a way that

g +InN=g7, 3
remains constant, then all the energy levels (and

corresponding eigenvectors) tend to fixed nontrivial
values for ¥ — co. Moreover, for small g, these

3 This property is reminiscent of the divergent behavior in quan-
tum field theory of J(x)J(y) when x — y.
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values are the same as we would compute from first-
order perturbation theory with H = H, + gV. We can
therefore call g the “renormalized coupling constant.”
Higher orders can also be computed by introducing
infinite counter-terms, just as in quantum field theory.4

In Sec. IV we consider a different “interaction,”
namely V,,, = mn. Again, the second-order perturba-
tion diverges for N — oo and fixed g,. But in this case
there is no possibility of introducing a renormalized
coupling constant such that H = H; + gV would
simulate, in first order, the results of the exact theory.
This Hamiltonian is not renormalizable.

II. THE MODEL

Consider H = H, + g,V, where H, is given by Eq.
(2)and Visa N X N matrix, all the elements of which
are equal to 1. We have V2 = NV, so that the eigen-
values of ¥ are N and 0. The normalized eigenvectors
of V are conveniently taken as

N a2, o ), 4
where
« =" N | —01,---,N—1. (5)

The eigenvalue N of V' is obtained when we set k = 0.
All the other values of k yield the eigenvalue 0.

The scalar product of any eigenvector of H, with
any of the eigenvectors (4) is equal to N—3. When
N — oo, these two complete sets of eigenvectors
become, so to speak, orthogonal to each other. As
we shall see in the sequel, this property is closely akin
to the well-known Van Hove orthogonality in quantum
field theory.5

We now consider g, as a small parameter and
expand the eigenvalues of H in a perturbation series.
We obtain

Ex=k+g—gXm—k "+ (6
Obviously, the second-order perturbation diverges
logarithmically for N — co. (The difference between
energy levels remains finite in second order, but notin
third order, as can be seen by a straightforward
calculation.f)

On the other hand, it is not difficult to obtain the
exact solution of HY = EV. We set

Y'=3au,, 0

where Hyu, = nu, and Vu, = > u,,. We obtain, by
virtue of the orthogonality of the u,,,

nan + go z am = Ean (8)

4 N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory
of Quantized Fields (Interscience Publishers, Inc., New York, 1959),
p. 376.

5 L. Van Hove, Physica 18, 145 (1952).

8 See, e.g., L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon Press, Ltd., London, 1965), p. 132.
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£(E)

F16. 1. Qualitative shape of the function f(E)= Y(E — n)-! for

large N.
or
a, = gO(E - n)—l z Ay - (9)
Summing over n, this gives the algebraic equation
2 (E— =gt (10)
The qualitative shape of the function
JE)=2(E—n)? (11)

is given in Fig. 1 for large N. (The eigenvalues of H are
obtained by drawing a horizontal line at height 1/g,.)
Obviously, the graph has vertical asymptotes at
E=1,2,---,N. Moreover, for small |E| (i.e.,
[E] & N), the curve can deviate appreciably from these
asymptotes only around f(E) = —In N. This is easily
seen from Eq. (11):if £ is not too close to an integer,
then f(£) + In N must be finite.

If E is close to some finite integer k, then (10) gives

(12)

E=k+ g/{ll + g(In N 4 --)]. (13)

This result can now be expanded in powers of g,,
whence it is readily seen that the radius of convergence
of the perturbation series is (In )™ and tends to zero

(E — k)™ = go' + In N + finite terms
or
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for N — oo. In other words, the eigenvalues of H
become nonanalytic at g, = 0 when N — 0.

This is seen most strikingly if we consider the
ground state of H, for fixed negative g, and N — oo.
[All the other states are simply shifted by (In N)™?, as
seen from Eq. (13).7] Let us write (10) as

(g =0 —-E+Q2—- BT

+ -+ (N—E)? (14)
=0+ IEDT+ Q2+ ENT
+ o (N B (15)
~ —In |E| + In (NN + |E]). (16)
It follows that
E~ —N|(e % — 1) ~ — Nellvo (17)

which is conspicuously nonanalytic at g,."®
A further insight into this situation is obtained by
considering the eigenvectors of H. From (9), we have

a,/a, = (E — m)/(E — n) (18)

so that, whenever E is very close to some integer, the
corresponding ¥ is very close to the unperturbed ¥
even though perturbation theory is not valid.?

However, for the ground state which we considered
above, we have

a, = a(|E| + D/(IE] + n), (19)

whence
Jlaf2=1=lal*(El+ 1) 3 (IE| + n)2 (20)
A rough estimate of X (|E| + n)? is

Jw(lEl +n)dn = (lE| + D7,

so that

|ay|2 =~ (|E| 4+ 1)t = N7le1/bo, (21)

We see that a; is very small and, from (19), the other
a, are even smaller: the ground state of the perturbed
Hamiltonian is “almost orthogonal™ to all the eigen-
states of the free Hamiltonian.?

I11. RENORMALIZATION

We have seen that, when g, is held fixed and N —
00, all the finite eigenvalues of H tend to those of H,.
To obtain a nontrivial theory, we must, therefore,

7 A closer look at Fig. | shows that the other states are actually
shifted by —1 4 (In N)7? if g, < 0, and by (In N)~! if g, > O.
This is also not analytic at g, = 0.

8 This is a rather delicate point, because (17) was derived by
taking N — oo for fixed negative g, and holds only if —g, >
(In N)~1. The nonanalyticity of the perturbation series in quantum
field theory was first suggested by F. J. Dyson, Phys. Rev. 85, 631
(1952). For other nonanalytic models, see Ref. 1, and A. Peres,
J. Math. Phys. 4, 332 (1963).
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let g, tend to zero as N — oo in such a way that

g'+InN=g" (22)

remains finite. (This is easily seen from Fig. 1.)

First, we note from Eq. (13) that, if g is small, all
the eigenvalues of H can be written as k 4 g, i.e.,
they are correctly given by first-order perturbation
theory, as if we had H = H, + gV.

More precisely, consider

H=H,+g(l —gln NV (23)

which is exactly equivalent to (1). Formally, we can
write

H=H;+gV+g2InNV4+g3InN_2V +---.
(24)
To first order in g, we have E =k 4 g, which is

correct as we have seen. In the next order, we have two
contributions: gV contributes

~g2 3 (n — k)2, (25)
as in Eq. (6), and g%In NV gives a shift
+g?In N (26)
for all energy levels. The total shift is
glin N — 3 (n — k), @7

which is finite.

The important point is that the cancellation of the
divergence in (25) is due to the next term of the
divergent series (24).° What we have actually done in
(24) is to find, in a single stroke, all the counter terms*
needed to cancel the ultraviolet divergences in all
orders. Note that all these counter-terms are propor-
tional to ¥ (no other matrix is needed): we only need a
renormalization of the coupling constant.2®

We can thus obtain the energy levels as a power
series in g. When |g| becomes large, 1/g, tends to
—In N and all the eigenvalues tend to well-defined
limits. It would be interesting to see whether the
power series in g has an infinite radius of convergence
or is only asymptotic (a finite radius of convergence
seems uniikely). These questions, however, are beyond
the scope of this paper.

Anyway, we have seen that for small enough g,
the exact theory (with gg) can be simulated by a few

% On the other hand, the expansion of (23) into a convergent
series (of negative powers of g In N) would be completely useless.

10 As usual, the counter terms are not uniquely defined by the
form of Eq. (1) and we can add to them arbitrary finite multiples of
V. This, however, merely amounts to altering the value of g by a
finite amount, i.e., to a redefinition of g. To obtain an unambiguous
definition of g, we may set, for example, E, = | + g exactly, and
this fixes all the other E;, (as seen in Fig. 1).
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perturbation terms of the ““phenomenological” theory
(with g). To complete the discussion, we must still
show that this result holds not only for the eigen-
values of H, but also for the corresponding eigen-

vectors.
From Eq. (9), we have

I=2la,l* =182 anl* X (E—n)>

But > (E — n)™ converges and, if E is close to some
integer k, is dominated by (E — k)72 It follows that
|80 2, @ml =~ |E — k| =~ |g|. Substitution in (9) then
gives (with proper account of signs):

(28)

an:g/(k _n)s n #k9 (29)

in agreement with first-order perturbation theory.
The extension of this result to higher orders is left as
an exercise for the skeptical reader.

1IV. A NONRENORMALIZABLE MODEL

We now consider a different “interaction,”” namely
V.nn = mn. This interaction is more singular than the
previous one (the matrix elements grow faster) and
more serious difficulties can be expected.

Equation (18) now becomes

na, + gy 3 ma,, = Ea, (30)

* na, = gn*(E — n)* 3 ma,,. &]))
Summing over #, this gives

g =2 n’[(E —n) (32)

= E*f(E) — }N(N + 1) — NE, (33)

where f(E) is given by (11). We can also write (33) as

f(E) = [g" + IN(N + 1) + NEJ/E",

so that the eigenvalues of H can easily be obtained as
the points where the graph of Fig. 1 intersects the
graph of [g;! + $N(N + 1) + NE]/E2 It is obvious
that, if g, is held fixed and N — oo, all the eigenvalues
of H simply coincide with the positive integers.

If we are interested in the nontrivial case where at
least one eigenvalue of H is not an integer, we must
make g, — 0 in some definite way as in Sec. II. Let W
be such an eigenvalue. The behavior of g, for large N
is given by

gl = W¥(W) — }N(N + 1) — NW

(34

(35)
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and (34) can be rewritten as
JE)= [E — WIN + W¥(W)E.  (36)

Let us now investigate the other eigenvalues of H.
The function on the rhs of (36) has, at the point
E = W, aslope

NW-2 — 2f(W)W-1 37

which tends to infinity for large N, because f(W) ~
—In N if W differs appreciably from an integer. It
then follows from Fig. 1 that ali the other eigenvalues
of H are infinitely close to the positive integers when
N — o: if one energy level has a finite shift, all the
energy levels below it are not shifted at all, and all the
energy levels above it are shifted by —1.

Obviously, if we attempt to construct a “phenomeno-
logical’” Hamiltonian giving the above result in first-
order perturbation theory, it will bear no resemblance
to the true Hamiltonian (for which perturbation
theory gives energy shifts g,k%, in first order). The
theory is not renormalizable.!

V. OUTLOOK

In this paper, we have considered two models of
finite matrix Hamiltonians in the limit when the order
of the matrices tends to infinity.

We have found that the eigenvalues of the Hamilton-
ian (23) tend to well-defined (and nontrivial) limits
which can be computed by perturbation theory, even
though the series (24) diverges.

On the other hand, we have found no possibility of
treating the model of Sec. IV by perturbation theory.
(More precisely, we have shown that a phenomeno-
logical theory giving the same eigenvalues would bear
no resemblance to the exact theory.)

This paper sheds, therefore, no light on the mystery
of higher-order terms in nonrenormalizable interac-
tions.
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Starting from the covariant field equations for a vector meson, the energy-momentum tensor entering
in Einstein’s field equations is derived. It is shown that its most general algebraic form involves two
vector fields and two scalars. Specifying the formalism to the special cases for which the fields are either
parallel or perpendicular to each other, itisfound that the vector field cannot be described in terms of a per-
fect fluid involving only density and pressure, but includes an additional term involving the stresses.
The conservation laws are given, which, in addition to the ones of relativistic hydrodynamics, also in-
clude the ones describing the streaming of the vector field.

1. INTRODUCTION

The description of a vector-meson field within the
framework of general relativity is of interest in astro-
physics whenever large gravitational fields and high
densities are involved.! Some time ago, Zel’dovich?
showed that a classical vector field interacting with
stationary point charges can produce the most rigid
equation of state possible, which is compatible with
relativity, of the form

plet = p, (1.1)

where p denotes the pressure and p the density.

It would, therefore, also be of interest to study a
vector-meson field of finite mass interacting with the
gravitational field and see what conclusions can be
drawn about the effective equation of state. The
problem is similar to the geometrization of the Max-
well equations which impose certain restrictions on the
gravitational field.? In this case, too, the form of the
energy—momentum tensor (2.10)—which contains a
part identical in form to that of the Maxwell field—
results in certain limitations on the gravitational field
and the equation of state. In particular, it is found
(cf. Sec. 3) that a massive vector meson cannot be
described by a perfect fluid in terms of a pressure and
density only, but involves at least an additional term
describing stresses [cf. Eq. (4.17)].

In this paper, we develop the general formalism
for a vector field in the presence of a gravitational
field. Starting with the field equations for the vector
meson (Sec. 2), the energy-momentum tensor is
derived as usual from an invariant Lagrangian. By

1 Cf. V. A. Ambartsurmayan and G. 8. Saakyan, Astron. Zh.
37, 193 (1960) [Sov. Astron—AlJ 4, 187 (1960)]; A. G. W. Cameron,
Astrophys. J. 130, 884 (1959); E. E. Salpeter, Ann. Phys. (N.Y.) 11,
393 (1960).

? Ya. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 41, 1609 (1961) [Sov.
Phys. JETP 14, 1143 (1962)].

# G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).
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identifying this tensor with the one for a fluid and
using the identities applying to the Maxwell tensor,
we find (Sec. 3) the most general (algebraic) form
involving two vector fields, the velocity field #* and
the vector field A*, as well as two scalars related to
the density and the pressure. In Sec. 4, two particular
cases are studied, one for which the two fields are
parallel and one for which they are orthogonal. It is
here shown that the description as a fluid involves an
additional term. Finally, in Sec. 5, the conservation
laws and field equations are given. It is found that, in
addition to the ones of ordinary relativistic hydro-
dynamics, another set appears describing the stream-
ing of the vector field.

2. FIELD EQUATIONS

In ordinary field theory, the field equations for a
vector meson of mass m are given by

04, = m24,, 2.1
together with the subsidiary conditions
0,4* =0, .19
where
0, =0/ox’, [1=10,0",

and in our units ¢ = i = 1.
These two sets of equations can be combined into
one,

(O — m%e,, — 9,0,]14* =0, 2.2)

and it can be seen easily that the subsidiary conditions
(2.1") follow from (2.2) by a further differentiation
with respect to x*.

The situation in general relativity is slightly more
complicated owing to the fact that the covariant
derivatives do not commute. In fact, we have

D,D,4* — D,D,A* = R,; 4% 2.3)
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where R,, is the Ricci tensor and D, denotes the
covariant derivative. A simple calculation shows that
(2.2) has to be replaced by*

[(D,D* — m%g,, — D,D,]J4* = 0. 2.4
The covariant subsidiary condition
D,A* =0 (2.5)

then follows by operating with D, on (2.4). Since the
covariant derivatives of g#” are zero, we can write

D*D,D%g,,A* = g"'g** D,D,D,A, .

Applying now the commutation relation (2.3) to the
tensor D,,A ,» We obtain

DvDa(DﬂAA) = DaDv(DﬂA}.)
+ R%,.D,A; + R%,, DA,
and, hence,
D*D,D°A, = D*D, D, A*

as the last two terms cancel on account of the anti-
symmetry of the Riemann-Christoffel tensor

glvgaﬂR'aﬂva = _Rﬂ'y glvgaﬂR?}.va = Rdﬂ'

Thus, so long as m # 0, the first and the third term in
(2.4), after operating with D, cancel and (2.5) follows.

Imposing now the subsidiary condition and making
use of the commutation relations (2.3), the field
equations (2.4) become

(D, D%g,, — R,)A" = m°4,, (2.4)

which differ from (2.1) (apart from the replacement
of partial derivatives by covariant derivatives) in the
explicit appearance of the Ricci tensor.® Alternately,
the field equations (2.4) can be put in a more concise
form by introducing the antisymmetric tensor

F, = DA, — DA,. (2.6)

Raising and lowering appropriate indices then yields
the familiar form

D,F* = m?4*. Q.7

These equations are seen to differ in form from the
Maxwell equations (for empty space) only by the
appearance of the vector potential 4* on the right-
hand side, although, of course, the meaning of the
various terms is now different.

For a consistent description of the vector meson in
a gravitational field we also have to consider Einstein’s

4 Note the order of the covariant derivatives. They can be put in
the usual order by using the commutation relation (2.3).

5 Of course, if we assume that the gravitational field is known and
Einstein’s equtions Ruy == 0 for empty space hold, then there is no
change.
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field equations
G,, = R,, — 1g,,R = «T,

uv o

(2.8)

where 7,, is the energy-momentum tensor of the
meson field. The form of this tensor can be obtained
by variation of the Lagrangian density £ with respect
of g*. Since variation of £ with respect to 4, must
also give the field equations (2.7), it follows that
(apart from a divergence) the Lagrangian density is

£ = /T gliF s F? + m*4, 4%  (2.9)

Carrying out the variation with respect to g*¥ then
yields the required form of the energy-momentum
tensor:

Tuv = m[FuaFvﬁgap - i’gquuﬂFaﬁ]

+ m*[A,A, — 1g,,4,4°] (2.10)

(which, again, differs in form, from the Maxwell
energy—-momentum tensor in the appearance of terms
containing A4 explicitly). Substituting (2.10) into the
Einstein equations (2.8), together with the field equa-
tions (2.7), then gives a codetermined description of the
vector meson in a gravitational field.

3. THE ENERGY-MOMENTUM TENSOR

For a perfect fluid, the energy-momentum tensor
can be written in terms of two scalars, the pressure
p and density p, and the velocity field u* = dx*/ds as

T,, = (p + puu, — gup. 3.1

The field equations of Einstein are not sufficient to
determine these quantities uniquely and it is customary
to impose a relation, an “equation of state,” between
the pressure p and the density p. In the presence of an
external field, the particular form of the energy-
momentum tensor and the equations satisfied by that
field provide the additional information needed to
solve the field equations (at least, in principle). In our
case, too, it would be interesting to know whether
(2.10) can be cast into the form (3.1) and, in particular,
what, if any, limitations are imposed on p and p.

Instead of (3.1) we start with a more general form of
the energy-momentum tensor allowing for possible
viscous terms. Thus, we consider

) T,, = ouu, + S,, 3.2)
with
3.2)
[Clearly, (3.1) is a special case of (3.2) with ¢ = p,
Snv = (uuuv - guv)p]

We have already remarked that part of the energy-
momentum tensor (2.10) is of the form found in
electromagnetic theory, i.e.,

Epv = FpaFvﬂgaﬂ - igquuﬁFap’

Su' =0, uu,=1.
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and is known to satisfy the identity®

EZE) = }gE,E*. (3.3)
We substitute for E,,, where
E,=T, — V., (3.3)

where T,, is given by (3.2), and V,,, is the part of the
energy-momentum tensor containing A4, explicitly

and is defined by
V,, = B,B, — ig,,B’, B, = mA,, B®= B,B"

(3.3
We find that

uu’(o® + oB%) + SiS, + B’S; — oUU; — X,
= ;}g}’l[a2 + S+ B o+ S — (U + X)]. (3.4
Here, X, is the vector

X,=8§,B,, Xu"=0,
while U,, and X, are the tensors
v, =u,B, + u,B,,

(3.9)

U, X, and S are the respective traces, and §? = SaﬂS"'" .

These equations are clearly symmetric upon inter-
change of the indices, and the trace of each side being
equal to each other. A further simplification can be
achieved by multiplying and contracting in turn with
u* and A*:

X, = BX,+ BJX,.

ub — oUB, — $UX, =0 (3.6a)
and

}Uc, + dB, + Y, =0, (3.6b)

where, in addition to the quantities (3.5), we have
defined also the vector

Y,=8,X,=8.SB,, Yu*=0
and introduced the abbreviations
b = §(c* 4+ oB?) — {oU? — L(B2S 4+ % + 1X,
d=1>b— (¢® + oB®) — }X. 3.7
We can generate additional ‘relations between the

various vector fields by operating on (3.6) with S%.
For example, from (3.6a) and (3.6b) we obtain

X, +Y,=0 (3.82)
and

dXx, +Z, =0,
where we have used (3.2"), and defined
Z,=8S)Y, = S)S:X, = S;SiS!B,,
Zu" =0,

8 See, e.g., C. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2, 525
(1957).

(3.8b)
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Further multiplication of (3.8a) with S} yields

oY, +Z,=0. (3.8¢)
(Tn principle, we could continue thus to generate new
equations, but, as we shall see later, the system is
closed and no new information can be derived from
further operation.) It follows from the above results
that both vector fields Y, and Z, can be expressed in
terms of X,

Z,= —oY,=d’X,, (3.9

and that the system of equations is consistent, pro-
vided that

o +d=0. (3.10)

Contraction of (3.6a) with #* and A*, respectively,
provides two additional limitations, i.e.,
b= joU? (3.10%)
and
X =b— oB?=0(}U%— B?),
provided that U # 0.7
It can readily be seen that these are the only inde-
pendent relations between the various quantities and
that further contraction gives nothing new.
Making use of these results and (3.7), it follows that
the Egs. (3.6) reduce to one,

$oUu, — 0B, — X, =0, @3.11)
which expresses X, (and therefore also Y, and Z)) in
terms of the two vector fields u, and B, . Furthermore,
from (3.7) and (3.10) we find

S* = S,,8% =20 + (6 + B)’ — oU?, (3.122)
while the trace S is given by
= —(o + B?), (3.12b)

which follows from (3.2) and the fact that E} is a
traceless tensor.

We still have to satisfy (3.4) and the question
arises, whether there exists an algebraic form of S
which satisfied that condition. Since we have two
vector fields u* and B, in addition to the fundamental
tensor g,,, it is suggestive to assume for S} the form

S, =uag,+ U, + yB,B" + du,u’, (3.13)
where the functions «, #, ¥, and é are yet to be

determined. From the properties of S, it follows that
we must impose the following conditions:

(i) That derived from Eq. (3.2'):
Syu, =0;
(ii) That derived from Egs. (3.5) and (3.11):
S.B,= X, + o(3Uu, — B,);

? The case U = 0 is an important subcase which will be considered
later (Section 4).

(3.10")
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(iii) Eq. (3.12b):

= —(c + BY.
These result in the following system of equations:
«+ 3pU + & =0,
B+ U =0,
fB? + 46U = {oU, (3.14)
o« + 36U + yB? = —o,
40+ pU + ¥B*+ 6 = —0— B%

Although these are five equations for four functions,
they are found to be consistent and have as their
solution

o = —}B?
f=—yU=—3AU(s + a), ,
v = A0 + ), (3.14")

0 = A(}oU? + aB?),
with
Al = }(U% — 4B?),

where the three functions B2, U, and o are still arbi-
trary. It can be shown by a straightforward, although
tedious, calculation that there are no further condi-
tions imposed on S by its properties. For example,
the conditions

S,Su, =0,

S,S*B, = —d’(3u,U — B,)
are identically satisfied by (3.13) and (3.14).

Finally, inserting (3.13) into (3.14) gives one addi-

tional relation between the three functions

(0 + $B2)? — }oU? =0, (3.15)

from which one can be eliminated. If we eliminate U
and use « instead of B2, it can be shown that (3.13)
now takes the form
S} = (¢ + )7 [alo + 0)g; + o(0 — 3)u,u’

+ 20B,B" — 20)(c — x)U2] (3.16)
involving two vector fields »* and B* as well as two

scalars ¢ and «. This is the most general algebraic
form of S and we now consider two special cases.

4. PARALLEL AND ORTHOGONAL FIELDS

If the two vectors #* and B* are not independent,
they may be either parallel or perpendicular to each
other. In the first case we can set

B* = jUu*, B*=}U?
and, consequently,
X,=8,4,=0,
U,=Uuu’, X,=0.

4.1

(4.2)
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With this assumption, (3.4) becomes
uu’(6® — }oU? + S2S) + LUS;
= 1gl(0" + 5 + }UXS — o). (4.3)
Contracting this equation with «* (or B*) results in
3(o% — }oU?» = S$? + }SU2 4.4)

Since we now only have one arbitrary vector field u*,
Eq. (4.13) takes the simple form

Sy = &g}, + duu’, (4.5)
where the two functions & and 6 are to be determined
from the conditions

Su, = &+ 8)u, =0 (4.6a)

and

S=4i+8=—(c+ }UY. (4.6b)

This, together with (4.4), enables us to express all
functions in terms of o:

i=—8=—o,

U2 = 8o. 4.7

A simple calculation then shows that (4.3) is identi-
cally satisfied and no further conditions are imposed
on S;. Therefore, the energy-momentum tensor T*"
(3.2) is now given by

T — outu’ 4+ S* = 20u*u” — og"®®  (4.8)
which corresponds to a perfect fluid (3.1) with
p=p=o. 4.8")

However, if we introduce (4.1) also into (3.3"), we find

Vi = 2U0%u,u, — {‘;guvU2 = 2ou,u, — 0g,,, (4.9)

which is exactly equal to (4.8). Thus, we conclude that
the tensor E,, [Eq. (3.3)] vanishes. This implies that
either m = 0 or

Fopy=4,,—4,,=0
and, hence, 4, is the gradient of a scalar

4, =2

o oxk

From this it appears that a massive vector meson
cannot be described by a perfect fluid in terms of a
pressure and density only.

Now let us turn to the second possibility, viz., that
the two vector fields #* and B* are orthogonal to each
other, i.e.,

}U = u*B, = 0. (4.10)
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In this case, (3.4) reduces to
uu’(e® + oB%) + SiS, + B'S, — X,
= 1gi[¢® + S* — B¥c + S) — X]. (4.11)
Contracting this equation in turn with #* and B* leads
to [cf. Eq. (3.6)]:
ub=0 or b=0,
Y, +dB, =0,

(4.12a)
(4.12b)

where b and d differ from their unbarred counterparts
(3.7 by the fact that now U = 0. As before, it is
again possible to generate additional equations by
operation with S. For example, from (4.12b) we
obtain

Z, +dx, =0. (4.12¢)

Since Y, is determined by B, and Z, by X,,, it appears
that we have again three arbitrary vector fields
determining the structure of S} . Nevertheless, we see
that these are not independent. If we again assume for

S, the form (3.13),
S, =agy + BU;, + 78,B" + du’,
it follows from

(4.13)

Swu, =@+ 8u, + p4,=0
that
g+6=0,

g=0. (4.14)
Also,
X, =SB, = (& + 7B*B, = 1B,
indicating that X, and B, are parallel.
Furthermore, from

Y, =S\X, =724,
and (4.12b), we have the relation

2+d=o. (4.15)

Additional conditions on the different functions are
imposed by evaluating S

S=43+ 7B+ 8=—(c+ B (4.15)
and

S = (0 + BY)? + 242 = 2% + A% (4.15")

It can be shown that there are no further independent
conditions and that S, [Eq. (4.13)] is completely
determined by the two vectors u* and B* and two
functions ¢ and B*:

& = —(c + B®) = —P,

B=0’

7 = 2P|B", (4.16)
§=—-a=r,
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which gives, for the energy-momentum tensor (3.2),
T = ou'u® + S*’
= (¢ + Pu*u" — Pg"’ + (2P/B)B*B’ (4.17)
with
P=o¢+ B 4.17")
This expression differs from that for a perfect fluid
(3.1) in two important aspects. In the first place, in
addition to the usual terms a third term appears which
may be taken to describe the stresses, since even for a
comoving “fluid” it does not vanish. Secondly, the
vector potential B* (or 4*) contributes to the effective
pressure through B2, although, of course, P [Eq.
(4.17')] is not the actual pressure of the fluid.

5. CONSERVATION LAWS AND FIELD
EQUATIONS
The vector A* is not arbitrary, but must be a solu-~
tion of the field equations (2.7), while the energy—
momentum tensor (4.17) has to satisfy the conserva-
tion laws®
D, T* = 0. (ER))

(Of course, these are a consequence of Bianchi’s
identities and are identically satisfied once Einstein’s
equations are solved. Nevertheless, they are of
considerable interest and determine the behavior of the
velocity field u*.)

We find it convenient to introduce the unit vector

a* = A*/A = B*/B, (5.2
so that
aka, =1, (5.2)
and the scalar
C =InB. (5.3)

In terms of this vector, (4.17) can now be written as
T" = u"u'(s + P) — Pg*’ + 2Pa*a’.

From the conservation laws (5.1) we find
uul(o + P) + u, w0 + P) + uu’(c + P),
=P, — 2P a%a, - 2P(a,a’+ a,a.).

Contracting this equation with #* and a*, respectively,
on account of the orthogonality of these vectors we
obtain

(5.4)

ul(oc + P) + u'c, = —2P® (5.5a)
and
2Pa}, + a*P, = —(oc + P)¥, (5.5b)
where we have introduced the two quantities
® =aq,,av" = —u,,a'a"
Y =u,u'a" = —a,u"u". (5.5¢)

8 We limit our discussion to the energy—-momentum tensor given
by (4.17), although it is not difficult to treat the general case also.
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Furthermore, from the subsidiary condition (2.5) we
also find

al, + C ,a" =0, (5.6)

so that (5.5b) can be written as
2PC a* — P ,a" = (6 + Pu,u'a". (5.5b")

Since this equation is of the form fa* =0, it is
suggestive to take as its solution f, = 0. Substituting
this result into (5.4) and contracting with u#, however,
leads to P = B% which is only consistent with (4.17) if

o = 0. A more satisfactory solution is of the form
u,uc+P)+ P, —2PC,=u,f, (57

where fis an arbitrary function.
Substituting (5.7) into (5.4) and contracting with
u* yields for f,
f=Pu" —2PuC , = o u* — 20u"C,, (5.7)
and, after some simplification, for (5.7) yields
u,u'(e + P) = (uu* — g)(P,—2PC,). (5.7")

This expression is seen to be similar to the usual
results of hydrodynamics® and differs from it mainly
through the appearance of the extra term involving
the electromagnetic potential. If we now also insert
(5.7") into (5.4), we obtain

Pa,,a* = POu, + (g — a,a®* — uu*)(P, — PC,),

(5.8
which determines the streaming of the vector field a*.
If ¢ is a spacelike vector, so that g*q¢, = —1 (and

hence B? negative), a similar calculation gives slightly
modified results. Instead of (5.3), we find
™ = (¢ + Pyu"u® — Pg"” — 2Pa*a® (5.3")

with P = ¢ — |BJ2
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The sign of the right-hand side of (5.5a) is now
positive, but (5.5b) remains unchanged. Furthermore,
(5.7") remains the same, but (5.8) has to be replaced
by

Pa,,a* = POu, + (uu* — a,a* — gi) (P, — PC).

(5.89

It is easy to see that contracting this equation with
u* and a* yields nothing new.

The behavior of the two vector fields is then deter-
mined by (5.7") and (5.8) together with the subsidiary
conditions (5.5a) and (5.6).

Furthermore, from the field equations (2.4),

D,D*B, — R,,B’ = m*B

uv>s
upon introducing the vector a* and scalar C, we also
obtain

(OC + C,CYa, + 2C*a,, + D,D%a,,

— R,a* = ma,, (59)

where
re ’:](P — G)
C+C,CF=———=
He+ C 2(P — o)
1P~ 0) (P — 0) 48"
4 (P — 0)? ’

and, upon contracting,

(OC + C,C% — abal, — R a%a" =m® (5.9
These equations together with (5.7) completely deter-
mine ¢* and C.

This completes, then, the general analysis of the
vector meson field including the subsidiary conditions.
It is still necessary to solve Einstein’s field equations
(2.8). Since the general case is rather involved, we
limit ourselves to special examples involving spherical
symmetry and the expanding universe. These are
given in a subsequent work.

® See, e.g., A. Lichnerowicz, Théories relativistes de la gravitation
et de I'électromagnetisme (Mason et Cie., Paris, 1955).
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A quantum field with nonlocal but translation-invariant interaction is considered. We prove that, with
a proper smoothness condition on the interaction, the asymptotic limits of the annihilation—reation
operators exists. The asymptotic limits are then used to prove that the state space decomposes as a
tensor product of an incoming (outgoing) Fock space and a zero-particle space.

1. INTRODUCTION

In an earlier paper! we considered a fermion field
with self-interaction and proved that, if the kernels
describing the interaction were sufficiently smooth,
then the asymptotic limits of the annihilation—
creation operators did exist. It was also proved that
they were free fermion fields with the same mass as
the original free fields and that the total Hilbert space
could be written in terms of these asymptotic fields as
a tensor product of an asymptotic Fock space and a
zero-particle space.

The object of this paper is to prove a similar result
for the case of translation-invariant or momentum-
conserving interaction, if the interaction contains no
zero- or one-particle interaction. If, on the other hand,
there is a zero- or one-particle interaction, then the
asymptotic annihilation—creation operators can not be
expected to exist, as we know from perturbation con-
sideration (see, for instance, Refs. 2-4).

2. FERMION FIELD WITH MOMENTUM-
CONSERVING INTERACTION

As in Paper I, here we consider a free fermion field
with mass m in the Fock representation. This is a
Hilbert space J€, where the elements in J€ are repre-
sented by sequences f= {f,} of antisymmetric
functions f,, = f,(x;, ' * -, x,,) in n variables x,, - - -,
X, X; € Eg. The inner product in J is given by

9= zn'f ffn(xl,- %)

X gn(xls Y xn) dxl U dxn
and the annihilation operators a(x) by
(a(x)_f)n(xl’ R xn) = (n + l)fn(x: X1 " xn)-

The creation operator a*(x) is the adjoint of a(x). The

1 R. Hgegh-Krohn, J. Math. Phys. 9, 2075 (1968), referred to as
Paper I.

2 L. D. Faddeev, Dokl. Akad. Nauk SSSR 152, 573 (1963) [Sov.
Phys.—Dokl. 8, 881 (1964)].

3 K. O. Friedrichs, Perturbation of Spectra in Hilbert Space
(American Mathematical Society, Providence, R.1., 1965).

4 L. van Hove, Physica 21, 901 (1955); 22, 257 (1956).

free-energy operator H, is given by

(Hof), = z Qufulxr, -

and (Hyf), =0, where Q; is the operator Q =
(—A + m2)t applied to x,. The mass m is strictly
positive. The total energy operator is H = Hy + V,
where the interaction V' is momentum conserving and
contains no vacuum or one-particle interaction. That
is,

> xn)9

V = 2 Vk,l’
k,1=2
where V,, is given in terms of the kernel
Vkl(xla e ’xk |)’1, Tt ,}’z),
which is translation-invariant, i.e.,
sz(x1+23"'axk+z|h+Z,"',}’z+z)
= Vkl(xl’“"xklyh'“’yl)
and
sz=f'"fdx1"'dxde1"'dYZ
X Vkl(xla"'axk, J’1,"',J’z)
X a*(xp) - - - a*(x)a(yy) - - - a(y).

We recall that f, is antisymmetric if f, = asym f,,
where

asymf’n(xl’ e ’ xa‘(n))'

H xn) = —L' z (_I)Tfn(xa(l) P
n. o

The reason for excluding terms of the form V4, ¥4,
Vi, and Vy—ie., vacuum and one-particle inter-
action—is that such terms leads to infinite vacuum
renormalization and finite-mass renormalization re-
spectively, and it is beyond the scope of the technique
presented in this paper to deal with such problems.

It is obvious that H, is self-adjoint on its natural
domain of definition D,, and we assume V to be
symmetric, i.e.,

Via(x1, ** ,xkl}’u L)
= VuO s le,' Tty Xp)
Let a(h) = | a(x)h(x) dx and

a*(h) = f a*(x)h(x) dx.
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Due to the anticommutation relations of the fermion
field we have

a(h)a*(h) + a*(Fa(h) = f IhGOP dx.

Observing that a*(%) is the adjoint of a(h), we now
obtain
e = lla*(Wll < l4l,.

On the other hand, let ¢, be the vacuum state
¢o={1,0,--}. Then

la*(moll = |42,
and this proves the following lemma.

Lemma 1: |a(Wlf = lla*(W = |4l

For the subsequent development we also need the
following lemma.

Lemma 2: Let f € D, (domain of Hj); then
1| falls < M7 I(Hof )l
where m is the mass of the free fermion field.
Proof:
(Ho)u = 3 0,
and, since Q = (—A + m?}, we have that (h, Qh) >

m(h, h), which proves the lemma.

Lemma 3: Let lull, = max {||lu,, lul.} and let 4;,;,
for k,I> 1, be the annihilation—creation operator
with the kernel

A(x15 " 'axkl Yis s V)
= asym asym t;(X; — y;) * * * (X — Y1)
x v
X vy(yr — y) 0 — v

Then, for all f€ D,, we have

l4ufll < Cia lluallo - - - lluelo loallo - -

where C,; = m~(lk — 1| + 1)3.
Proof: Let p = k — | + n; then

I Awfa? = p! f o f dxy - - dx,

fv,alle - I1Hof s

X ( )l' asym f fdyl .-

X uy(xy = y) - (X — ¥1)

X o(yy — y) vV — ¥)
2

xfn(yl’ Yo kg, xp) .

RAPHAEL HOEGH-KROHN

By the fact that asym is an orthogonal projection in
L,, we get

I f,ll® < p!f- : -fdxl - dx,

x [('I’)zv f dy, lus(x; — p)
asymf de1 cdy

X ta(Xg — 1) * - U — y1)
X v3(yr — ¥ 0 — W)

2
xfn(yl’ T, yl’xk+1r Y xgz)] .

By the Schwarz inequality,
IAufall® < p! f o f dxy - - dx, f a5, luy(xy — 7))
x f dy, luy(xy — )

X ( ) I asym f fdyl -dy,
X Uy(xy — J’z) “U(Xp = Y1)
X 0y(yr — ¥) (Vi — )

2
xfn(Yla T, yl’ xk+1’ T, xp)

= p! uulnff : -fdyldxz- - dx,

X ( )l' asym f fdyl ~dy, 4
X Ug(Xg — ¥;) = (X, — ¥)
X 0y(y1 — ¥) 0V — YD)

2
xfn(.vl" s Vi Xpetns T 'axp) .

By Lemma 1, this is bounded by

et = G 6= o]
X f dy sy -+ gl ol -~ Nopall

xf..'J‘dYI'.'dyl—ldxk+1.'.dxp

2
3ylaxk+1’ e ’xp)l

Nt 2

X A falY1s o
=p-n-n!ugllf lugl- -

X floglls - -+ loalls 1 fall3-
Recalling that p = k — / + n, by Lemma 2 we get
! 1
Mol < E=LEE Ly 2 gz gl
n m

X flogllz -+ loallz | Hofll,

and this proves the lemma.
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Lemma 4: Let a(g) = { a(x)g(x) dx and a*(g) =
§ a*(x)g(x) dx and fe D, if k, I > 2; then
1[4k, a(@fll and  |[[4x, a*(@)f Il
< kCrilighw luglle - Nugllo losllo- -
Proof: Letp =k — [+ n — 1; then
1Ak > a(1fall?

losall, 1 Hof .

- p!f~-~fdx1' cdx, | [dz g(z)(’;)lz
X asym f fdyl
X igl(—l)’lh(h — ) ulz —y)

X Upa(x; — ¥ - Xy — ¥2)
X 0y(yr =y v — ¥)
2

X fu(yrs o
By the Schwarz inequality we get that this is equal to

p.kiffdd
()l'fdzg(z) asy f fdh' v,

aylaxka""xp) .

X uy(xy — y)) - ulz = y)
X Uppa (X, — y) - up(Xpmy — V)
X vy(y1 = y) 0V — )

2
X fayr s Y Xttt X))

Since asym is a projection in L,, the first term in the
summation is bounded by

f...fdxl...dxp
X

'n)” ﬂ dz dy, uy(z — y)g(z)ug(xs — y))

X asym f J-dh dy

X ua(xz —y) u(Xpy — )

X vi(y1 =y 0a(Vier — YD)
2

xfn(yl’ T Vi X, " ’xp)

< lgl? uulnif- : -jdxl cdx,
x [(’l’)n f dy, lugx — y)
asymf f dy, - dy,

X us(xy — y) - Up(Xpq — )

X oy — )0V — )
2

xfn(yls'"9yl’xk9"'axp) :| .
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By the Schwarz inequality, this is bounded by
Vgl el ol [+ [~ dx, [y s = ol

<[()r

asym f fd}& cdy,

X uy(xp — y) (X — Y1)
X vs(y1 — y) -0 — )

2
an()’n"'s}’z,xk,"',xp):I

= ligh%, Nugl? lugl? f dy, f o f dxy - dx,
( )ll asym f fdy ~dy, 4

X ty(xy — ) - up(Xpy — V1)
X 03(y1 = y) (Ve — )
2

) X)) -

X

X faPrs s Vis Xgn

By Lemma 1, this is bounded by

2 1
O O ey
n 2 n —2
X [(1)“] [(z _ )“ - 1)']
x f dy, Nugl? - - gl oyl - - - lop_o
xf...fdyl. . 'dyz_ldxk”’dxp
X |fn(y1’ T, yl’xk’ T, xp)l2
= 1gl1% Nutal? gl
!
x o n! 1), NuhE - el hoglZ - - ol £l
<ne ot 1), gl Nusll? - - - Rusll?
X o2 - 1oeeld 1 falE.

By estimating the remaining terms in the summa-
tion in the same way, we get

Ak, a(@1fall* < n - pk* |Igll%,
X fualls -+ - Notglls Noalls - < < Nogallf I £all®.

Using Lemma 2, we get the first part of Lemma 4.
The second part is proved in the same way.

We are now in position to give the smallness and
smoothness conditions on the kernels

Vkl(x1$ o ’yl)'

.’xklyl,...
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Assumption 1: The kernels

Via(xys =+ ,xkl}’u L)
can be represented in the following way:
VX1, =" ’xkl Vi, s V)
= ZIAI{:?)(XI’ B xkl Vis s V),
such that
> Cia ™o+ - lug™ilo l07* o+ - + loiille < 1,
nkl
where A" (xy,**, X | y1, "+ +» y0) is a kernel of the

form given in Lemma 3, and G, = m~'(lk — /| + D}
Moreover,

Vii=0fork=0o0rl,orl =0orl.

Assumption 2:

1
chm llui””llo c ilu;'!'”llo ||v;m“o T “Uzn—klno < 0.
nkl

Theorem 1: Under Assumption 1 we have that
H=H+V,

with V' = 37, _, V3, is a self-adjoint operator on the
domain of H,, i.e., on Dy.

Proof: From Assumption 1 and Lemma 3 we get
that, for f€ D,,
1VF1 < A Hof
with
A=73 Collul® o+ lup™lo 07" llo - - - Noitllo < 1.
nkl

It is a well-known result that this implies that H =
H, + V is self-adjoint on the same domain as H,.

We observe that it follows from Theorem 1 that
D, is invariant under e**# as well as under e*#o, and
that for fe D,, both e®Hf and e"*Hof are strongly
differentiable with respect to .

Lemma 5: For h € Do < Ly(E3) we have that a(h),
as well as a*(h), leaves D, invariant, where Dy, is the
domain of Q in L,(E,).

Proof: The proof of this lemma follows immediately
from the definitions of a(4) and a* (k) (see, forinstance,

Ref. 1).
We define
at(h) = e—itHeitHoa(h)e—itHoeitH’
a;“(h) — —itHeitHoa*(h)e—itHoeitH

and observe that for 4 € Dg both a,(h) and a} (k) leave

RAPHAEL HOEGH-KROHN

D, invariant. Moreover, a,(h)f and af(h)f for fin D,
and 4 in Dy are both strongly differentiable in ¢, and
by differentiation we get, for 4 € Dy, that

$
0

as(h) - a(h) = —lf e‘“H[V, eitHOa(h)e—itHo]eitHdt’

ay(h) — a*(h) = _if e[y, ¢tHog¥()e 1 HolgtH gy

0
_ M
For details see Ref. 1.

Theorem 2: Under Assumptions 1 and 2 we have
that the strong limits of a,(h) and af(h) as t > + ©
exist for all # € L,(E,). Denote

a(h) = strong lim a,(h),
{2400
aX(h) = strong lim a*(h).
{40
Then a, and af satisfy the same anticommutation
relations as do @ and a*:

{a.(h), a(g)} = {ak(h), aI(g)} =0,
{a.(h), aX(g)} = f h(x)g(x) dx,

and the operators a,, a%, and H satisfy the same
commutation relations as do a, a*, and H,; i.e., for
h € D, we get

(H, a.(h)] = a(—Qh), [H, aZ(h)] = aX(Qh),

and for h € D, we have that a,(h), as well as a¥ (h),
leaves D, invariant.

Proof: The proof is similar to one given in Ref. 1
but for the fact that here strong limits substitute the
norm limits in Ref. 1.

Since |la,(h)| = |All;, we have that the mapping
ay(h)f: Ly(E;)x¥ — X is uniformly bounded in ¢, so it
is sufficient to prove that a,(h)f tends strongly to a
limit for & € C° and fin D,. From (1) we get that this
is equivalent to proving that the integrals on the
right-hand side of (1) converge strongly at infinity.
Consider, therefore,

™Y, o Hoa(h)e=Hele T | = [V, alh,)]e" S,

where h, = e,
By Lemma 4 and Assumptions 1 and 2, we get that
this is bounded by

C Ikl - 1Hoe " I,

where C is a constant depending only on V. According
to a lemma proved in Ref. 1, we have that

lhllo < CaleI



QUANTUM FIELD THEORY. 1I

for h € C®. Since H and H, have the same domain of
definition, there exist two constants ¢ and b, such that

IHofl < a N HfI| + b 1If1.
Using this, we get the new bound

ColtI 2 @ I HfIl + b 11fID,

which proves that the integrals on the right-hand side
of (1) converge strongly.

That a, and a? satisfy the same anticommutation
relations as do @ and a* follows from the strong
convergence. Consider now, for 2 € Dg and f€ D,,
the expression a,(h)f. Since a,(h) leaves D, invariant,
we have that a,(h)f € D, and thus

Ha(h)f = [H, a,(W]f + a(WHf,
[H, a,(h)]f= —itH[H’ eitHoa(h)e—itHo]eiin
= —itHeitHoa(_Qh)e——itHoeitHf
+ e—itH[V’ e”H"a(h)e_”H"]e“Hf.

We have already proved that the last term tends
strongly to zero and the first term is a,(—Qh)f, which
we know converges strongly to a.(—CQh)f. Using the
fact that H is closed, we get that a,(h)f € D,, i.e.,is in
the domain of H, and that [H, a.(W)]f = a.(—Qh).
This proves the theorem.

Theorem 3: The Hilbert space J decompose in two
ways as a tensor product of two Hilbert spaces

*=5,0%.

F, is the Fock representation of the incoming
(outgoing) asymptotic fields. 3% is the incoming
(outgoing) zero-particle space; i.e., the subspace of
¥ of the form Q. ® J€% is annihilated by all incoming
(outgoing) annihilation operators.

In accordance with this decomposition, the energy
operator H decomposes as a sum:

H=Hf®1+1@H.,

where H is the free-energy operator with mass m in
F. and HY is the restriction of H to Q, ® J%. Q,
is the vacuum of F ..
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Proof: The proof of this theorem is the same as in
Ref. 1, since only the fact that H was bounded below
and the strict positivity of the mass m, together with
the commutation relation between H and the asymp-
totic fields, were used in the proof of this theorem in
Ref. 1.

Theorem 4: The Mpller-wave operators W, defined

as
W,. = strong lim e~**He?Ho,
[ 2nd= 1]

exist under Assumptions 1 and 2 and define a unitary
equivalence between H, in & and H in JF. Here
Jet is the smallest closed subspace containing the
vacuum element ¢, of € and invariant under a* (k) for
all 4 in Ly(E,).

Remark: Such a theorem was first proved by
Chistyakov,® but for the sake of completeness we give
a proof below. It is interesting to observe here how
much more information one gets on the spectral
structure of H from the existence of asymptotic
annihilation—creation operators than from the exist-
ence of the wave operators. From the existence of the
wave operators one may conclude that there is a
subspace of J in which H acts as a free-energy
operator. But as we have seen in Theorem 3, from the
existence of the asymptotic annihilation—creation
operators one may conclude that J¢ decomposes as a
tensor product, so that H acts as a free-energy
operator in one of the factors.

Proof: Since ¢, is cyclic in &—relative to the set of
operators a*(h), h € Ly(E,)—it is enough to prove that
e tHeitHog* () - - - a*(h,)d, converges strongly. But
since H, and H both annihilate ¢,, this is equal to
af(h) - af(h)p,, and this we know converges
strongly.

This proves the theorem.

5 A. L. Chistyakov, Dokl. Akad. Nauk SSSR 158, 66 (1964).
8Y. Kato and N. Mugibayashi, Progr. Theoret. Phys. (Kyoto)
30, 103 (1963).
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We extend to the N-body case previous techniques for solving three-body problems with repulsive
interparticle potentials and periodic boundary conditions on each particle. For clarity, we begin with
one-dimensional problems, although the techniques are not peculiar to them and can be generalized to
three dimensions. We decompose the wavefunction ¥ into N(N¥ — 1)/2 parts, according to

Av
¥=3 yu
i<j=1
from the Schrédinger equation we find a basic equation for a typical y;; . As a test of this equation, we
apply it for N = 4 and the case of é-function interactions, and solve it numerically to find close agree-
ment between the energy per particle of a four-body system and a system of the same density in which
N — oo, The numerical results are consistent with the analytic one that E,(o0), which is the ground-state
energy per particle of the system with an infinite number of particles, is related to E;(N), which is that
energy for the N-body system of the same density, by E,(N) = E,()[1 — (1/N)] for weak repulsion and
by E,(N) = E,(c0)[1 — (1/N®)] for very strong repulsion. We begin a similar comparison for the three-
dimensional hard-sphere case by working out the problem of two hard spheres with periodic boundary
conditions over a length L, such that the density is the same as for an N-body problem in volume ¥ = L} :
2/L3 = NJ/L}, . Wefind that we get the analog of the one-dimensional result, for which case E,(2) = E,(<0)/2
for N = 2. That is, we find E,(2) = ma%h/mv, which is just one-half of the many-body theory result. We
also calculate the two-body correlation function and find good agreement with the many-body one, as
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calculated by Lee, Huang, and Yang,

I. INTRODUCTION

In previous papers'? we have presented a new
method for solving the quantum-mechanical problem
of finding the ground-state energy and wavefunction
of a system of three interacting particles. One of its
essential novelties was the decomposition of the
wavefunction into three parts, one for each pair of
interparticle interactions. Among other applications,®4
one has been to the problem of particles with repulsive
d-function interactions® in one dimension. It is then
natural to ask whether or not this work can be extended
to more than three bodies, possibly even to the N-body
problem.

In this paper, we give a partial answer to this
question. In particular, we show that for repulsive
interparticle interactions in one dimension, the
equations can be generalized to the N-particle case;
moreover, the derivation can be extended to three
dimensions. As a test of the equations that we derive,
we have applied them for N = 4 to one-dimensional
é-function interparticle interactions. This serves as a
useful check, since we expect the numerical results
(whose nature is discussed below) to lie between
those that are at hand for N = 3 and those for very
large N; in fact, they do. The problem can also be

1Leonard Eyges, Phys. Rev. 115, 1643 (1959); Phys. Rev. 121,
1744 (1961); J. Math. Phys. 6, 1320 (1965).

2 Leonard Eyges, J. Math. Phys. 7, 938 (1966).

3] eonard Eyges and John R. Jasperse, J. Math. Phys. 9, 805
(1968).

¢J, R. Jasperse and M. H. Friedman, Phys. Rev. 159, 69 (1967).

solved for N =2, so that we now can compare
results for N = 2, 3, 4 and N — co.

The main result we are interested in is the energy
per particle for systems with different N, but with the
same linear density. The linear density is defined to
be N/Ly, where Ly is the length of the ‘“‘box” over
which periodic boundary conditions are applied. We
have already made this comparison®? between the
cases N = 3 and N — oo and found surprisingly close
agreement. In the present paper, we add the results
for N = 4 and for N = 2; with them the general trend
is quite striking; we find, for example, that the energies
per particle for N = 4 and N — oo usually agree (as a
function of the strength of interaction) to within ten
or fifteen per cent. Some analytic light is thrown on
this numerical work by the fact that we can find
formulas for the energy per particle as a function
of N in the two limits of very weak and very strong
interactions. For weak interactions, it turns out that
this quantity differs from its value for N — oo by the
factor [I — (1/N)] and for very strong interactions by
[1 — (1/N®)]. Presumably, interactions of intermediate
strength are bracketed by these limits. Thus, if we
seek to approximate the many-body results by the
few-body ones, the worst possible case is N =2
and weak interactions for which case the answer is
off by a factor two; but the accuracy increases
markedly as either N or the strength of the interaction
increases.

With these results for the one-dimensional problem,
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it is natural to ask if there are analogous ones for
three-dimensional problems with repulsive potentials,
of which the so-called hard-core potential is an
example. For such repulsive potentials in three
dimensions, the three, four, and many-body problems
are, of course, not as tractable as they were for ¢
functions in one dimension; but we can solve the
two-body problem. For we have shown previously
in one dimension that the solution of the problem of
two particles with repulsive interparticle interactions
and periodic boundary conditions over length L
on each coordinate is reducible to the one-body
problem of a particle moving in a periodic lattice
generated by putting one of the potentials at each
point of a one-dimensional lattice of lattice spacing L.

A similar result holds in three dimensions, and we
can show that the problem of two hard spheres with
periodic boundary conditions on each coordinate
is the same as that of a point particle (of reduced mass
M/2) moving in the periodic field generated by putting
one hard sphere at each lattice point of a simple
cubic lattice with lattice constant L. Now this is a
problem that can be solved, to the accuracy we seek,
by the Wigner-Seitz method; and we do this. We get
expressions for the energy per particle of this two-body
system and for the two-body correlation function,
which is the relative probability for finding the two
particles within a given distance of each other.

The only available results for the N-body problem,
with which we might compare these, are the perturba-
tion ones for small hard spheres®; these presumably
correspond to the weak-interaction case in one dimen-
sion. The comparison is quite interesting. First, for
the energy we find essentially the same result here as
we did in one dimension: The energy per particle for
the two-body problem is just half that for the N-body
problem. If the one-dimensional case is any guide,
this result should improve as the strength of the
interaction, i.e., the hard-sphere radius, increases.
Secondly, we have compared the two-body correlation
function (as derived in Ref. 5) for the N-body system
and as calculated for the two-body system in the way
we have indicated. The agreement between these two
functions is surprisingly good. The function as
calculated from the two-body problem serves as a
quite respectable approximation to that derived from
the N-body one.

II. N-BODY EQUATIONS IN ONE DIMENSION

We start with the problem of N identical particles
of mass m, coordinates x;, x,,- -, Xy, and with

5T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).
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total potential energy v, given by

v, =2”€J"

i<j

M)

where v,; is shorthand for v(|x; — x,]). The Schrd-
dinger equation for the system is then

N a2
(— SZ4s v,-,)‘{’ = EY.
a=10X2 i<

As in our previous work, it is convenient to intro-
duce other sets of coordinates in place of the set
X1, ,Xy. In fact, we shall introduce one such set
for each potential v;; and, therefore, N(N — 1)/2 sets
altogether. For the three-body problem, these sets
were the so-called Jacobi coordinates, and these can
be defined for the N-particle system as well; but it
turns out that they are inconvenient in that they
tend to camouflage the symmetry of the ground-state
N-body wavefunction. This defect is not shared by the
sets we now describe.

Consider then the following coordinates associated
with the potential »;;. We first write the original
coordinates in their natural order:

X1s Xg, X35 " " 5 XN
For a given 7 and j, we then replace x; and x, by their

relative and center-of-mass counterparts x,; and X;:
Xy =X; — X5, Xy =X+ x5

then we replace x; and x; by x; and x,, respectively,

to give the ijth of the N(N — 1)/2 sets

Xigs Kigs Xas 0005 Xyt, X150 0 5 Xjm1s Xy * 0 * 5, XN

Given these sets, one of the basic ideas of our
general method is to write the wavefunction ¥ as a
sum of partial wavefunctions or two-body orbitals y,;,

¥ =3 vy, @
i<j
wherein we take the ijth orbital to be a function of the
set appropriate to it:
Vis = Pi;(Xij, Xigp -0 0)-
The functions y,; can be taken to satisfy®
N az
Vi

n=1 axi

- + v,V = Eyy, 3
since, if we sum this over i and j and use (2), we see
this equation is equivalent to the original Schrédinger
equation.

Moreover, it is moderately clear (from the fact
that ¥ is a symmetrical function of all its variables
and from the symmetrical way of defining coordinates)
that all the v, are identical functions of their respective
variables; e.g., 4 is the same function of xg,, X3, - - -

SWesetfh=2m=1.
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as Y,y IS Of Xz, Xy -« . This point is discussed in
some detail in the references,»'# so we shall simply
assume it here. With this, we see that we have only
one unknown function to find and the index ij on v,;
does not label different functions but labels a single
Sunction but of different variables.

We turn our attention then to Eq. (3) for the orbital
¥,;;- Since all the orbitals are of the same form, we
can be specific and consider the equation for y;,;
and since this turns out to be more convenient for the
bookkeeping, we shall assume this done:

Yis = Y12- 4)
We want the wavefunction to be periodic with period
L in each of the variables x;, x;, - - -, Xy, and this
will be insured if each of the orbitals is similarly
periodic. We assume such periodicity and so expand
1, in Fourier series, i.e., with basis functions

3

We introduce x;, and Xj,, and let my — m, = n,,
my + my = n,, which implies that #, and »n, are both
even or both odd. We shall frequently express this
condition by using the function A(s,?) we have
introduced previously:

AG, 1) = {1; s, t both even or both odd,

0, otherwise.
With this, the basis function (5) can be written

i
exp = (o + -+ + ).

()

exp [:-2-2%1 (Mx15 + N X5 + 2mgxs + -+ - + 2meN)]

x A(ny, ny). (7)
We have one further requirement. We want ¥ to be a
wavefunction for a system whose center of mass is at
rest; i.e., we want it to be an eigenfunction of the
center-of-mass operator P, = —i>¥, 0/0x; with
eigenvalue zero. This will be so if each basis function
is a similar eigenfunction. Applying this condition to
(5), we find the requirement

ny+ M =0,
where
M=mg+my+ -+ my.

We can then eliminate n, from (7) to get the final
basis function appropriate to periodic boundary
conditions and zero momentum of the center of mass:

€Xp [22%‘ (nyxye — MX o + 2mgx; + - - + szxN):|

x A(ny, M). (8)
If then we sum? over all such functions with coefficients

7 A sum simply written as X, will mean 3;2_  , and similarly for
multiple sums.
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C(ny, mg, my, -+ ,my), we can conclude that the
general expression for the orbital v, that yields a
periodic wavefunction with center of mass at rest is

P12 = Z

ny,mg, My

Clny,mg, my, -+, my)
2mi

X exp [—2% (nyxye — MX,,

+2myxs + o+ 2meN>]A<n1, M. ©)

Since the y,; orbital is the same function of x,;,

Xij, - - - that Y12 is of xy9, X3s,° *+, We can write
Yy = 2 C(nlﬁma’ My, ", mN)
n1,Mmy, my’
27
X exp=—— oL (nlx,, MX;; + 2mgx;
o 2mxy o 2mxg o + 2myxy)
x A(n,, M). (10)

There is one more point to make before we begin to
reduce Eq. (3). As we have discussed previously,
we must expand the potential v, in Fourier series,
that is, replace it by its periodic counterpart. We
write then

o) = 3 U esp (1)
If then we put Eqgs. (10) and (11) into Eq. (3), we get
(on putting primes on the summation variables for
convenience and remembering that ij— 12) the
following:

27 + M
E— nm o+ M
m’»maz" : my[ ( L) ( 2

my)A(n;, M')

+m;2+---+m;3)]

X C(ny, mg,my- -
27i, , .

X exp [_22 (nix1s — M'Xy,

+ 2mgxg 4+ -+ + 2m§va)]

= 2

1,n1’,ma’ ., my’

U exp (13’—’2‘—’) Cnf, mj- - - mly)

X Z exp [ (nixi; — M'Xy; + 2msyx,
i<j=1 L
+.-.+2ml'.x1—|—-"'+2m,’x2+"‘+2m}VxN)i|

x Any, M"). (12)
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Now we multiply this by

exp [-— 2575 (nlx12 - MX12 + 2m3x3 e o 2meN)]

and integrate over all variables from zero to 2L. The
left-hand side of Eq. (12) then becomes simply

[£= () (5 i)

X C(ny, mg, ** -, my)A(ny, M),

2
m3+..

On the right-hand side, we must do the typical
integral:

f feXP [— {21 — n)x;s + MX ;5 — 2myxy

—~ 2Mpyxy + nix;; — M'X,, 4+ 2mgxs

4 2mixy + o+ 2mixy + - + 2mjva}:l

(13)

Although there are N(N — 1)/2 such integrals, they
break up into four different types depending on
whether x,;; has both indices in common with x,,,
one index in common, or none. That is, there are
integrals of the following types:

X dxyp dxg- - dxy.

I. one integral for which x,; = x;,;
II. N — 2 integrals for which x,;; = x,;;
III. N — 2 integrals for which x,; = x,;
N2 — 5N
v, ——
2
nor j = 2,

+ 3 integrals for which neitheri =1,

The integral for which x;; = x,, is trivial and leads to
the following term on the right-hand side of (12):
Su(n

)C(nl’ Mg, My, ", mN)A(nia M)

Now consider a typical integral of type II. For
convenience, we take the case j = 3; this is no real
loss of generality, and it has the advantage of permit-
ting more compactness in the writing. To do the
integral, we must transform the expression in x5, X;,
variables in curly brackets, that is, in the exponent of
the integrand of (13) to x;,, X;, - * - variables. On so
doing, it becomes

n{(&z—;——x}—z - xa) —_ M’(—X;m—z_—@ + x3)

X b ’
+ 2m§(—12—:2——@) + 2mixg + - 2miyxy,
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and the integral we have to do becomes the (N-fold)-
one:

27 n, + M
.. 7t 2] — 1 —_m!
J. J.exp [ZL {xlg( n, + 2 ma)

— M’
+ XIZ(M + 0 + mg)

— M) + xy(my — mj)
+ oot xg(my ~ mfv)}:] dxyg dX g dxg -+ diiy.

(14)

Each of the N integrations yields a  function and we
end up with a set of N simultaneous equations:

+ x5(—2mg; — n{

21—n1+1’li2—M——m;,=0, (15a)
M+B = 4o =o, (15b)
2mg 4+ ny + M’ =0, (15¢)

my = my, (15d)

my = my. (15N)

These equations can all be satisfied in the following
way. Egs. (15d) through (15N) imply that

M =M —m;+ mj].
With this Eq. (15¢) becomes

~my=my+ n + M,
which enables us to eliminate a summation over m,
in Eq. (12) in terms of one over n;. With the above
results for m; and M’, Eq. (15b) turns out to be the
same as (15¢), i.e., it is satisfied identically. Finally,
Eq. (15a) becomes

I=(n +ni+ M)2,
which enables us to eliminate / from the summation
on the right-hand side of Eq. (12). Thus, the multiple
sum there becomes simply a sum over n; and finally
we see that, corresponding to the integral (14), there
is a term on the right-hand side of Eq. (12) with the
form
n+nm+M
U 1 1 )
A
X C(n{, —mg mN).
Of course, we get a similar term for other values of j
than j = 3, and, mutatis mutandis, similar results for
integrals of type III. In fact, all the integrals of type

r
~n—M,my, mg- -
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IT and III yield terms for the right-hand side of Eq.
(12) of the form

N n+n+M n,—nj —
U 1 1 )+U(1 1
23 [v(g ) ol

"))
8=3 ny’

my). (16)

Now we consider integrals of type IV. Again for ease
of writing we take a typical one, say that for i = 3,

= 4. On working it out, we find it leads to a set of
equations analogous to (15), and by adding and
subtracting a pair of them they reduce to

X C(n],.a Mg, My " Mgy,

-M—m;,—nj,mg,;

21—+ mi — my =0, (17a)
M+ m;+ my=0, (17b)
M 4+ m;+my=0, (17¢)
n — my+ my =0, (17d)
m; = my, (17¢)

my = my. (17N)

These are not all independent, since it is easy to see
that if (17e) through (17N) are satisfied and (17b) is

2 2 2
T [ ]

= z U(nl_z_-—nl)c(n]’_’ m3! m43 Tty mN)A(ni’M)

ny’

+33 +U(

s=3n

( (nl +n + M)

u;’ﬂ)c(ma — My, My, My "

LEONARD EYGES

satisfied, then (17c) will be satisfied as well. Eq. (17d)
enables us to eliminate n; from the summation, and
so we are left with Eqgs. (17a) and (17b) in the three
unknowns /, m;, and m, . We can choose to eliminate
two of these in terms of the third. If we eliminate
!/ and my in favor of m, , we get

m:; =—-M — méa
I'=m;+ [(n, + M)/2].

This leads to a term in the right-hand side of Eq. (12)
of the form

> U(m; +
my’

X C(m3 - m4, '—m,; -

n1+M)

7
M: my,ms;, Mg " * mN)'

In a similar way, we can calculate the other integrals
of type 1V and find that they contribute the following
to the right-hand side of Eq. (12):

> 3 u(m+ M)

t<s=3 m;’

X C(m,

’
~m; ~ M,

* mj\r).

—my, My, MMy ,,

. ’ .«
Moy My, My, Myy,y

Thus finally, our basic set of equations, written out in

full for the function C(n,, mg, my -+ - my), is
>, m)A(ny, M)
-n - M ,
nl_'Tl—))C(nl’ Mg, My " "My, ~M —m, — n{, L PTR mN)
My_y, —my — M, mgy o my_y,my, myyy - my).
(18)

III. ONE-DIMENSIONAL FOUR-BODY PROBLEM WITH 6-FUNCTION INTERACTIONS; FEW-BODY
APPROXIMATIONS TO THE MANY-BODY PROBLEM

In this section, we test and apply Eqs. (18) by first writing them for N = 4, and then further specializing
these equations to the case of d-function interparticle interactions. We then solve the resulting equations
numerically to find the ground-state energy of the four-body system as a function of d-function strength. With
this, with previous results for N = 3 and 2, and with those of Lieb and Liniger® for N — oo, we can compare
the ground-state energy per particle as a function of N, extending a previous comparison of this kind.

8 E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
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We begin then by writing out Eqs. (18) for N = 4. With M = m; + m,, they become

2 2 2
[E — (%) ("1 -ZM + m+ mi)]C(nl, mg, mYA(n, , M)

= 3 u(B ) clni, me, mod, M)
+3 (v(Er it o g (Bt T I or, g - 2my — e, m)

;- 3 ! 3
+3 (U("l m +2’"3 + ’”‘) + U("‘ +m +2"'3 + '"‘))C(n;, —n — my — 2my, my)

M
+ZU(m;+nl—-‘2-—-—)C(m3— m4,—m3— m4— m;,—‘m;). (19)

my’
For the special case of d-function interactions, i.e., those for which

v;; = t0(x;;),
the Fourier coefficients U(n) are constant:

Un) =

hl~

Then Eq. (19) simplifies to

2, 2 2
[E - ('25) (M‘;._Ai + m: + mi)]c(nu mg, m)A(n,, my + my)

t , 2t ) , ) /
= Z Zc(nl, my, my) + EZ(C(nls —n; — 2my — my, my) + C(ny, —n; — mg — 2my, my))
n ny’ . t
+ Zz C(mg — my, n, —n — mg — my). (20)

We see that for this case we can reduce the problem to one for a function F(mj, my) of two variables by the

ansatz
2 2 2
Clny, my, mg) = F(m,, mo/{E - (2—2’) (’ﬂizﬂ- + md 4 mi)}. @1

Putting (21) into (20) leads to the equation for F(mg, my):
F(m;,, ml)A(nl > My + mA)

=4 Fm, m) 3 Alri, ma -+ m,,)/{E - (%”)[2 + 3mg 4+ m)* + md 4 m]}

2 2 2
+ 'i 'S F(—n] — 2my — 2mq, my) / {E - (—L’I) ["7 + 30t + 2m® + (n] + 2my + my)* + m]}
n;'

27\

12
+ %ZF(—na — my — 2m,, ma)/{E - (—L—) [1‘2— + (1 + 2m + (nf + my + 2my)’ + ma]}
ny'

2t ' 2w\ >
+ 23 Fn, —n = my = mo/{E - (—L~") [(—'”—*7"1—’ T+ hmy + M+ n® 4 (0 my + mm]}. 22)
Now it is convenient to change some of the names of the summation variables. In the first sum on the right-hand
side, we replace n} by n; in the other sums on that side, we replace 1, + 2m; + m, by n. After some algebra,
and with the definition
2
E= 2(’—’) E
L
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we then get the equation
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20°F(my, mg) = tLF(my, my) 3 A(n, my + mI{E" — [n® + (my + my)® + 2m3 + 2m3]}

+ tL 3 [2F(n, mg) + 2F(n, mg) + F(n, —n — my — m)J{E'— 4[mj + m; 4+ n* + mym, 4 mgn + mynl}.

This is as far as we can go algebraically, and at this
point we have solved Eq. (23) numerically on a digital
computer. This equation really represents an infinite
set of homogeneous ones which has a solution only
if its determinant vanishes; the ground-state energy is
found by searching for the smallest root of E for a
given t. To solve Egs. (23) in practice we have, of
course, been forced to truncate them; in so doing, we
have kept in mind the symmetry relationships of the
coefficients F(m, n) which follow directly from Egs.
(23). These are
F(m,n) = F(n, m),

F(—n, —m) = F(n, m).

To test the effect of truncation, we have solved the
equations in different orders of truncation and have
kept as few as four and as many as forty-nine of the
coefficients. In Table I, we give some of the values
thus found for the ground-state energy as a function
of t. The numerical results we have obtained are
accurate to more figures than we have thought
necessary to put down here. As we shall shortly see,
in the limit of infinite é-function strength the quantity
E,L*[27* approaches the value 10, so that the larger
values listed for this quantity can be considered to be
for rather strong interactions. In Table 1I, we present
an example of the numerical results for the coefficients
F(mgy, my).

With these results, we can now extend a comparison
we have made previously for the three-body problem.

(23

TasBLE I. Ground-state
energy E, vs é-function
strength ¢ for the four-
body problem in one

dimension.
E,L*?
=y tL
1.00 3.768
3.30 17.20
5.00 34.81
7.20 87.29
8.40 174.5

We take systems of different number of particles N
but of the same linear density p and compare the
energy per particle as a function of delta-function
strength. We do this for N=2, 3, 4, and N — 0.
The case N — o is got from the work of Lieb and
Liniger,? that for ¥ = 4 from the present paper, and
that for N = 3 and N = 2 from a previous one. For
convenience, we plot E,/Np® vs tp[2, which essentially
compares energy per particle vs é-function strength,
since p is constant for the different systems. The
results are given in Fig. 1.

In addition to these numerical results, it is worth
looking analytically at two extremes of dJ-function
strength. First, for small ¢, we can get a perturbation
result as follows. The ground-state wavefunction for
periodic boundary conditions over length Ly is, for a
single particle, just the constant function 1/(LN)5,
and for N particles is the product of N such functions.

TasLE IL The function F(m;, m,) found by solving Eq. (23), for the case E L*2#* = 5.00.
The number in parentheses in some boxes is the power of ten by which the quantity that

stands to the left of it

is to be multiplied.

my

0 1 2 3 4 5
my

5 9.21 (—3)

4 0.01456 5.63 (—3)
3 0.02650 9.34 (=3) 4.32(-5)

2 0.06566 0.01902 527(—6) 2.88(—4)

1 0.09249  0.08838 0.01024 5.63(=3) 3.54(=3)

0 1.000 02655  0.06456 0.02230 0.01193 7.45 (—3)
-1 0.1169  0.01549 7044-3) 4.14(=3) 2.69(=3)
-2 8.85 (—4) 446 (—4) 127(—4) 2.02(—4)
-3 8.60 (—5) 897(—5) 1.25(—4)
-4 4.89 (—5) 8.94(—5)
-5 1.19 (—4)
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20} N>>1

t 5
2p
F1G. 1. Ground-state energy per particle E,/N for systems of

repulsive delta functions of strength ¢, with N = 2,3, 4and N> 1
particles. The linear density p is the same for all systems.

The first-order perturbation result for the interacting
system is then

_NN~—=-D[ , _ NN — 1)t
E,= T sz t0(x) dx = ————2LN .

For an N-body system with density p = N/Ly the
energy per particle E_ [N is therefore

B _ (1= 1y

N N/2°
Thus, the energy per particle of the system with N = 2
is one-half that of the system of the same density
for which N — co, and for N = 3, § of it, etc. Now,
we consider the opposite limit, for infinite d-function

strength. Here the problem has been solved by
Girardeau,? who gives the following formula®:

2122772
E,=1(N— L)z_hgﬁ
6 NJ mLy

(24)

For a given density p we find for the energy per par-
ticle, in our units,

2 2
5:”—”_(1——1—). (25)
N 3m N?
For N = 2, this energy is § of that for the infinite
system, for N = 3 it is §, etc. In summary then, if we
approximate the energy per particle of a many-body
system by that for a few-body one, the error is at
worst a factor of two (two-body system and weak
potentials) and the error rapidly diminishes as the
potential strength and/or the number of bodies are
increased.

? M. Girardeau, J. Math. Phys. 1, 516 (1960).

1¢ This result holds in fact only for odd n, but we shall use it in the
spirit of an interpolation formula for even n as well.
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IV. HARD SPHERES IN THREE DIMENSIONS
AND A TWO-BODY APPROXIMATION
TO THE N-BODY PROBLEM

The one-dimensional problems discussed above are
not, of course, of direct physical interest. For treating
a physical system, as for example the ground state of
liquid helium, we must discuss three-dimensional
problems. In the last analysis, we want to be able to
treat the problem of N particles “in a box” of volume
V = L3, with a potential which acts between each
pair of particles, and with the understanding that
“in a box” means that the wavefunction is periodic
over length Ly in each of its 3N coordinates, We
can’t, of course, solve this problem directly, but,
motivated by the close approximation set out above
between the N-body and few-body problems in one
dimension, we can take a similar tack in three dimen-
sions. We shalil then begin by considering two particles
which, in the above sense, are in a box of length L,
and for which the density is the same as for the N-body
problem, i.e., for which

2_N_
o f

If the coordinates of the particles are x,, y,, z; and
Xy, Va, Zz, and the wavefunction is ¢(x;, y;, 21, Xz,
Vs, Z) or, as we shall write more succinctly, y(r;, T,),
this condition of periodicity means, for example,

Y(xy + Ly, y1s 21, X35 Y25 Z2)

= P(X1, Y1, Z15 X2, V2, Z2) (26)
with a similar condition on the other five coordinates,
The Schrodinger equation that must be solved,
subject to (26), is

2
l:'_ %1 (Vi + V) + U(rlz)] y(ry, 1) = Ey(ry, 13),
@n
where v(r,,) is the central potential, possibly with hard
core, that acts between the particles.

Now we recall that in one dimension it was useful—
in fact almost essential—to consider the two-body
potential not as it was given, but rather as extended in
a periodic way. This extension of the potential to the
periodic counterpart v, did not change its definition
in the basic domain but simply added replicas to it
outside that domain. The advantage of the periodic
potential was that with it one could use Fourier series
in solving the Schrodinger equation; there is the same
advantage in three dimensions.

For the wavefunctions, we want each particle
coordinate to satisfy periodic boundary conditions
over a length L, in each of the three mutually per-
pendicular coordinate directions. Thus, we want to
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introduce a periodic potential v,(r) which has the

same periodicity properties, which are essentially the

properties of a simple cubic lattice. We do this in

the following way: We consider a simple cubic lattice

with lattice basis vectors by, by, by that are just unit

vectors along the coordinate axes

'—l— > b2 = L N ba = L .

L, L, L,

A general reciprocal lattice vector Kj is then defined by
K; = 27(jiby + jobs + jsby),

where jy, ja, js are integers. If the potential v(r) has
Fourier transform w(k),

b, =

v(r) =fw(k)e"‘" dk,

then the periodic potential v,(r) that we introduce in
its place is
v,(r) = g w(K,) exp (K, - r).

With this, we consider the construction of the
wavefunction of the system. Since this is periodic in
r, and r,, we can consider it as built up by summing
over basis functions of the form

exp [i(K;-r, + K- 1]

with appropriate coefficients. Then, if in this basis
function we introduce the relative and center-of-mass
coordinatesr = r; — r; and R = r, + r, and proceed
much as in the one-dimensional case, it is straight-
forward to show that a candidate for the wavefunction
y(r, R), in that it is periodic in r; and r,, is

v R =3 3 C(K,,, K,) exp i(K”‘ T M)
Kn K, 2 2

X A(my , n)A(mg, n)A(mg, ng), (28)

where C(K,,,K,) is some arbitrary function. If we
put (28) into the Schrédinger equation with A(m, n) =
A(’nl ’ nl)A(mz ’ n2)A(m3 ’ ns), we get

K, — K, , ,
- szw(—z——) CK.,, K )A(m',n). (29)

As in one dimension, we shall assume that the ground-
state solution corresponds to zero momentum of the
center of mass. In this case, C(K,,, K,) takes the form
of an arbitrary function of K,, times a delta function
in K,;:

C(Kn, K,) = D(K)3(K,). (30)

If now we put (30) into (29) and transform back to
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position space, we conclude that to solve (29) with
center of mass at rest is equivalent to solving the
Schrédinger equation
2
(- v+ v,,(r)) vo®) = Eyo(d, (1)

where ,(r) is the Fourier transform of D(K,,).

Although we have sketched the formal derivation of
(31), it is clear on other grounds that (31) is the
equation we want. For if we start with Eq. (27) for
y(ry, ry) and introduce the coordinates r and R and
the periodic potential v,(x), the wavefunction which
nominally becomes a function of both r and R is in
fact, for the center-of-mass at rest, a function of r
only. We have then called this function y,(r) in (31).
Thus, Eq. (31) is just Eq. (27) transformed and
relabeled. The point that needs discussion now is to
show how, using Eq. (31), we can satisfy the periodicity
conditions on r; and r,. To do this we begin by
observing that Eq. (31) is like the equation of a single
particle of reduced mass m/2 moving in a periodic
potential. We know from the theory of this equation in
solid-state physics that it has solutions of Bloch form,
i.e., in which a phase factor ¢?* multiplies a func-
tion which is periodic in r with the periodicity of the
lattice. The ground-state solution usually corresponds
to A = 0, and we shall assume this here. This being
the case, the ground-state solution of Eq. (31) is a
periodic function of r. That is, if p, is a lattice vector,
then

Po(r + p,) = Yo(D).

But, since r = r; — r;, this means
Yo((ry + @5) — r2) = po(r, — 1),

which shows that y, is separately periodic in r, (and,
of course, equally in r,) and therefore satisfies the
periodicity conditions we have imposed.

Let us then consider the solution of Eq. (31); it will
suffice to use the Wigner—Seitz method. According
to this method, we introduce a sphere of radius /
which is centered at a given potential and whose
volume is equal to that of the unit cell. In this case

4ml¥3 = L2 = 2u, u = L%/N. (32)

Then we approximately satisfy the periodicity condi-
tion by requiring that the normal derivative of the
wavefunction vanish on the surface of the sphere
(r = I). We shall take the interparticle potential as
corresponding to a hard core in the relative variable
r of radius a, which is equivalent to the boundary
condition that the wavefunction vanish at r = a.
In terms of the two particles with which we began, this
implies that they are hard spheres of diameter a.
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To come back then to (31), we observe that a
general form of the wavefunction in the region
a<r<lis

Aj(kr) + Brg(kr), (33)

where j, and n, are spherical Bessel and Neumann
functions and k2 = mE[A%. On applying the two
conditions stated above to (33), we find that the
(unnormalized) wavefunction is

jolkr) + tan (kayng(kr), (34)
and that k is determined from the equation
kil = tan k(! — a). (35)

We are interested in the case a « /, for which we get,
on expanding (35), the result k% &~ 3a/l®. With the
expression in (32) for /3, this yields k> = 2ma/fv or

E, = 2mah*[my.

We must remember, however, that this result refers to
the energy of the two-body system. The ground-state
energy per particle of this system is then:

Energy per particle = #%mafmv  (two-body system).

This is to be compared with the analogous result for
the N-body (N > 1) system:

Energy per particle = 2A?majmv (N-body system).

In a way, this is a very gratifying result—for this is
just the answer we got for one-dimensional  functions
in the perturbation theory limit, i.e., the energy per
particle for the two-body system is just salf that for the
N-body (N >> 1) system. This agreement between
one dimension and three then encourages us in the
hope that there may be similar and perhaps even
better agreement away from the perturbation limit,
and that in three dimensions, as in one, the two-body
problem is a fair approximation to the N-body
problem.

To look further into this, we can make another
comparison between the two-body and N-body
results: we can compare the respective correlation
functions. By “correlation function,” we mean the
expression for the relative probability D(r) that two
particles are within a distance r of each other. For the
two-body case this function is just the square of the
wavefunction; i.e., from (34), on adding a subscript
to D to label the two-body function, it is

Dy(r) = C[(jolkr) + tan (ka)ny(kr)]2.

Here C is a normalization constant at our disposal.
The corresponding function for the N-body case as
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TaBLe III. Comparison of the

correlation functions D,(r) and

Dy(r) for 8ma®fv = 1073, Dy(r) is

normalized arbitrarily to equal
Dy(r) at rfa = 3.0,

rla Dy(r) Dy(n)
1.00 0.00 0.025
1.50 0.108 0.124
2.00 0.252 0.259
3.0 0.449 0.449
5.0 0.646 0.641
10.0 0.813 0.809
20.0 0.884 0.902
30.0 0.891 0.935
50.0 0.962
100.0 0.980
200.0 0.990

given by Lee, Huang, and Yang® and corrected! by
Bocchieri, Orzalesi, and Smith!? is

Dy(r) = {1 + G(nP
"+ [+ F(OP — 1 = 2/[F(r) + G(r)],

where the functions G(r), F(r), and f are defined in the
two papers just cited.

The correlation functions depend on a parameter
which is essentially the ratio of volume of the hard
core to the volume available per particle. We can
characterize this by a quantity

(36)

A = 8madd[v.

We have then calculated and compared the functions
Dy(r) and Dy(r) for various values of A. In calculating
Dy(r), we have evaluated by digital computer the
integrals that enter the functions F(r) and G(r). We
shall present results for the typical case 4 = 1072,
The agreement we have found is quite striking, In
fact, it is so close that, were we to plot the two func-
tions, they would be hard to distinguish over much
of their range, for any reasonable graph size. We have,
therefore, made a tabular comparison; this is set out
in Table HI, for which we add some words of explana-
tion. The normalization of the N-body wavefunction
is arbitrarily taken to be that Dy(r) — 1 as r — oo.
Now the two-body function is defined only within the
unit cell, i.e., for r < /, so we cannot normalize it the
same way; instead, we have chosen its normalization
so that it coincides with Dy(r) at the arbitrary point
r = 3a. Again, for the reason that D,(r) is only
defined for r < /, the function Dy(r) is plotted over a

11 The correction cited is that of changing the factor 4f in Ref. §
to the factor 2f that appears in Eq. (36).

'2P. Bocchieri, C. A. Orzalesi, and V. H. Smith, Jr., Nuovo
Cimento 52, 18 (1967).
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more extended range than is D,(r).!? Finally, we note
that the function Dy(r) is zero at r = @, which it must
be to satisfy the boundary conditions exactly. The
function Dy(r), on the other hand, satisfies the
boundary conditions only approximately at r = a—
witness the fact that it is small but not strictly zero
there.

As we have remarked, the agreement between the
two functions is quite good, perhaps to such a degree
that it is partly fortuitous. In this connection it should
be borne in mind that Table III does not really
compare D, with Dy, but compares an approximation

13 For the value of A we have chosen //fa to be about 30, which is
why the last entry in the table for Dy(r) is for rja = 30.
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to D, (Wigner-Seitz method) with an approximation
to Dy (use of pseudopotentials). Also, the close
agreement between the functions throughout the range
over which they are mutually defined is not in neces-
sary contradiction with the fact that the energy per
particle differs by a factor of two for the two different
cases; it may be the longer-range correlation in the
N-body case that accounts for this.
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We examine the properties of the partial-wave amplitude a(/, k) and the full amplitude A(k, cos 6)
for scattering by a long-range potential made up of a Coulomb part 2«/r and a short-range part V'(r).
The properties of a(/, k) as an analytic function of / and & are shown to be quite similar to those of the
usual short-range amplitude, except in the neighborhood of the threshold £ = 0, which pecint we examine
in detail. The full amplitude is treated as a function of cos 6 for fixed physical momentum k; using the
Sommerfeld-Watson transformation, we show that A(k, cos 0) is analytic in the cut plane of cos 0.

1. INTRODUCTION

Because of the photon’s zero mass and the infinite
range of the associated forces, it is still not clear
whether electromagnetic forces can be incorporated
into analytic S-matrix theory. The long range of the
forces invalidates all usual definitions of the S matrix;
and even if an S matrix can be defined, it will probably
not satisfy some of the usual requirements in S-matrix
theory and, in particular, the infrared problems
associated with soft photons will presumably remain.!

* Research supported in part by United States Air Force, Office
of Scientific Research, Office of Aerospace Research, under Contract
No. A.F.-A.F.0.8.R.-30-67.

+ Present address: Physics Department, University of New
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1 These questions have been discussed by several authors and
widely differing conclusions have been expressed. G. F. Chew
[Sci. Progr. 51, 529 (1963)] argues that electromagnetic interactions
can certainly not find a place in S-matrix theory. Papers expressing
the opposite view include: A. O. Barut, Acta Phys. Austriaca
Suppl. 2, 162 (1966); A. O. Barut and R. A. Blade, Nuovo Cimento
39, 331 (1965); T. T. Chow and M. Dresden, Rev. Mod. Phys. 39,
143 (1967). The spirit of these papers is to assume that electro-
magnetic interaction can be included in $-matrix theory and that the
usual properties—existence of S, cluster decomposition, analyticity—
continue to hold.

It is in the hope of clarifying a few of these questions
that we examine here some properties of the non-
relativistic scattering by a long-range potential

U(r) = 2ajr + V(r)

consisting of a Coulomb interaction 2a/r and a short-
range potential V(r). This problem has already
received considerable attention. Dollard?® has shown
that, although the usual definitions fail when Coulomb
forces are present, it is possible to define a satisfactory
S matrix which has the normal interpretation and
leads to the usual amplitude used in practical calcula-
tions. Cornille and Martin® and Mentovsky? have
examined the partial-wave amplitude as an analytic
function of momentum k for fixed physical angular
momentum /. Klarsfeld® has considered the same
amplitude as a function of / for fixed physical k.

In this paper, we consider both the partial-wave and

2 J. D. Dollard, J. Math. Phys. 5, 729 (1964).

3 H. Cornille and A. Martin, Nuovo Cimento 26, 298 (1962).

4 Yu. L. Mentovsky, Nucl. Phys. 65, 673 (1965).
5 §. Klarsfeld, Nuovo Cimento 48A, 1059 (1967).
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particle differs by a factor of two for the two different
cases; it may be the longer-range correlation in the
N-body case that accounts for this.
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Some Analytic Properties of Scattering Amplitudes for
Long-Range Forces*
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We examine the properties of the partial-wave amplitude a(/, k) and the full amplitude A(k, cos 6)
for scattering by a long-range potential made up of a Coulomb part 2«/r and a short-range part V'(r).
The properties of a(/, k) as an analytic function of / and & are shown to be quite similar to those of the
usual short-range amplitude, except in the neighborhood of the threshold £ = 0, which pecint we examine
in detail. The full amplitude is treated as a function of cos 6 for fixed physical momentum k; using the
Sommerfeld-Watson transformation, we show that A(k, cos 0) is analytic in the cut plane of cos 0.

1. INTRODUCTION

Because of the photon’s zero mass and the infinite
range of the associated forces, it is still not clear
whether electromagnetic forces can be incorporated
into analytic S-matrix theory. The long range of the
forces invalidates all usual definitions of the S matrix;
and even if an S matrix can be defined, it will probably
not satisfy some of the usual requirements in S-matrix
theory and, in particular, the infrared problems
associated with soft photons will presumably remain.!

* Research supported in part by United States Air Force, Office
of Scientific Research, Office of Aerospace Research, under Contract
No. A.F.-A.F.0.8.R.-30-67.

+ Present address: Physics Department, University of New
Brunswick, Fredericton, New Brunswick, Canada.

1 These questions have been discussed by several authors and
widely differing conclusions have been expressed. G. F. Chew
[Sci. Progr. 51, 529 (1963)] argues that electromagnetic interactions
can certainly not find a place in S-matrix theory. Papers expressing
the opposite view include: A. O. Barut, Acta Phys. Austriaca
Suppl. 2, 162 (1966); A. O. Barut and R. A. Blade, Nuovo Cimento
39, 331 (1965); T. T. Chow and M. Dresden, Rev. Mod. Phys. 39,
143 (1967). The spirit of these papers is to assume that electro-
magnetic interaction can be included in $-matrix theory and that the
usual properties—existence of S, cluster decomposition, analyticity—
continue to hold.

It is in the hope of clarifying a few of these questions
that we examine here some properties of the non-
relativistic scattering by a long-range potential

U(r) = 2ajr + V(r)

consisting of a Coulomb interaction 2a/r and a short-
range potential V(r). This problem has already
received considerable attention. Dollard?® has shown
that, although the usual definitions fail when Coulomb
forces are present, it is possible to define a satisfactory
S matrix which has the normal interpretation and
leads to the usual amplitude used in practical calcula-
tions. Cornille and Martin® and Mentovsky? have
examined the partial-wave amplitude as an analytic
function of momentum k for fixed physical angular
momentum /. Klarsfeld® has considered the same
amplitude as a function of / for fixed physical k.

In this paper, we consider both the partial-wave and

2 J. D. Dollard, J. Math. Phys. 5, 729 (1964).

3 H. Cornille and A. Martin, Nuovo Cimento 26, 298 (1962).

4 Yu. L. Mentovsky, Nucl. Phys. 65, 673 (1965).
5 §. Klarsfeld, Nuovo Cimento 48A, 1059 (1967).
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the full amplitude. We first establish the properties
of the partial-wave amplitude a(/, k) as an analytic
function of both / and k and then use these results to
find the properties of the full amplitude A(k, cos 6)
as an analytic function of cos 6 for fixed physical k.

In Sec. 2, we examine a(/, k) using a method
developed by Froissart® for the non-Coulomb case.
This method allows us to treat a very wide class of
potentials, our only requirement being that the
short-range part ¥(r) satisfy

(1.1)

for some # and e both greater than zero. We illustrate
our results with the example of a Coulomb plus a pure
Yukawa potential, for which the analytic properties
are very similar to those of the non-Coulomb case;
specifically, a(/, k) is meremorphic in (/, k) except for
branch points at

[PV ()] < const

k = Zinpf2

wheren = 0, 1, 2, - - - and p is the inverse range of the
Yukawa potential. The most important difference
between the Coulomb and non-Coulomb cases is the
singularity at k = 0, which in the Coulomb case is an
accumulation point of bound-state poles and is also
the starting point of the left-hand cut. We examine this
singularity in detail and show that, in spite of these
difficulties, it is still possible to express the amplitude
in the familiar N/D form.

In Sec. 3, we consider the full amplitude A(k, cos 8)
for the case where the short-range part of the potential
is a Yukawa. Following the method of Regge” we use
the Sommerfeld-Watson transformation to establish
the analytic properties of A(k, cos0) from those
of the partial-wave amplitude a(/, k). We find that this
transformation cannot be applied to the complete
amplitude 4 but that, at least for physical &, it can be
applied to the difference between 4 and the pure
Coulomb amplitude 4,:

A'(k, cos 0) = A(k, cos 0) — A.(k, cos 0).

This establishes that, for physical k, A'(k, cos 0) is
analytic in the whole plane of cos 6 except on the
branch cut starting at

cos 0 = 1 + u?/2k>

The crucial part of the proof is the verification that,
as |{| — co in any direction in the half-plane Re / >
—1%, the partial-wave amplitude a(/, k) is sufficiently
bounded to allow use of the Sommerfeld-Watson
transformation. This we establish by examination of a

6 M. Froissart, J. Math. Phys. 3, 922 (1962).
7 T. Regge, Nuovo Cimento 14, 951 (1959).
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Lippmann-Schwinger equation for a(/, k). Our method
breaks down when & becomes complex, and for this
reason we can establish the properties of A(k, cos 8)
for real k only.

We conclude, therefore, that the analytic properties
of the amplitude for scattering by long-range forces
are a natural generalization of the corresponding
properties of short-range amplitudes. This suggests
that, at least as far as analyticity is concerned, there
should be no obstacle to incorporating long-range
forces into S-matrix theory.

Most of our proofs are rather long and complicated
and we therefore omit some details, for which we refer
the reader to the thesis of the first named author,®

2. THE PARTIAL-WAVE AMPLITUDE
A. Outline and Results

The partial-wave amplitude is defined in terms of
solutions of the radial Schrodinger equation

. [kz _____ V(r)}p =0. 1)

(We use units for which A = 2m = 1 and introduce
the angular-momentum variable 4 = / 4+ }.) As usual,
we define certain standard solutions of this equation:
the “regular’ solution

(4, k, r);:or”l, (2.2)

and the “incoming’ and “outgoing’ solutions

15(4, k, r)HNwexp F ilkr — (o/k) In 2kr)]. (2.3)
The Jost functions are defined as the coefficients in
the expansion of ¢ in terms of® y=:

$(r) = [f*(, )y~ (r) — [~ (4, )t (D]2ik  (2.4)

and the partial-wave S matrix is defined as the ratio
of these coeflicients,

S(A, k) = fH(4, k)e™Y f(4, k).
Finally, the partial-wave amplitude is defined as
a(, k) = [S(4, k) — 1]/2ik. (2.6)

Our starting point is the Schrédinger equation for a
pure Coulomb potential [i.e., Eq. (2.1) with V' = 0]
with corresponding solutions

(4, k, r) = iky™'M, ,(2ikr)

(2.5)

2.7
and

Lok Py = W, (£2ikn),  (28)

8 W. R. Ross, Ph.D. thesis, University of Colorado, 1968.
® Whenever possible without danger of confusion we drop the
arguments A and/or k from the functions ¢(4, &, r) etc.
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where M, ,(z) and W, ,(z) are Whittaker functions
and
2.9)

In terms of these pure Coulomb solutions, we obtain
iterative expansions for the actual solutions ¢ and y*
in powers of the short-range potential V(r). These
lead to expressions for the Jost functions f* as power
series in ¥(r) and it is from these power series that we
deduce the analytic properties of f* and, hence, those
of Sora.

Our method is a direct generalization of a technique
developed by Froissart® for pure short-range poten-
tials. The series expansions for f* are written in the
form

fE=fid f:’ dr 2OV L)

v = iafk.

+ f " ar f Tdr ZHEW I, PV P,
0 0
(2.10)

where I(r,r’) is, of course, a series in powers of V.
Assuming that r2—"e<"V(r) is bounded, we show that
this expression is analytic in a certain domain of
(4, k) but that the integrals diverge when (4, k) moves
outside of this region. Those parts of the integrals
which diverge can be explicitly separated and ex-
pressed in terms of the Mellin and Laplace transforms
of the potential ¥(r) and the kernel I(r,r’). We
examine the analytic properties of the transforms of
I(r,r’") and find their singularities in terms of the
singularities of the corresponding transforms of the
potential ¥(r). In this way we establish the analytic
properties of f*(4, k) for all (4, k) and express all
singularities in terms of the singularities of the Mellin
and Laplace transforms of ¥(r).

Our conclysion is that the Jost function f*+(2, k) is
analytic for all A and k except when 4 or k is contained

in one of the following sets of points:
n m+1
rel-tymtlis_o }
[-3+" 5 6-2
or

m¥,+ T, mTy+ 29, @_2} @.11)
260 0 26 > 2if '

where m and n =0,1,2,---, and 8§ and T, denote
the sets of singularities of the transforms

u(o) =J:dr rV(r)

10 See E. T. Whittaker and G. N. Watson, Modern Analysis
(Cambridge University Press, Cambridge, England, 1962), 4th ed.,
Chap. 16.

U There are in addition fixed poles when 4 is a negative half-
integer but these always cancel out of § = f+eim!/f~, See Eq. (2.26)
below.

ke{O,

(2.12)
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and

[+e]
ia.(q) = f dr e r™V(r) (2.13)
1
with v = ia/q. The set of points mF,, for example, is
the set of all

g=gq+ " +4qn, ¢;€7%,.

The singularities of f~(4, k) are obtained by the
substitution £ — —k and the domain of meremorphy
of S follows immediately from the definition § =
f+ei17l/ -,

For any given potential, this result immediately
locates the singularities of f= and S. For the example
of a pure Yukawa V(r) = ye~*[r, the singularities of
ST are poles at A = —~(n 4+ 1)/2 and branch points at
k = inu/2. This implies meremorphy of § except at
k = Zinu/(2, as already mentioned in the introduction.

The nature of the singularity at k£ = 0 is examined
in Sec. 2C and in Sec. 2D we show that the partial-
wave amplitude can be written in the usual “N
over D" form.

After this brief outline of our method and results we
proceed to the main proof. As far as possible we refer
the reader to the paper of Froisart®; for details of
certain estimates we appeal to Ref. 8.

B. The Main Proof

We first note that one can easily show, using the
definitions (2.2) to (2.4) that

fG, k) = ™5, ke™™) (2.14)
and that it is therefore sufficient to establish analyticity
of f+, for which Eq. (2.4) implies the following
expression:

fT=Wix', ¢]

= lim Wiz, 4], (2.15)

where W{u, v] denotes the Wronskian of the functions
u(r) and o(r).

To make use of this expression for f+ we replace the
differential equation (2.1) and the boundary conditions
(2.2) for ¢(r) by the integral equation

800 = 8.0 + [ (@ G e, @16)
0
where G is the appropriate Green’s function
G(r,r’) = [u(rYo(r) — u(r)o(r) Wi, o],
where 1 and v are any two independent pure Coulomb

solutions (e.g., x,°). Substituting this integral equation
into Eq. (2.15) we get

fr=fr4 f “ar g OVde, @17
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where f} denotes the pure-Coulomb Jost function

fE=Wix, ¢l
= (iky ™ T2l + 2)[T(I — v + 1). (2.18)
Finally we iterate Eq. (2.16) for ¢ and substituting

the resulting series into Eq. (2.17) obtain the expres-
sion (2.10) for f* with

I(r,7') = S L, 1), (2.19)
n=2
L(r, 1)
n—1 n—1
= f ]_11 G(rm+1 3 rm) ].—_.[2 V(r’m) drm’
r=r) <:r0 < pp=17 (220)
and

L(r, )y = G, r).

By a method similar to that used by Froissart we
can show that the kernel I(r, r’) is an entire function of
4 and k and satisfies the following bound??:

[(r, )| < N [FE)FEMIE —71),  (221)
where
pRedl-t 1 Red >3,
F() = {1, r<1, |Red <3 (222)
elmlr  p 51,

If we now assume that the short-range part of the
potential satisfies condition (1.1), this bound for
I(r, r") implies that the two integrals in Eq. (2.10)
for f*(4, k) converge and define an analytic function
for

Red>4% — 1,

Imk < €2 (2.23)

(except of course at k = 0 where the Coulomb
functions have a branch point).

If A moves outside of this region the integrals (2.10)
diverge because of bad power behavior near r = 0;
if k moves out the integrals diverge because of bad
exponential behavior as r — 0. In order to continue
outside of the region (2.23), we must,therefore, isolate
those parts of the integrals which diverge and to this
end we use the power series for ¢, and x} to write

N
(1) =2 a,r"t" + remainder  (2.24)

n=0
with a similar expression for y!, the remainders

being of order r¥+4+¥ and r¥N-14+} respectively, for
small r. Similarly for large r, we use the integral

12 This corresponds to Eq. (8) of Froissart. For the proof see
Ref. 8.
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expansion3
A

1) = (2kr)“[e""" + f e ”F'(plik) dp/ik]
ik

+ remainder, (2.25)

where F'(z) denotes the derivative of the hyper-
geometric function F[—/ — »,/ — v + 1,1,(1 — 2)/z]
and the remainder is of order r*e—4"; with a similar
expression for ¢,.

Much as in the paper of Froissart, we can now
continue the two integrals in Eq. (2.10) for f* to all
(4, k). Before doing so we note that it is convenient
to consider not f+, but

[H=1TQr+ 1), (2.26)

since this avoids the fixed pole of ¢, when (24 + 1)
is a negative integer. (And, of course, we can calculate
S in terms of f'* just as well as f£.)

To continue the single integral in Eq. (2.10) we
split it into two parts, [} and ¥, and substitute the
separation (2.24) for ¢, and xF into the first and that
of (2.25) into the second. By choosing N and A4
sufficiently large we can guarantee that, for any
given (4, k), the integrals involving the remainders are
convergent and analytic. Thus the integral [} has
singularities, if any, coming from a finite sum of
terms of the form

1
f rPIY () dr = u(n + 24 + 2)
0

which is precisely the Mellin transform defined in Eq.
(2.12). By definition, these are analytic except when

Ae{—n2 + 38 — 2. 2.27)
Similarly, the integral 7 is analytic except when
k € {0, 7,/2i). (2.28)

To isolate the divergent parts of the double integral
in Eq. (2.10), we divide the range of integration into
three parts: 0 <r<r' <1, 0<r<1<r’' < oo,
and 1 < r <r’ < oo. In the first case, for example,
substitution of Eq. (2.24) for ¢, and x} leads to
potentially divergent integrals of the form

1 r
f dr’ f dr re ety ey I, )
[} 0
= e [[an+i-otinti-a+d

—10

X u(o)u(c’) do do’, (2.29)

13 For the proof of this integral relation, which corresponds to
Eq. (17) of Froissart, see Ref. 8.

14 The singularity at k = 0 comes from xf which is singular at
k=0.
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where A(s,s’) is the double Mellin transform of
I(r,r’) and we have used the inverse of the Mellin
transform (2.12) in writing the second line.

The integral (2.29) can be analytically continued
except when the singularities of u(c) or u(o”) pinch
against those of A. These latter singularities we
discuss in a moment. Clearly, once they are located
we can find those of the integral (2.29) and hence all
singularities of f'* arising from small r and r’ in the
double integral of Eq. (2.10).

The remaining two parts of the double integral of
Eq. (2.10)—r small, r’ large and r and r’ both large—
can be treated similarly and their singularities located
in terms of those of the Mellin-Laplace and double
Laplace transforms of I(r, r’).1

It remains to establish the analytic properties of the
three transforms of I(r, ') which we can do much as
in the paper of Froissart.’s Thus the bound (2.21)
guarantees analyticity of A(s, s") when

Res > max (|[Re 4| —%,0), Res’ >1— Res.

One can continue beyond this region using the
differential equation for I(r, r') whose Mellin trans-
form is!®

[(s = (s = 2) = Il + D]}A(s — 2, 5)
— 2ad(s ~ 1,5) + K*A(s, s")

— (2771')'1Jj'00 A(s — o, 5Nu(o)de = 1/(s + s' — 1)

and a similar equation in s’. These equations allow a
strip by strip continuation of A(s, s') which turns out
to be analytic except when??

se{—1—5 —n+m@S—2)}
or
se{+d—3%—n+ m@S—2)}

Returning to Eq. (2.29) we find that the double
integral for '+ has singularities when

Ae{—tn+ t(m+ 1)S — 2)} (2.30)

A similar analysis for the other two parts of the
double integral gives singularities when
ke {mﬂ‘o + 3, mfT, + 25‘1},
2i 2i

(2.31)

but no new singularities in A.

15 See Ref. 6 or Ref. 8,

18 This corresponds to Eq. (10a) of Froissart. Note that we have
an extra term with coefficient o, coming from the Coulomb potential.

17 Compare Eq. (12) of Froissart. Note -that in our case the
Coulomb potential causes some additional singularities.
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Combining Eqs. (2.27), (2.28), (2.30), and (2.31)
we arrive at the result quoted in Eq. (2.11).18

C. The Singularity at Threshold

The singularity at threshold for our long-range
potential differs from that of the short-range case for
two obvious reasons. First, since the Coulomb
potential has an infinite number of bound states close
to threshold, the point k = 0 is an accumulation
point of singularities. Second, the left-hand cut, which
for a Yukawa potential starts at E = —u?/4 (or
k = ipf2), in our case starts at E = 0. This makes the
branch point at £ = 0 considerably more complicated.
In particular, as a function of k, the short-range
partial-wave amplitude is analytic at k = 0 when / is
physical, while for our case this is not so.

In order to examine the branching properties of the
Jost function f*+(4,k) at k =0 we note first that
é(A, k, r) is clearly analytic at ¥ = 0 and hence that
the circuit relations for f+ = W][y*, ¢] are the same as
those of x™. Since x* satisfies the integral equation

70 = £70) — f " dr G, WV ()

[analogous to Eq. (2.16)], where G is analytic at
k = 0, it follows that the circuit relations for y* are in
turn the same as those of the pure Coulomb solution
xt. These latter can be derived from standard proper-
ties of Whittaker functions'® and imply that

(4, ke™™) = (24, k)e /¥
— (A, ke ™)2mie ™ H (=1 — H)I(1 — v + 1).
(2.32)

In the non-Coulomb limit, for which v = jaf/k = 0,
the second term on the right vanishes when / is
physical and f* has no branch point. Obviously,
when a 3 0 this is not so.

The circuit relations for S(4, k) or a(4, k) follow
simply from Eq. (2.32). It is easily seen that the
branch point at k = 0 is still present for physical
angular momenta.

D. Representation as N over D
In the case of short-range potentials, one can
express the amplitude a/k?* as the quotient of two
functions N and D, where N has only the left-hand
and D only the right-hand cut. In our case the
corresponding expression is

a(d, k)™ N4, k)
k* D, k)

18 All singularities of f'* are certainly included in Eq. (2.11).
Some points of this set may not in fact be singular if some cancella-
tion occurs.

(2.33)
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The function N has a cut in E from 0 to — oo and is
real for E > 0, A real, while D has a cut from E =0
to + oo and is real for £ < 0, A real.

It is clear from the definitions (2.5) and (2.6) that
Eq. (2.33) can be satisfied by the choice ‘

N(A, k) = [f1(4, k)™ — f=(4, K23k (2.34)
and

D(4, k) = (—ik)le™™*f~(2, k). (2.35)

That N and D defined in this way have the required

properties follows from the following four relations,

all of which can be checked by inspection of the
asymptotic forms (2.2) and (2.3):

[$(2%, k*, D]* = &4, k, r),

¢(ls _k: r) = ¢(As k, r),

[X+(l*, k*, r)]* = Z—(l, k,r),
1 (A, ke, r) = eyt (A, k, 7).
From these it follows easily that D(4, k) as defined
in Eq. (2.35) is real when 4 is real and k positive
imaginary (£ < 0). The desired analytic properties
of D follow from the results of Sec. 2B. Similarly
from Eq. (2.36) follows an identical equation for
f*(A, k) and from this it follows for real / and k¥ > 0
that N(A, k) as defined in Eq. (2.34) is real. This

completes the proof.

(2.36)

3. THE FULL AMPLITUDE
A. Outline and Results

As one would expect, the properties of the full
amplitude A4(k, cos ) can be derived from those of
the partial-wave amplitude a(4, k) by means of the
partial-wave series. For a purely short-range potential
(such as the Yukawa) a(4, k) falls off exponentially
as A— 4o and the partial-wave series converges
very well. In the present case (short-range plus
Coulomb) a(4, k) oscillates as 24— + o0 and the
partial-wave series for 4 is of no use. However, the
difference

a(A, k)= a(A, k) — a,(A, k) 3.1

behaves much as the ordinary short-range amplitude
and the series

A’(k, cos 0) = A(k, cos 0) — A,(k, cos 0)
= 3 (21 + Da’'(4, k)Py(cos ) (3.2)
=0
converges well. It is obviously sufficient to study the

properties of A4’, since the Coulomb amplitude A4, is
explicitly known.'?

1% See, for example, A. Messiah, Quantum Mechanics (John
Wiley & Sons, New York, 1966), p. 430, Eq. (X1.55a). In particular,
Ak, cos 0) is analytic in cos 8 except on a cut from cos 8 =1 to

+00.
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In this section, we shall take as the short-range part
of our potential a pure Yukawa

V(r) = ye™r.

For this case we show that as || — co anywhere in
the right half-plane Re 2 > 0 (including the imaginary
axis) a’(4, k) is bounded by

la'(A, k)| < const x |A2~}e=4 (3.3)
as |A| > co with Re A > 0 and k real, where
o = cosh™ (1 + w?/2k?). (3.4)

In the standard way?® this bound guarantees that
the partial-wave series (3.2) converges and defines an
analytic function of cos 6 provided

Imo < a. (3.5)

This condition confines cos 6 to the interior of the
so-called Lehmann ellipse centered at the origin with
semimajor axis (1 + u2/2k?).

The bound (3.3) also allows us to continue beyond
the Lehmann ellipse using the Sommerfeld-Watson
transformation; that is, we can replace the sum (3.2)
by the appropriate contour integral and then distort
the contour to the imaginary A axis to give the well-
known expression

di Aa’'(A, k)Py(—cos 6)

A'(k,cos ) =i -
sin 7l

~to0

+ Regge pole terms, (3.6)

where the usual Regge pole terms are, according to
Eq. (3.3), finite in number. The expression (3.6) is
convergent and defines an analytic function of cos
provided only

Re 0 # 0;

that is, A’ is analytic in the cos 6 plane cut from 1 to
+ 00,

Combining this result with the analyticity in the
Lehmann ellipse of Eq. (3.5), we conclude that, as
one might expect, 4'(k, cos 6) is analytic for all cos 6
except on a cut from cos 0 = (1 + u2/2k?%) to + co.

B. The Proof

In order to establish the bound (3.3) for a'(4, k),
we express @’ in terms of an off-shell 7' matrix satisfying
a Fredholm equation of the Lippmann-Schwinger
type. Our method is suggested by a paper of Brown
et al.? on short-range potentials, modified by a trick
described by Scadron, Weinberg, and Wright.2?

20 See, for example, E. J. Squires, Complex Angular Momenta and
Particle Physics (W. A. Benjamin, Inc., New York, 1964), pp. 3-6.

1L, D. Brown, D. Fivel, B. W. Lee, and R. F. Sawyer, Ann.
Phys. (N.Y.) 23, 187 (1963).

22 M. Scadron, S. Weinberg, and J. Wright, Phys. Rev. 135B,
202 (1964).
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Our starting point is the integral equation

vH) = o) + f " arGHr, PV (3.T)

for the scattering wavefunction y*(4, k,r). In this
equation G* is the Green’s function

GH(r,v") = — o (rs)prIlfs
and y, is normalized as
ye(r) = Be(r),
where
B = ie ™M)
x [T + » + DO — » + DIF/aD2A + 1).

The scattering solution (4, k,r) is, of course,
proportional to the solution ¢(4, k, r).
The off-shell T matrix is defined as usual to be

TH(p, k) = f “dr vk 0. OVOW L K ) (3.8)

and comparison of the behavior of ¢ and ¢ for large
r shows that the amplitude a’(4, k) is related to the on-
shell T matrix T} (k, k) as follows:

a'(, k) = Tk, K)S (A, k)/K*,

where S, denotes the pure Coulomb partial-wave §
matrix

S, A,k =T+ v+ DT —v+ 1)

Since S, ~ A% as |A} —> oo, this means that we can

prove the bound Eq. (3.3) by showing that
|T%(k, k)| < const X |Ate=|

as |A]| — o, Re 4 > 0, k real.

We obtain this bound on T+ by studying the
Lippmann—Schwinger equation which follows from
the representation®

G+ r, r =fwd %(‘Ia r)y)c(q, r’)'
(r.r) o K — q* + ie

Substitution of this representation into Eqs. (3.7)
and (3.8) gives the integral equation
® T, )T7(q, k)
T*(p, k) = T(p, k [ dq —t——""—
(p, k) (p )+,o q K g4 e
where T}, is defined by Eq. (3.8) with y* replaced by v, .

3.9)

(3.10)

, (3.11)

23 See Ref. 8.
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As it stands, this integral equation is not L? for
real k. It is, however, a simple matter to replace
Eq. (3.11) by an equivalent equation for the operator

T+ = y-ir+p-4
and the L? norm of the latter equation is

IRIRG (k' K1
0 0 (K — k' — ie)(k* — k" + i€)

To show that this norm exists and has suitable
properties as |A| — co one must now assume some
specific form for the short-range part of the potential.
We shall consider just the case where V is a pure
Yukawa, in which case T, can be explicitly evaluated
in terms of the hypergeometric function®

T(k', k") = yB(K)B(K")
x T(b)s* " ~%s — 2ik’)y ™ (s — 2ik")y™
X F[a’, al/, b, _4krku/(lu’2 + [kr _ ku]Z)]’

(3.12)

where
ad=14+1~—iafk,
b=22+1,
s=u+ ik + k7).

Using standard properties of the hypergeometric
function, it is easy to show that the integral (3.12) is
convergent. Furthermore, from the asymptotic form
of the hypergeometric function,?® it follows that

IT(K', k") < fk', k")A~2e24,
where

= cosh™ [(u* + k'* + k")[2k'k"]  (3.13)

and the precise form of the function f(k’,k") is
unimportant. Substitution of the bound (3.13) into
the norm (3.12) shows the latter to be O(A}) as
|A] — oo anywhere in the right half-plane Re 4 > 0.
This means that the solution T+ of Eq. (3.11) can be
arbitrarily well approximated by T, when 4 is suffi-
ciently large, which, in turn, implies that 7+ satisfies
a bound of the same type as T, for large ||, namely,
Eq. (3.13). This is the desired result.

24 The properties of the hypergeometric functions used in this
section can be found in Higher Transcendental Functions, A. Erdelyi,
Ed. (McGraw-Hill Book Co., New York, 1953), Vol. 1.

25 See, in particular, Ref. 24, p. 77, Eq. (16). The bound (3.13)
is analogous to the result obtained from Hobson's inequality for
Legendre functions in Ref. 21.
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A statistical-mechanical theory of fields is developed. Since a field has an infinite number of degrees of
freedom, it is natural and convenient to use functional methods for its description. The most general
statistical-mechanical state for a field is represented by a distribution functional which satisfies a func-
tional differential equation analogous to the Liouville equation. The functional Fourier transform
(characteristic functional) is introduced and its properties are studied. Multitime functionals and various
reduced distribution functions are also discussed. The formalism is applied to the free electromagnetic
fields as well as to a system of charged particles (plasma) interacting via the electromagnetic field.

INTRODUCTION

The statistical theory of charged particles and
electromagnetic fields has been for some time a
problem of great interest. Usually, the statistics of the
field enters only indirectly through relations between
the field and the fluctuating charge and current
densities due to the particles. However, in 1957
Brittin! and, independently, Harris,> developed an
approach in which the fields expressed in terms of
the oscillator variables were treated statistically on
an equal footing with the particles by means of an ex-
tended pnase space. This approach has been used by
several people to derive kinetic equations.®? However,
it has some inherent difficulties? which can, to a large
extent, be traced to the fact that for many cases the
oscillator coordinates do not provide the most
appropriate description of the electromagnetic field.
In many ways it is more satisfactory to have a statis-
tical theory in terms of the actual measurable electric
and magnetic fields. Such a theory is presented here
and itis shown to provide a very succinct and powerful
way of describing such a system.

By its very nature, this description leads to the
introduction of probability functionals because the
corresponding *‘phase space” is a function space.
Functional descriptions are not new in kinetic theory.
They have been used to describe Brownian motion,?
to re-express the BBKGY hierarchy,® and to treat the

* This work was supported in part by the U.S. Air Force Wright
Air Development Division.
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and University of Colorado.
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problem of turbulent fluids.”® Of course, the methods
of functional analysis are still not developed to a
point where there are many techniques for solving
explicit problems. However, in many problems,
particularly in quantum field theory,® they have proved
very useful. Thus, it is important to formulate
certain problems in functional terms—especially
problems involving fluctuating fields. Such problems
are most naturally expressed in functional form.
Several authors have considered the latter problem
in the recent past in connection with charged particles
with only longitudinal fields present.10-11

In this paper we consider the general problem of the
description of statistically fluctuating fields. Such
fields might be the hydrodynamic velocity field of
fluids, the average one-particle phase-space distribu-
tion function for particles, or the exact microscopic
phase-space distribution function for particles. We
derive general expressions for the functional Liouville
equation for systems described by such fields. We then
introduce the characteristic functional which obeys
anequation of motion derived from the Liouville equa-
tion. The characteristic functional is of particular in-
terest in turbulence, because various moments of the
field are given very simply in terms of the character-
istic functional.”® The theories of Hopf,” and Rosen,?
and Nakayama and Dawson!® are included within
the general formalism presented here. A rigorous
foundation for the work of Dupree!? is also given.

I. DISTRIBUTION FUNCTIONALS

A field is thought of as a real function ¢(x) defined
on some underlying space whose points are denoted

? E. Hopf, J. Ratl. Mech. Anal. 1, 87 (1952); E. Hopf and E. W.
Titt, ibid. 2, 587 (1953).

8 8. Rosen, Phys. Fluids 3, 519 (1960).
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10T, Nakayama and J. Dawson, J. Math. Phys. 8, 553 (1967); T.
Nakayama, Phys. Fluids 10, 247 (1967).

111, Hosokawa, J. Math. Phys. 8, 221 (1967).

12T. H. Dupree, Phys. Fluids 6, 1714 (1963).
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by x (usually, x denotes a point in some Euclidean
n-space E,). The function ¢ may have any (finite)
number r of components!® ¢,. The field, in general,
depends upon the time ¢, and is assumed to satisfy a
partial differential equation which is of first order in
time

] . 0% .
%o adh e Bonm =t @
In general, A may be a nonlinear operator but it
does not depend upon time. The ‘“‘caret” over ¢

indicates that ¢ is a time-dependent field which
satisfies Eq. (1). If ¢ is a field which does not depend
upon time, we define ¢(x) as

$(x) = Alg]. )

The statistical description of the field may be
accomplished by the use of a field distribution
functional F = F[¢, t]. Roughly speaking, F is a
“function” of the values ¢(x), (x'), - - - of ¢ at all
the points x in E,. The functional F is the prob-
ability density for the field ¢(x), which signifies that
F[é, t] d[#] is the probability that at time ¢ the field
is found to be ¢(x) within the volume element d[¢] of
function space.' We normalize F to unity:

f Fl$, 1] dl$] = 1. 3

The distribution functional satisfies the continuity
equation (conservation of probability):

oF
=+ f N P )F 0, 4)

where we have assumed that JA[x, ¢1/dd(x) = 0.1
The functional derivative is defined as the distri-
bution* 6F/d¢ in the following expression

Pl 4+ )], = (g—f; , ¢1), ®)

where the scalar product (6F/d¢, ¢,) for real functions

is defined by
OF[¢]
[ 555 4o

13 The formalism presented here is more general than the Hamil-
tonian formulation of fields which it includes as a special case.
For example, we may think of ¢ as having ‘“‘coordinate” and
‘‘momentum’’ components.

14 See Appendix A for a fuller discussion of the various mathe-
matical concepts used in this paper.

18 For the problems considered in this paper we have §A/d¢ = 0.
If this is not the case, some of the following development must be
slightly modified.
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Equation (4) may be written in operator form

oF

o + LF =0, (6)

with the Liouville operator defined as
L = | dxAlx, ¢] —— @)

f 595( )

Average values (G) of functionals G[¢, ¢] of the field
are computed through functional integration of the
product of Fand G:

(GID = f Fl$, 1G4, 1 d[$] = (F, G).  (8)

In the above equation, (F, G) defines a scalar product
for functionals.

The Liouville operator is skew-symmetric with
respect to the scalar product (F, G):

(LF, G) = —(F, LG), (%)

where it is assumed that F and G are in the domain
of L.
The formal solution of Eq. (6) is expressed by

Fl¢, 1] = e“Fy 4], (10)

F,[¢] being the value of F at time zero. Equatlon (10)
may also be expressed in terms of the solution qS( 1)
of Eq. (1) which has the value ¢(x) at time zero:

Fl$, 1] = F[$(—D], $(0) = ¢. (1)

Equation (11) follows from the fact that probability
is conserved along the natural motion of the system.
The equation of motion for average values of func-
tionals of ¢ is obtained directly through

d _/oF \
0 (G[éD \8 /
= —(LF, G)
= (F, LG) = (F, G),

with G = LG. (If G has an explicit dependence upon
time, we must define G as LG + 9G/9t.) We may also
introduce ““‘Heisenberg” operators G(¢) which carry
all of the time evolution. That is,

(12)

(G) = (F(1), G) = (¢"*'Fy, G)
= (F,, ¢'FG) = (F,, G(1)), (13)
where G(t) = ¢'LG. Thus, (G); = (G(t)), which means

that all statistical averaging may be done at the initial
time. In the above equations, G itself may depend
explicitly upon time.
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If the delta functional A[¢] is introduced (see The distribution functional F[¢,t] may also be

Appendix A) having the properties e?(pressed in terms of an average of a delta functional,
Al¢] =0, ¢ #0, since
[ats1at91 = 1 FIg, ) = Filg(=0) = [ Folulblé = $—0) dl4]

= (Al — $(=DDs- (19)
fAM)l — $:1Gl:] diga] = Glu], (14) This form for F[¢, ¢] is useful if we wish to consider

we may recover solutions of the exact field equations ~3Verages of functionals at different times. For example
by choosing Fyl¢] = Al$ — o] In fact, for any if we want the average value of G[(r,), (2,), -

functional G[$], we have $(1,)1, we may write

G 1
(G[éD =fG[¢]e_L(¢"A[¢ — ol d] (Gl(ty), - ¢(f )

— | (plton _
= (0 Ggnap = dul did X Gldrs b+ $1dldi) - did,], (20)
= MG By] = G[e'¢g] = G[H(x, ). where we have introduced the multiple-time distri-
(15) bution functional F, [, t;; -+ ; ¢,,t,]. However, we
In particular for G = ¢, now show that, since all the statistical information is
(B = B(x, 1) = L0 (16) contained in Fl¢, 1] = Fy[, t], we may express F, in

R terms of F. In fact,
We note that ¢(x, r) is a functional of ¢, the value of

$ at t =0, and that the integration of Eq. (1) is (Glp(t), - -, S(L)])

fﬁ:tivalent to Eq. (16). For from Eq. (1), it follows =fF[¢’ 01GIA(1), Bta) - -~ $(t,)] d[b]
$dor 11 = o + | AldGo, 1t = [F1s.01 a8, - e
and, from Eq. (15), X Algy = $)] - Al — $(1,)]
$[¢0, ¢ +f tL(¢°)A[¢> ]dt X Gly, gy ¢n] dléi] - d[¢n] dl¢] (21
- Y0 0 i=1
;ﬁﬁl X Aly — $1Aldy — $1- - Al4, — 9]
=%+9L@; L(¢o) o X Glgy, -+, $,ldldi] - dlg,]dl4l.  (22)
= L g ’ amn Therefore,
Conversely, from @(r) = e!L@d, | it follows that Falfr tai dos ta -0 ¢n,nt"]
D) = o + (eF1% — )950 =fd $)F[4, 0] exp {—;Liti}
_ et Ltoo) Ald, — d1---A . _
= ¢o+ — 7 ¢0) L($e)o X Al — 4] [6. — ¢]

= f d[$IF[g, 0] exp {‘21“}

= b+ [ 709 dr A1)
0 X A[¢1 - (l’]A[‘f’z - ¢1] ot A[<ﬁn - ¢’1]

= ¢, +fod—r A[erL<¢o)¢o] =fd[¢]p[¢, O]A[$1(—11) — ¢]
= ¢0 +‘0d7' A[¢(T)]a (18) X exp :_ngtl}A[(ﬁz — ¢)1] “ e A[¢n — ¢1]

where we have used the fact that n
Ldodo) = [dx' AL’ 6 = Flést;] exp {_zLiti}A[qSZ — ¢l - Alg, — 4]
0 0 X 0 ~ =1 ~
fx x %%()%“) =~ FlhtJAGA—1) — u(—1)] - -
= Alx, gol = ¢o. Ald—t) — (—1)], (23)
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which shows that all multiple-time correlations may
be expressed in terms of F[¢, ], the single-field
distribution functional.

II. REDUCED DISTRIBUTION FUNCTIONS

The specification of F[¢, t] requires an enormous
amount of statistical information which must be given
at the same time, say time zero. Many questions do
not require such a vast amount of information for
their elucidation. For example, if G is an ordinary
function of the field variables G = G[d(xy), d(xy), " -,
é(x,)], we have for the average of G:

<G>=<f---fc(¢1,-~,¢n)

=ffc(¢1,---,¢n)d¢1---d¢n

X (3 — $(xD) (b — $x)
sf dby - dbuGldr, o $a)

X o1y %15 b2y X570 By X5 0),

where ¢,,---, ¢, are numerical-valued quantities
and f, d¢, - dp, may be regarded as the prob-
ability that at time ¢ the field has the value ¢, at
X1, ¢y at x5, -+, and ¢, at x, within the range
dé,, - -, d$,. Of particular interest are the moments
((xy) * - - ¢(x,)) which are simply related to f,:

<¢(x1) o ¢(xn)>
=f¢1¢2 e ¢nfn(¢1’ Y ¢nt) d¢'1 e d¢n (25)

(24)

The Heisenberg picture may be used to obtain a
particularly useful form for f,

fn(x1¢19 T xn¢1zt)
= <1'I o ~ ¢<x,~»>

= <e-tLF 0> ]i]; o(¢; — ¢(x,.))>

= /Fo’ ]_:—_l; o(éh; — $(xi’ t))>
= (0(dy — Fx)) - Mo — $Cxut)))o. (26)

The latter form has been used by Dupree!? in his
treatment of radiation and plasmas.

If we consider an arbitrarily large volume V of the
underlying space E,, and divide V into an arbitrarily
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large but finite number M of cells A7, a = 1,--+ , M,
V=73,Ar,, then we may “project” the function
#(x) upon the cells Ar, and write an approximate
expression:

M
$(x) ~§1$aEa(x), @7

with

$. = Xl— f HOE(x) dx, 28)

where E,(x) is the characteristic function for the cell
Ar, [E(x) = 1 if x € Ar,, and E,(x) = 0 otherwise].
The distribution functional, then, is approximately a
function of the M variables ¢,:

Fl¢pl~Fyldy- - dat]

and, apart from the normalization constant,
[Fis1as
NfFJI[$1’ o futlddiddy - dy = 1. (30)

(29)

Further, if the x;, ** -, x,, in Eq. (26) correspond to
cells «;, a * + * «,, we have approximately

fn(xl’ ¢1’ fTty, xn¢nt)
n M
~ f Fuly, -+, $A T8 = 4 T dd,. (3D

The above argument also shows how, in a manner
similar to that used in Wiener measure,® we can
recover the full distribution functional by allowing n
in f, to become infinite in a suitable way such that
(b1 b2, $.) = H(x).

The equations of motion for f, form a hierarchy
similar to the BBGKY hierarchy of ordinary statistical
mechanics. These equations may be derived from the
equation of motion for F[¢, t] or from that of ¢
using Eq. (26). We can also introduce multitime
correlation functions, most simply defined by

fn(x1t1¢1; x2t2¢2; R xnt'n¢'n)
= { IEI]L g, — $(xit,-)]>o, (32)

which find application to fluctuation phenomena.!?

We next proceed to the equations satisfied by f,,
and to this end we introduce a generating functional
Slu(x, ¢)] for £, by means of

Q[u,t]=1+§;"1$f...fd1...dn

X fu15 2,0y m, Qu(Du(2) - - - u(n), (33)
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where 1l = x;, ¢,,2 = x,, ¢y, etc., and dl = dx, d¢,,

-, We have
fol,s o )= [m]u=o (34)

From the definition (31) of f,,, it follows that
S, =3+ J jdl
n=0 n
/ H o — ¢(Xi))>u(1) e

\Ll

0"Glu]

u(n), (35)
Slu, 1] = <CXP [fdl oy — ¢(x1))u(l)]>

_ f Fid, 1] exp [ f d1 (¢, — ¢(x1))u(1)} dil.

(36)
We set E[¢, u] = exp [ dl 6(d; — $(x))u(1)] so that
Q=JF-Ed[¢]=(F,E> 37)
and
_(F P\ LF -
= — ,EY=(F,LE), (38
\8 / ( C ), (38)
where L = j' dx A[x, $)9/6¢(x). We note that, since
ou(1)
dé,0(d, — 39
M() fmqs bl
and
_OE
ou(D) = Ed(¢, — ¢(x1)), (40)
we have

% _ f x Al 1[0, ~ s y Qe g >

* @n
_ <p, f dx A[X, J $id(b — $0) d«ﬁl]
f 18, — 9y 28 ) &
= \ f o A[X’ f W ¢1)]
or, finally,
gg =f f dx dé aua(:b) éu(i(ﬁ)
A fahzigle @
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For applications it is important to note that
0§
(1 — ¢2) - (45)
ou(x, pouCx, &) " ou ( ¢1)
The above equation expresses the fact that
So(xs @15 X, ba) = 0(dy — bo)fi(xdhy), etc. (46)

We may obtain an expression for df,/dt by differen-

tiating Eq. (44) n times with respect to u(1), - - - , u(n)
and setting u = 0:
%
;(x19 1777 X, n;t)
_90_ 8
ot du(1) - - - du(n) luzo
= f f dxdg 3 8(x — x) -aﬂ%;—@
d o"
Alx)d S
[xf #is du(: ¢>l)} du(t) -+ - ou(n)  lumo
(47)

The general structure of the hierarchy (47) depends,
of course, upon A[x, ¢], butitis clear, in general, that
Eq. (47) couples f, to f,,, m > n.

As a special case we consider A[x¢] = Ad(x) +
Dé(x), where A4 is a constant matrix and D is a matrix
involving derivatives with respect to x. Then making
use of Eq. (45), we find that

o +sz¢,€§’;’ +fd(n + 1)
X il[Dké(xk - Xn+1)]¢n+1 ag:;] =0. (48)
k= k

A very simple example consists of a linear string. Here,
¢ = (4{&), where y(x) is the transverse displacement
of the string at the position x along the string, and
v(x) is the transverse velocity. The equations of

motion are:
= (o) = o)
W) \ey')’

so that A¢ = (§) and
2
c? LI;( 0 )
dx\y(x)

(49)

D¢ =



666

Therefore the hierarchy for the linear string ist®:17?

of, d
X1s V1> V15 35X Yo Vs 1) 2 n
at(lyl 1 y ) Ekaykf
P “ ” an
+e3 [ (5 = Sne)¥orn - L2 = 0. (50)
=1 ov;,

Equation (44) for § can be expressed somewhat
more simply if one introduces the functional Fourier
transform of G:

S[u) = f PN o] dlp(x )],

with (u, v) = [ u(xp)v(xd) dx dp. Then f, are ex-
pressed as moments of v with respect to N[v]:

oS
f"(l’ ) 6 (1) Csu(") u=0
— i f o(1) - - o(m)N[u] d[u]
= i"(o(1) - - - o(n))x. (51)
The equation satisfied by .N” is obtained from Eq. (44)
and reads
a\’ 61)(( ¢)A[ J‘d
f j i | dpuol «m] ol
(52)

It is important to note that, as a result of relation
(45), we have
Po(xb)o(xds) N = id(y — boo(xd) N, (53)
We now present another way of obtaining expressions
for the functions f, . From the definition Eq. (31), we

have

fully o nty = 1jé(¢1—¢(xi»F[¢1 gl (54)
Let
Fl$) = f OGS, dl ),
(b, ) = f $(x)$y(x) dx, (55)

16 W. E. Brittin and W. R. Chappell, Lectures in Theoretical
Physics, Vol. VIII, W. E. Brittin, Ed. (University of Colorado Press,
Boulder, Colo., 1966); W. E. Brittin, Lectures in Theoretical Physics,
Vol. 1 X, W. E. Brittin, Ed. (Gordon and Breach Science Publishers,
New York, 1967).

17 W, E. Brittin, W. R. Chappell, and A. Y. Sakakura, U.S.A.F.
Aerospace Research Laboratories Technical Report 64-85, 1964;
W. R. Chappell, JILA Report 35, 1965.
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then

fo= f o490 H 8y — $(x))Gls] di$] dd]

1 (P, ;) -
= »?1 d ;
(277)"*He f 11 de

X exp {,- z ol — ¢<x»}c[¢11[d¢lud¢1

N (2;)"' f e"p{ 2 ol = ¢(x»}

X gn(xls wy; "
with

gn = f dl] d[p,]e" oV

3 Xns Wy, t) dwl e dwns

(56)

><exp{—

= Glx.),

where y,(x) = X" w,0(x — x;). In order to obtain
Eq. (57), we made use of the delta functional defined
by Eq. (14). It is interesting to observe that the value
of the functional Fourier transform G of F for the
argument y, gives the ordinary Fourier transform

&nof fy.

Expressions for the moments or field correlations,®
(P(x)™h(x0)™ - - - Blx)™)
= [Fa o xpagit e g

may be obtained directly. Since

S 000 = x)9(9) dx|Gl]
&)

dé,

1
@my

where [n| = n' + n® + -+ - + #", Eq. (55), when used
in the above expression for the moments, yields

[e47 a8 = =iio o),

(B(x1) ()™ - -+ Px,)™)
= (i)(ln1]+|n2|+"'+lngl) it G[x]' (58)
awILI PN 3(01'3 =0
= (i)(|n11+|nzl+-~.+lns” Qrit e+
Oy (x))™ - - - dpy(x,)™

X Gl$a)ls10 (59)

A special case of the above result was first reported
by Hopf.”

18 The field ¢ has r components; thus, n is an r-component
vector (nl, n%, - - -, n™) and ¢” is $J1$32 - - - 7r. For some problems
it is convenient to set K(2,1) = 0 for 1, < t,.
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III. SUBSIDIARY CONDITIONS

It may happen that the components of ¢ are not
independent but satisfy certain subsidiary conditions

S [¢] =0, k=1,---,s (60)

We may incorporate these conditions by demanding
that F be zero unless Eqs. (60) are satisfied's:

Se[#IFlp, 1] =0, k=1,-"-,s. (61)
In terms of the functional Fourier transform G of F,
these subsidiary conditions become

]G[cﬁl,t]—O k=1,--,s. (62

15
For example, in the case of the electromagnetic field
the condition V - B = 0 is reflected in the subsidiary
condition 5

0By(1)

which guarantees (by setting B; equal to zero in
Eq. 63), V. (B(r)) = 0.

In certain cases, such as the electromagnetic field,
subsidiary conditions on the field are satisfied by
virtue of the field equations if they are satisfied
initially. In these cases the reflected subsidiary
conditions S;[¢p]F = 0 are satisfied for all times
t >0, if S,[¢]F =0 at time 1 = 0. We prove this
assertion as follows: the condition for Sk[gb] to be
zero if it is zero at time ¢ = 0, is

s [qs(xt)] = [ oy 258 55,19]

G[B,(r)] =0, (63)

()
6SI.[¢]
x Alx,
fd b hiiEE =0 ©
or, for an arbitrary function ¢(x),
6Sk[¢]
dx A = 0. 65
Je e B ©
However,
oF O(S.F)
k[¢] ==
= —Skfdx A[X (]5] 3(;(——)
6(S F)
= dx Alx, = —L(S,F
f x Alx éqS( ) (SiF)
by virtue of Eq. (65). Therefore,
SoF(1) = e[S, F(0)], (66)

so that, if S,F = 0 at time ¢ = 0, S,[¢]F[¢, 1] = 0,
t > 0. A similar statement applies to S,[id/d¢,] x
Gl¢:t] = 0.
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IV. FORMAL SOLUTIONS

We have seen (Sec. I) that the solution of JF/dt +
LF = 0 can be written formally as

Flgst,] = e~ Lp 4, 1],
F[d’ztz] =fe—(t2_tl)L2A[¢2 - ¢1]F[¢1t1] d[¢1] (67)

which suggests, as has been observed by Rosen,?
that it is convenient to introduce a propagator
K[psh;t,t,] such that

Flgaty) = f Klds, bi ty, LIFIditi] dlds).  (68)

We observe directly that

Klds, b1, 1, ;] = e 0 IA[$, — 4]
= Algy(—12) = di(—1)]
= A[$2(t1 - ts) — 4]
=Ald, — di(t: — 1)), (69)
where $,(1) satisfies the equatlon 04,/0r = A[$;] and

$.0) =@, i =1,2---. The propagator K satisfies
the equation?®
KL 4 1Ky, 11=0 (710)
ot,

and the initial condition

K[¢2, b1, 1, 2] = Aldy — 4] (71
In addition, it has the semigroup property

K[2,1] =JK[2, 3]1d[#s]K[3, 1]. 72

That the formal solution Eq. (69) has the semigroup
property follows from the identity

Algy — ¢] = f Alds — dol didalAlds — i) (73)

The solution given by Eq. (69) can also be obtained
by solving Eqs. (70) and (71) in terms of path inte-
grals.® The interval [f,, £;] is split up into a large
number, N + 1, of intervals t; = ¢, ¢1, -+ ¥+ =
t, with Af =¢#1 — i j =20, -+, N. The relation
given in Eq. (72) is then repeated N times to yield

K2, 1] = f . f K(N + 1, N) d[¢"IKIN, N — 1]

x d[¢V'] - - - d[$'IK[1, 0. (74)

-9 For some problems, it is convenient to set K(2,1) = 0 for
t; < t;. In this case, Eq. (70) becomes 0K(2, 1)/0t, + L,K(2, 1) =
Oty — t)Algs — ¢4
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We have from Eq. (69) that
K[i, i — 1]
-AiL,A[¢ qsz—l]
= f ¢ exp {: f 2(O['() — $x)] dx) diz,]

(75)
However, since

L, =fdxi A(X, ’ ¢ ) (;ﬁ;

we may write
Kl[i, i — 1]

- f exp {—iAt f dx, Alx, 4] z,.(x,.)}
X exp {iAtf [éz(t—)_A—fix—)} z{x) dx} d[z,(x)]

=fexp {iAtfdx z{(x)

BB = 700 Al diz(0)

At

Following Rosen,® we introduce continuous time-
dependent functions ¢(x,t), z(x, ), such that é(x,
t;) = ¢4(x), z(xt,) = z,(x). Then in the limit N —
o0, Eq. (74) becomes the conditional path integral®-2

K2, 1] = f d[z(xt)] d[d(x)]

dlatr)=dg
$laty))=d)

X €xp {iJ;igdtfdx z(x, 1) (aa—f) — Alx, qS])} an

The restrictions ¢(xf;) = ¢, $(x1) = ¢, may be
removed by introducing delta functionals®:

K[2,1] = f dlz(x, 0} d[$(x)]
X exp {i.’:’dt dx z(xt)(%:é — A[xzﬁ])}

X A[¢1 - ¢(xt1)]A[¢2 - 95(’“2)]
- f dlz(xt)] d[$(x0)]

X exp {iJ:'dt dx z(x, 1) (aa—(f — A[x¢])}

(76)

X €xp {—i f 2xt)[y — B(xt)] dx:
X exp : i f z(xty)[y — H(xt,)] dx}, (78)

20 3, Tarski, Lectures in Theoretical Physics, Vol. X, W. E. Brittin,
Ed. (Gordon and Breach Science Publishers, New York, 1967).

21 Some of these expressions appear strange at first glance. How-
ever, they can be demonstrated by dividing the interval (¢, #5) into
small segments to obtain suitable approximations.
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where there are now no restrictions on the values of ¢
at t; and t,. The z(x?) integration can be performed
immediately to obtain

K2, 1] = f dld(x t)]zx( — Alx, 951)
x Aldy — ¢(Xt1)]A[¢z — d(xt)], (79)

where X is the delta functional for functions ¢(x, ¢)
ofxandtwith, << #,.

The delta functional X in Eq. (79) shows that
contributions to K[2, 1] come only from exact paths
90t = A[$). We therefore expand the delta func-
tional®® into a sum over exact trajectories

ap(xt)

[a¢> A[</>]} le[¢ SINIBL 3L, (80)

where the integral is now over a “spacelike™ surface
d)[x, t(x)], (smce a solution is determined by one
point on the trajectory) and N [#] is to be determined.
Substitution of Eq. (80) into Eq. (79) then yields the
result

K2, 1] = f AIBINIBIALS, — $(x, tIAIS, — $x, 1))
@1)

and, since we may take the integral over ¢ to be that
over ¢(xtl) say, we have

K12, 1] = Ni$uJAlds — 306 t)]3carnes
- N[¢1]A[¢2 — - [ Ald@] df]. ®2)

When 1, = t;, K[2,1]1 = A[$, — ¢,], so N[$;] =1
and
K[2, 1] = e—(tz—il)LzA[¢2 _ ¢1]

which is just Eq. (69). As a byproduct we have the
identity

[a"‘ a9l = [a1g - hraid, @y

which shows that all solutions ¢ contribute the same
weight. If $(xt) is a solution ¢’ say, Eq. (83) states that

A[0] = f K - 1413,

which, at first glance, appears to yield unity on the
rhs. However, this is not the case, since

fd[qS(xz)JA[qs(xt) —l=1

only when the integral goes over all space-time
paths.

(84)

22 Analogous to the expansion 0[f(x)] = X,;8(x — x)/| f'(x))|,
f&x)=0.
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The propagator K[2, 1] may be Fourier transformed
to yield the propagator K[2, 1] for the characteristic
functional G[y]:

Glyats] = f R2, 11G[yst] dlws],  (85)

where
K[Wz'l)l’zfl] = 2[2, 1]

= [ et aig) digl.
(86)
The expression (76) for K[2, 1] is then substituted into
Eq. (86) to yield (after integration by parts of the
z0¢p[ot term):
KD, 1) = [ [di=6e00 digtx, o] i) did]
X exp [—i(ys, $2)]

X exp {—i ﬁ t l:z(xt)A[qu] + gf ¢(xt):| dx dt
+i f (et xt) — 2ty )

x exp {~i [2lgh(x) — i) ]

x exp [i [ 201,00 ~ dxig1d]

x exp [i(y1, ¢1)]
k1 =ﬂ d[z(xt)] d[$(x0)]
x Alz(xty) — po()IALZ(xt) — py(0)]

X exp {— ift]dt dx{z(xt)A[qu]

87

dz(xt)
4 220 d)(xt)}} (88)
or

Ki2,1]= d[z(xt)] d[$(x1)]

z{@ta)=ywala)
2{zty)=y(z)

X exp {—ifjdt dx{z(xt)A[x¢] + —Z—f ¢(xt)}}. (89)

The above conditional path integral for K[2, 1] has
been obtained previously by Rosen® using directly the
procedure employed above for K[2, 1]. This form (89)
for K[2, 1] is particularly useful as Rosen has pointed
out, if A is quadratic in ¢(xt). In that case, the
integration over ¢ can be performed. This is the case,
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for example, for the Navier-Stokes equation® and the
Vlasov equation.

The formal solution Eq. (89) may be used for the
evaluation of moments. We have, from Eq. (59),

(B(x1) 1 lx5)™ - X))y,

] 6|7L|
=i
Spalxr)™ - - - O™
x f R, 1)GIysta] dT]lypco (90)
§l7!
= = g df
F=1) ﬂ e oar)™

x A[z(xty) — pu(x)]
x Alz(xty) — ya()]

X exp {—iffdt dx{z(xt)A[x¢] + aia(—:t) ¢(XI)}}

X Glyith] diy,) 9n
= [[ 4= atsigcr - gl
2(xt)=0 .
X exp {—iffdt dx{z(xt)A[x¢] + &%ct_) ¢(xt)}}
X Glz(xty), ;1] (92)

Equation (92) generalizes to all orders, the results
obtained by Rosen® for (¢(x,)) and {$(x;)d(x,)).

V. PARTICLES AS FIELDS IN PHASE SPACE

We now consider a system of N particles interacting
with the field ¢ and introduce the microscopic phase-
space density®~2" f(r, p, ¢) defined by

N
e, p. 1) = -§1 8(r — RO)(P — LY.  (93)

The coupled equations of motion for the particle-
field system may be taken to be

D) _ 4 e, 4,71

ot 4
and N
Q‘%—:”) = Al 370, 95)

where x stands for the phase point r, p.

23 Yu. L. Klimontovich, Zh. Eksp. Teor. Fiz. 33, 982 (1957)
[Sov. Phys.—JETP 6, 753 (1958)].

2 E, P. Gross, J. Nucl. Energy C2, 173 (1961).

25 J. Dawson and T. Nakayama, Phys. Fluids 9, 1881 (1966).

26 W, R. Chappell, J. Math. Phys. 8, 553 (1967).

27 C. S. Wu, Lectures in Theoretical Physics, Vol. 1X, W. E.
Brittin, Ed. (Gordon and Breach Science Publishers, New York,
1967).
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The statistical-mechanical treatment of this system
may be accomplished by the introduction of a distri-
bution functional F[¢, f, t] for the pair of “fields”
é(r) and f(r, p). The Liouville equation for F can be
written

oF
= f 1[x,¢f]af()
+fdr [r,qu]ég—)—O, (96)
provided that
) droA,r, é, f]
Ix ——— Ay(x, ¢, O %0 0. (97
fméf = 6.+ | v ©7)

Just as in the cases previously treated, we may
introduce the functional Fourier transform Glg,, fi]
in terms of which the various moments may be
expressed, i.e.,

x0) = (f(x)f (x) - ()
67'

= T ey Clnmvanos 98
i Ofi(xy) -+ Ofu(x,) |f1—0,¢1_0 (98)

.8 OS
(GE)SrIPn) = I =

flxaxp s o e

oty Clrcone
(99)

(Gr) f(x)P(xs) - - - dE)f(x,)

(28
25 b

0d1(r)0fi(x1) - -+ dy(r)Of (x,)

ete. The quantity f,(x;, - * -, x,t) is a reduced r-particle
phase-space distribution function. However, f, in-
cludes self correlations which can be eliminated by
introducing the usual r-particle distribution functions
f, through?®

fr(xl...

G|f1=0,¢1=0’

x,t)

afjxl)( afl((sxl) a.2)

0 o~
—6(1,3) — &2, 3
< (1570 — 209 = 2. 9)
. 0 X
(’ T
=82, 1) == 8 = 1.9)) Gl oo (100

Correlation functions may be introduced through

their generating functional H, i.e.,
G=e" (101)

which lead to Mayer-type cluster expansions.

W. E. BRITTIN AND W. R. CHAPPELL

VI. THE FREE ELECTROMAGNETIC FIELD

Maxwell’s equations for the free electromagnetic
field are:
1 0E

VxB—-—=0, V.B=0,
c ot

10B

VXE+—E=0 V.-E=0. (102)

Therefore, the distribution functional F[E, B, ¢] for
the field satisfies the equation of motion

10F oF oF
- drlVxB.— —VxE.—! =0, (103
c o1 +f r{ SE 63} (103)

while G, the functional Fourier transform, satisfies the
equation

1 0G f { oG oG
oo v A v L=
car T dnV x E, OB, x B, OE, 0

(104)

which is exactly the same as Eq. (103) with B— E,
and E — B,. Since the initial-value problem for the
free electromagnetic field can be solved, Eqgs. (103)
and (104) can be solved. To this end we introduce in
Eq. (104) the complex field F, = B, + iE,, F} =
B, — iE,. Then Eq. (104) becomes

196 _, fdr{VxF %6 —vfo.ici}=o.
c ot oF, OFf
(105)
Equation (105) may be solved directly!é to yield
G[F,,F}, 1] =exp {ictfdrl:V x F, - 6—6—
1
V x Fy- 9 G[F,, F{,0
- x 1 (SF;‘ [ 1> 1> ]
= G[e"V*Fy, e “'V*FF, 0]. (106)

The solution (106) corresponds to the fact that the
characteristic equation for F1 is 6F1/3t —tcV X Fl,

which has the solution Fl(t) = et 1(0). Thus,
Eq. (106) is an example of the general result (11).

The subsidiary conditions (V.E)F = (V.B)F =0
mean that we may consider the arguments E, B of
F[E, B, t] as being transverse. Further, since [ E(r)
E(r) dr projects out the transverse part of E,(r), we
may consider G[E,(r), B,(r), f] to be a functional of
the transverse parts of E, , B, . That is, we may consider
as arguments of G, only those E,, B, for which
V-E,=V.B, =0.
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The solution f‘l(t) = e"'“v"fl(O) may be expressed
simply in terms of the Pauli “D” function:

E@g:Eg—Nx Ubh—ﬂﬂﬂﬂQW,

(107)
with?

1 ] sin (¢ |k| 9
D(r, t) = e ker) —
0= e e n =0
and V.F(r,0) = 0. The function D may also be
expressedas D(r, t) = (4ar) Hd(ct — r) — S(ct +r)},
which shows that the fields E;, B, propagate with
velocity ¢ and then are mixed:

dk, (108)

&m=1§mE@+quE@,(m%

C

£ =1 ; DE,(0) — V x DB,0), (110)
C

where D F(r) = | D(r — x', t)F(r') dr’. Equations (109)
and (110) correspond to the propagation of the free
electromagnetic field expressed by

(E(r, ) + iB(r, 1))

‘W}?‘Nx Hba—nommo+mﬁmﬁ
cat
(111)
or
10
E(t) =-—D,E, + V x DB,
cot
and
B(t) = 152 DB, —V x DE,. (112)
¢
The functional G[E,, B;#] thus may be written
. 10
G[E;,B,, 1] = ('[— “a" D_E, -V x D_B,,
¢
10
5 D_B, +V x D_E;,0), (113)
¢
10
G[E,,B,,f]=GC _'a_DE1+VX D,B,,
10
~—DB,—VxDE,,0|, (114
c ot

since D, = —D_,. The functional in Eq. (114)
represents the most general statistical situation for the
free (classical) electromagnetic field. From it one may
directly obtain expressions for the correlations

E(r)E(r,) - - - E(r,)B(r,. ) - - - B(r),
288, T. Ma, Phys. Rev. 68, 166 (1945).
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in terms of
(E(rDE(rs) « - - E(r)B(req) - - - B@)), s=0,--+1,

since the correlations are functional derivatives of G
evaluated at E;, = B, = 0 [cf. Eq. (59)]. For example,

6G _12
-—1 i D V D
(E(r)), lﬁEl(r) epo Py «E)o + V x DB,
and (115)
By, =i 2| =12 pp), — v x D.E)
T By |y cor ’
(116)
as was anticipated. Another simple example is
8°G
E(r)B(r,), = it ———~ 117
(E(ry) (l'2 Y i 6E1(r1)6B(r2) , ( )
or
1 a oD,2
EE)BE), == 2 D) *( 2D Ey(r ()
oD,(2
+1 v1 D(1) —t(—) (Bu(ry)By(rs))
12

D(1)V, x D, (2XEy(r;)By(r,))

- Vl x D(1)V, x D, (2)By(r)Ey(r,)),
(118)

using an obvious notation. Although the results
shown here are quite simple and could have been
obtained by other methods, we have included them in
order to illustrate the power and generality of our
methods.

VII. STATISTICAL MECHANICAL BASIS OF
PLASMA PHYSICS

We consider a system composed of N particles each
having charge e and mass m* interacting via the
electromagnetic field. The system is described in
terms of the electromagnetic field E, B and the exact
classical microscopic phase-space density function f.
The quantities E, B, f are coupled through the exact
microscopic Maxwell-Klimontovich equations!6-23-26;

LR _ gy B——fpf(r p) dp, (119)
¢ ot

10B -

29 _UxE, 12
¢ ot X (120)
a-_f=_£.vf_e(ﬁ+1xﬁ)-al, (121)
ot m me op

VR = dme J‘ 7r, p) dp, (122)

29 For simplicity we consider only one species, but the multi-
component system is easily handled.
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and
V.-B=0. (123)

It must be stressed that f described in the above system
of equations must be considered as an implicit function
of the exact positions and velocities (p, = mv,) of all
the particles, as well as a function of r, p:

N
fx, p) =k§15(r — £)(p — P (124)

and, further, that Eqs. (119)-(123) are equivalent to
the usual microscopic Maxwell-Lorentz equations.
The point of view which we now adopt is that these
equations form a closed system of coupled field
equations for the three fields E, B, f. Then the general
theory as outlined in Sec. 5 can be applied directly.
We introduce the distribution functional F[E, B, f, ]
for the fields E(r), B(r), f(r, p). The functional F
satisfies the following equation:

+fdr{[cv x B(r) — ——fdl’ B, ")] PE(r)

5B )}J’fd'd"{[“* vt )

of(r, p)) OF
— el E Br)| . —} —— = 0.
"[ O+ ()] 2 }3f(r, "

(125)

In addition, it must satisfy the subsidiary conditions,

— cV x E(r) -

{v CE(r) — 4me f 1 p) dp}F =0, (126)
and
(V- B@)}F = 0. (127)

Our goal is to obtain coupled equations of motion for
various particle distribution functions

) ) = filxas oo, %)
and field-particle correlation functions
(E(ry) - - - E@)B(r) - - - B f(x0) - - - f(x,))-

(Actually, we are interested in the particle distri-
butions £, which do not contain self-correlations, but,
as was mentioned in Sec. V, a simple transformation
on F allows the £, to be found.)

The functional Fourier transform G[E,, B,, fi] is
introduced through

FIE, B, f] = f exp {il(E, Ey) + (B, By) + (f, )1}

X G[E,, By, fi] d[E,] d[B,] d[f,]. (128)
The equation of motion for G is found directly from
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Eq. (125) and is expressed by

oG 4G 0G
- dr{cV x E;«— 4+ ¢V x B; « —
+fr{c X 16B1+c b 16E1
41'refd ‘K, }
ofy
drdp{— ~-V
+fr P{ m fléfl

dfy 0 P 6 116G
_ JL 42 129
fexp (ap) [6E1-+rnc X aBI}Qﬁ_ (129)

In addition, G must satisfy the subsidiary conditions

{V———4mﬂ@—¢ =0

V.—G=0.
1

Equations (129)-(131) serve as a basis for the general
statistical theory of particles interacting with the
electromagnetic field. The resulting moment equations
form a hierarchy similar to the usual BBKGY
hierarchy of statistical mechanics, and are equivalent
to the Maxwell-Lorentz theory with lack of informa-
tion built in.!*1617 These equations differ from the
customary equations in that the particle distribution
functions contain self-correlations. That is,

Ja(xax) = (f(x,) f(x2))
G x
=f— = ) 2
S s AP
where f; has no self-correlation.

We have shown that these equations generate the
usual hierarchy arising from the Liouville equation.
However, our point of view is that these functional
equations should be considered as the basic starting
point for the statistical theory of charged particles
interacting via the electromagnetic field. Especially
for situations such as those arising in turbulence,
where the familiar truncation procedures are not
applicable, we may expect methods based on the use
of the functional equations to lead to new results. For
example, the method of Lewis,®® which can be used
to obtain closed equations for reduced distribution
functions, can be applied directly to the functional
Liouville equation. In this case the entropy is a
functional of the distribution functional F: S[F] =
—~k [ d[F]FIn F, which is to be maximized subject to
constraints which require F to be a functional of those
field quantities required for the macroscopic descrip-
tion of the system. For example, one might want to

(130)

and
(131)

30 R. M. Lewis, J. Math. Phys. 8, 1448 (1967).
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describe the macroscopic behavior of the system in
term of (f(r,p)), (E(r)), (B(r)), and (f(r, PE(r)).
The results of this line of investigation will be pub-
lished later.

APPENDIX A

Remarks on Functionals

A functional may be considered as a mapping which
assigns to the function ¢(x), a number F[¢]. The
functions ¢(x) usually lie in some function space,
e.g., Banach space, etc. We assume tnat the argument
functions ¢(x) are elements of a real Hilbert-space J¢
with the scalar product (¢, y) = f, S(xX)p(x)dx,
where E, is the underlying n-dimensional Euclidean
space of the argument x of the function ¢(x). The
norm |¢{ of the function ¢(x) is defined by |¢|2 =
(¢, ¢). With the notion of the size of a function being
given by its norm, we may apply many of the standard
ideas of analysis to functionals. For example, a
functional is continuous at the argument function ¢ if,
for a given € > 0, there exists a d, such that |F(¢) —
F(p)| < e for all  for which ¢ — | <4,. If a
functional F[t, ¢] is a function of ¢ as well as a func-
tional of ¢(x), derivatives and integrals with respect to
¢t may be performed in the usual way, e.g., 0F/0r =
DIt, ¢] is again a functional of ¢ and a function of .

We now introduce the idea of differentiation of a
functional with respect to the function ¢(x). This
notion parallels the idea of the gradient VF(x) of a
scalar function with vector argument. We observe
that for such a function

LR+ Wlo=y-VE (AD
so that VF appears as vector argument in the scalar
product y - VF. In analogy to the above development
we can form from the functional F[¢] the quantity

L FI + il (A2)
whenever it exists. For our purposes we shall assume
that the expression in Eq. (A2) is a linear bounded
functional®32 of the function w(x). Then there
exists a function OF/d¢(x) [called the functional
derivative of F with respect to the function ¢(x)],

such that
d oF
—F Ayl = (w, —].
a7 ¢+ ’/’]Iz_o (1/) 5 )

It is to be noted that, in general, 6F/d¢(x) is a func-

(A3)

31 If the quantity in Eq. (A3) exists, it is referred to as the Giteaux
differential. 1f the GAteaux differential is a bounded linear functional,
it is called a Fréchet differential. See Ref. 32.

32 E. Hille and R. S, Phillips, Functional Analysis and Semigroups
(American Mathematical Society, Providence, R.1., 1957), p. 109.
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tional of ¢ as well as an explicit function of x. If we
replace y(x) by the d distribution 6(x — x,), we obtain

d oF
4 ptg+ avlle, = :
et e 58(xq)

However, one must exhibit care with such procedures
since 0F/d¢(x), as defined by Eq. (A3), is in general a
distribution itself, and therefore its value at a given
point x may not make sense. [For example, if
Fl$(x)] = ¢(x) we have d¢(x)/0$(x) = 6(x — x').]

Higher-order derivatives are defined in a similar way:

dn

(A4)

n 67LF
B o= (w00 (AS)
Ef o 'L‘ dxl don(xl) e W(xn) 6¢(X ?nF[(#(;IqS(X )
in Yn 1 n
(A6)

If the nth derivatives exist, and if F[¢ + Ay] is
analytic in 4 for A = 1, we have Taylor’s theorem for
functionals:

i+l =3 L[ o[ e,
=0 n! Kn Eq
o"F
X
O(xy1) -+ 0b(x.,)
A functional may also be thought of as a function of
an infinite number of variables,3? for if one introduces

a fixed basis ¢,, ¢», - -+ in the Hilbert space of the
functions ¢(x), we have

Fl$(0)] = F[Z anqs"(x)} = F(ay. a3, ). (A8)

PO p(xa) - - wlx,). (A7)

Further, since for an orthonormal basis

an=[ #0900 dx,

En
OF < da, ﬂ’__z
Sd(x) = 0d(x)0a, =

We note that (¢, , 0F/d¢(x)) = 0F/da,, which gives
further insight into the relationship between functional
derivative and derivative (gradient). Another way of
looking at the functional derivative consists in splitting
up the space E, into a number of tiny cells Ax,, i =
1,2, 3, - such that

aTF $u(x).  (A9)

Ax,

E, i

s

1

)

and
Ax, NAx, =0

33V. Votterra, Theory of Functionals (Blackie and Sons, Ltd.,
London, 1930).
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for i 5% j. Then the function ¢(x) may be “projected” -

() ~ i SE ),

where E;(x) is the characteristic function for the cell
Ax; and

(A10)

b = f B(x)E(x) dx (A11)
[Ax;|
(1A, is the volume of the cell Ax).
A functional F[¢] may now be considered to be
approximately a function of the variables ¢, ¢,,- - - :

We then have
oF szlaqs
or
201
oF ~i§le | a(ﬁ RS AR (A13)

If we now allow each |Ax,| to approach zero, d¢; is
assumed to approach a smooth function d¢(x) and the
sum in Eq. (A13) becomes an integral

OF ~ féF[‘“aqs( x) dx,

where 0F[$]/dé(x) is the limit
. 1 OF
lim —.

laz;|~0 |Ax;] O,
Here the functional derivative appears as a “‘derivative
per unit volume” and the argument x in OF/d¢(x)
is that point upon which the volume Ax, shrinks to
zero.

The integration of functionals over the Hilbert
space of functions ¢(x) presents considerable mathe-
matical difficulty so we shall be content to give a
heuristic treatment of functional integration.? If we
represent the functional F[¢] as a function of its real

Fourier components a, = (¢,, $), we may define the
integral § F[¢] d[¢] as the limit

) * da, da,
lim f —3 %
n—w J—ow w (2m) 2m)

34 A rigorous treatment of functional integration with physical
applications and an extensive bibliography is given in Ref. 20.

(Al4)

[g anqbn} (A15)

W. E. BRITTIN AND W. R. CHAPPELL

if it exists. The factors (27)% are introduced in order
to avoid infinite normalization constants in functional
Fourier transforms. There are other methods® of
introducing functional integration, but the above
procedure will be sufficient for our needs. The integral
in Eq. (A15) is invariant under orthogonal changes in
basis and under fixed translation,

f Fl$ + il di] = f Fl41d[4.  (A16)

The functional Fourier expansion may be carried out
as follows:

FI$] = F[S a,$u]
=tim [exp (;; a,,b,,)
db db
Glb, -+ b1 —L .- n
X [ 1 n] (277)% (217)%
= f S OHIG4,] diy], (A17)
where
$1(x) = i brba().
Since
G[b1 e e b”]
fexp (—IZab)F[Z n¢"](2 )%. . .(_;1%;%’
(A18)
we have
Gl = f e DE[4] d[]. (A19)

In particular, the delta functional A[$] appears as the
limit
Al¢d] =lim dbn

wf fexp(zf’ ’)(Zw)*m(_z;)_*

= lim n[@w)*a(an)]

N-w n=

= [ dig) (A20)

35 F. A. Berezin, The Method of Second Quantization (Academic
Press Inc., New York, 1966), pp. 37-41.
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We show how to obtain formal solutions of the chain of equations for distribution functions in classical
statistical mechanics. These solutions are in the form of complex functional integrals. They are not unique,
which fact is a fundamental property of the equations, and the different solutions are recognized by differ-
ent integration paths in the complex function space. The different manners of integration correspond to
different phases, of which some can be identified with the possible physical states. The treatment of the
integrals in some cases is also discussed. They are closely related to generalizations of the molecular
field approach to the problem:. It is also shown that the functional integrals can be written as averages over
an external field and that essentially the same form is valid in the quantum-mechanical case.

1. INTRODUCTION

The problem of solving a many-body problem in
statistical mechanics is so very complicated that it is
worthwhile to try new mathematical methods for the
problem. For this purpose, some authors have used
functional integration.! By the use of such methods we
get formal, closed expressions for the quantities of
interest. They also give valuable information about
simplifications and new approximation methods for
the solution of the problem. The drawback of this
method is, of course, that only some types of func-
tional integrals can be treated with mathematical rigor.
In this work, we treat the integrals as limits of ordinary
many-dimensional integrals, and merely assume that
this limit exists. We remark that, at the moment, no
method exists that can rigorously treat a general
many-body problem in the thermodynamic limit.
The functional integrals have the advantage that they
contain in a closed form the physical facts and at
least give hints as to how to proceed to a better
understanding of the problem.

Functional integrals have essentially been used to
represent the partition function Z. As is well known,
the structure of Z becomes extremely complicated as
the number of particles in the system increases. The
function does not exist in the thermodynamic limit,
nor has it a simple asymptotic form. However,
certain quantities, defined as quotients of functions of
this kind, have simple asymptotic properties and

1 Reviews of such attempts are found in: M. Kac, Probability and
Related Topics in Physical Sciences (Interscience Publishers, Inc.,
New York, 1950), Chap. 4; I. M. Gel’'fand and A. M. Yaglom,
Uspekhi Mat. Nauk 9, 77 (1956); [English transl.: J. Math. Phys. 1,
48 (1960)].

Among the works which use these or similar methods, the
following can be mentioned: R. P. Feynman, Rev. Mod. Phys. 20,
367 (1948); S. F. Edwards and R. E. Peierls, Proc. Phys. Soc.
(London) A224, 24 (1954); I. M. Gel'fand and R. A. Minlos, Dokl.
Akad. Nauk (SSSR) 97, 209 (1954); R. Scalettar, Ann. Phys. (N.Y.}
38, 238 (1966); S. F. Edwards and D. Sherrington, Proc. Phys. Soc.
(London) 90, 3 (1967).

can be well defined in the limit. It is also known that
these limiting quantities are not unique analytic
functions, but correspond to different analytic
functions in different regions of its parameters (e.g.,
temperature, chemical potential).

For this reason, a method has been developed by
the author,? in a paper which is referred to as I, where
distribution functions with well-defined limits are
represented by functional integrals. These expressions
are in fact the solutions of a chain of equations,
rewritten as functional differential equations by the
use of generating functionals. These equations were
first derived by Bogoliubov.> The mentioned non-
uniqueness of the limiting procedure shows up here
in a nonuniqueness of the solutions of the equations.
We get, in fact, a very large number of solutions, each
characterized by its mode of integration.* We briefly
recall the results of I in Sec. 2, where the equations
and the solutions are presented. We also discuss the
solutions of a much simpler equation which, in fact,
has much in common with the general one and which
gives valuable information about the more compli-
cated integrals. We further discuss these solutions in
Sec. 3 and also show how we get the equations of
a molecular field theory by integrating over a saddle
point. The integrals were defined in I for regular
interaction potentials, but in Sec. 4, we show how to
treat cases with a hard-core potential, especially a
lattice gas (where the hard core is necessary). As
problems of these kinds are the only ones which can
be exactly solved by any methods, they are valuable to

2 C. Blomberg, Acta Polytechnica Scandinavica, Ph 49, 1967.

3 N. N. Bogoliubov, Zh. Fiz. (SSSR) 19, 256 (1946) [English
transl.: Studies in Statistical Mechanics I, edited by Uhlenbeck de
Boer (North-Holland Publishing Company, Amsterdam, 1962)].

1 We note that similar results are the aim in quiteanother approach
to the problem: the algebraic method for treating infinitely large
many-body systems. This method is, for example, developed in:
H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963); G. Emch

and M. Guenin, J. Math. Phys. 7, 915 (1966); E. J. Verboven,
Physica 32, 2081 (1966).
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study with this method. We also discuss the connection
with Wiener integrals in Sec. 5. As these integrals are
the only ones which are mathematically studied, this
is very important. In some cases, particularly for the
one-dimensional Coulomb field, it is easy to formulate
the problem in terms of such integrals. However, in
most cases it is not possible. Finally, in Sec. 6, we
show briefly that the functional integrals can be
written in a very general form, including the corre-
sponding integrals in quantum-mechanical problems.
In this form the distribution functions (or the corre-
sponding quantities) are written as simple independent-
particle solutions in an external field, averaged over all
possible external fields with a certain measure.

2. GENERATING FUNCTIONALS FOR DISTRI-
BUTION FUNCTIONS

In this section we first state the problem and the
conventions which are used in this work. We assume a
system of particles acted on by an external potential
U(r) and an interaction potential ¢(r — r’) between
pairs of particles. We assume that ¢(r) is everywhere
finite. In some cases it is convenient to assume that the
Fourier transform of ¢ exists. This means, among
other things, that | ¢(r) d% is finite. None of these
assumptions is fulfilled among physical potentials.
Nevertheless, they are convenient to use in formal
analysis and it seems improbable that they should
imply any special properties of physical interest in a
continuous system. In a discrete system such as the
lattice gas, it is more important to assume a hard core,
i.e., it must not be possible to have more than one
particle at each point.

For convenience, we use a grand canonical en-
semble throughout this paper. We also put 1/kT = §
and « = u/kT, where p is the chemical potential.

A general distribution function is defined as

F"(l'l," "rn)

N!
_én(N—n)!
xf. : 'fdsrn+1 o dryp(Nsr, oo ry), (1)

A o
where

p(N;T 1y
_ 2mmkT)IVeNe
Z-N!

X exp {—ﬂ[zz, o(r, — 1) + ; U(rk)]}. ¢))

Z is the partition function, necessary to normalize the
density function p.
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The simplest way of writing the chain of equations
is by introducing the generating functional

S A ] feon

3 n)u(rl) e u(r'n)‘ (3)

The following equation was derived for a slightly
different functional by Bogoliubov®:

Flu] =

X Fn(rl,”

oF .
o = e o= BUK) — Q)

X Flu@) + Dexp {—for —r)} ~1], @)
where

Qo = —% log 2wmkT). (5

It was shown in I that (4) is a more restrictive
equation than the chain of equations derived by
Kirkwood and others.® That chain of equations is the
most extensively used. It can be derived from (4),
but the opposite is not possible.

The solution of (4) is greatly simplified if we first
consider the following equation, treated in I:

df (") f{x + 1} = 1). (6)

This is, of course, a very simplified, but far from
trivial version of (4). The general solution can be
written as

2
I(x,b,d,c) = const xfexp {i +(x + l)e”"’} dt
c

2
= const; X f exp {P-zs— + (x + l)e’"’*"} ds.
c

)
Here d = a + b/2. In |, only the first form was used.
Equation (7) was derived by using an integral-trans-
formation method in (6). C is a path in the complex
s- (or t-) space such that the value of the integral is not
changed by a translation parallel to the real axis.
This means that C starts in some direction at infinity
where the integrand is zero and ends in another,
nonequivalent direction. We can always start or end
in a “channel” parallel to the positive real axis at a
distance of an odd number times = from it in the -
space. In these channels the double exponential part of
(7) becomes zero. If b > 0, we can also move parallel
to the imaginary axis, and if b < 0, we can move
parallel to the negative real axis. Some symmetrical

5 See Ref. 3.

8 This chain of equation was first derived by: J. G. Kirkwood, J.
Chem. Phys. 3, 300 (1935); J. Yvon, Actualités scicntifiques et
industrielles (Hermann et Cie., Paris, 1935). Since then, it has been
used by a number of authors, e.g., N. N. Bogoliubov (Ref. 3).
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paths and their nomenclature used in 1 are shown in
Fig. 1.
The solutions of (6) with the condition f(0) = 1 are:

Sx)=1I(x,b,d, C)]I0, b, d, C). 8

In particular, we want to know the derivatives at
x =0:

FO(0) = " D0, b, d — nb, C)/K0, b, d, C). (9)

The solutions of (4) can be obtained by the same
methods. As we aim at the most possible mathematical
rigor, we first solve the equation in a discrete case
where the continuous volume is divided into a finite
number M of cells around points 1y, - -+, ¥z . These
cells have volumes A;,---, A, . Any function is

AN, e NASOVINNNN
X 7
g N N
FANARRRNY NN
& >
< m\ As e ey
s N p DALMY
£ - 3
b Y ; ; ; ; ( ;; ; A
RANANNN ALIARRRAWY
L Lz
< Y
S ANV L TITTTTSNT
BN Tigh o LA
U —pont >
o DN
X e
. NN in/2 m
AN ARTRRRRANY
N AR
TRRREESYSS TTTTTTTTTYsTY
Fig. 1. Some paths for the
AANNANALIA integral in (7) are shown.
> Paths a—d are suitable when
b > 0 (together with a path
A m along the imaginary axis =
. Cy); e-g are suitable when
= b < 0. We name them as
d. NN follows:
NSNS (a) (a path, symmetrical
£ with respect to the imaginary
axis, starting and ending in
2 the first channels) C(+);
(b) (antisymmetrical with
N respect to the imaginary
axis) C3(+);
TR (c) C3(+);
(d) Co(+);

(e) (valid for b < 0, and
symmetrical with respect to
the real axis) CH—);

(f) CH—);

(® CiH=)
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written as a vector: f(r) — {fi = f(r), 2. " " * s [u)-
Instead of (4) we get a system of partial differential
equations
OF[u,, -

ou,
= exp(a - QO + IOgAn - ﬂUn)

X Fl(u, + De~forn — 1,
(uy + 1)e—ﬁ¢an -1, -, (“M + 1)e—ﬂfm,; - 11,

'suM}

(10)
whose solutions are
Tpf(uy, 5 uprs Spp
= const X f exp {ansn. B AA,
Sx 'R 2
+ 3 (. + DA,
X exp (E ﬂ(pnn'sn’An’ + Bﬂ)} dsl Tt dsM . (1 1)
Here
Bn=a—QO—"ﬁUn-‘pn'n' (12)
In the continuous limit we get
JHu(r); S1= lim Iy, - - ups Syl
all A0
= const X {@[u, s]TT ds(x), (13)
8 r

where @ is the functional
®lu(r), s(r)]
= exp { f f s(D)s(r") ME_——IJ) &rd® + f [u(r) + 1]

X exp ( f Bolr — ¥)s(r') & + B(r)) d"’r}; (14)
B(r) = a — Q, — U — ¢(0). 15)

The conditions upon the paths S, are very much the
same as these of the paths Cin (7). In fact, they must
be composed of the paths shown in Fig. 1. Each
variable is integrated along a combination of these
paths.

We always consider the functional integral as the
limit (13). In this way, it is not necessary that the
limits of the integrals exist, but that the limits of
certain quotients exist. We always write the formal
functional expressions and understand them as the
respective limits. From a physical point of view, this
is completely satisfactory. It also seems to be probable,
although no mathematical proof has been obtained,
that only functions with a finite (or possibly an
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enumerable) number of discontinuities contribute to
the physical properties. If this is the case, the integrals
in (14) are proper Riemann integrals. (If it were not
the case, the actual division of the space, which has no
physical meaning, would be crucial.)

To get the generating functional, we require that

F0l=1, (16)
and for the distribution functions we get

Fn(rls e ,l'n)
M Fu]

B [611(1‘1) S 6u(rn)} =0

~

=JS(D"[0’ s;ry, Ll T ds(r)/fSQ[O, s] TT ds(r),

where 17

D [u,s;r,, ,1,]

= exp {n(a — Q) — ﬁkgl ur) — B ;:}1: o(r, —1,)
X exp U‘J‘s(r)s(r')ézg p(r — ') d’r d*r
+ [0 + e | [Bote —estey

+ B,(r;ry, 0, rn)] d3r}. (18)

Here n
B(r;ry, -,r,) = B(x) — ﬂkgltr(r -1 (19)

B is the same function as in (15).

3. SOME PROPERTIES OF THE INTEGRALS

One obvious way to try to calculate (14) [or the
simpler integral (7)] is to develop the double expo-
nential factor in the integrand into a power series. Then
each term gives an integral over a Gaussian function
which can be calculated. The series corresponds di-
rectly to the Ursell-Mayer series.” It is, however, easy
to understand that this series can give a correct answer
only in those cases where the Gaussian factor deter-
mines the behavior at infinity. This means that it can
only be an asymptotic series for integrals parallel to
the real axis. In particular, this series does not make
any difference between the various channels and it is
probably always divergent when the quadratic form

f s()g( — v)s(r’) d°r &%’
is not positively definite.

7 Series expansions of this type were derived by: H. D. Ursell,
Proc. Cambridge Phil. Soc. 23, 685 (1927); J. E. Mayer and M. G.
Mayer, Statistical Mechanics (John Wiley & Sons, Inc., New York,
1940).
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Another way to get an approximation of the integral
is to look for saddle points of the integrand. In fact,
we find those for the function s(r), obeying the
equation

so(r) + [u(r) + 1]
X exp [Bf«p(r — 1)sy(r) & + B(r)] =0. (20)

If we put u =0 and s(r) = —p(r), this becomes a
molecular-field equation for an average density p(r),
as the second term gives the Bolzmann distribution
from a potential | @(r — r")p(r’) d® arising from this
density.® If we expand the integral around the saddle
point, we again obtain a Gaussian form, which repre-
sents the total integral if its range is small. In particular,
its width must be smaller than the periods of trigono-
metric functions, arising from the complex values of
the functions.

In order fo get an easy understanding of the proce-
dure, we first examine the simple integral (7). We use
the second form and get a saddle point when

So(x) + (x + 1)en@+d = g, (21)
The derivative of s(x) is given by
se(x) = — @Y1 4 b(x + 1)eto@+)
_ so(x)/(1 + x) 22)

1 — bsy(x) )

In the neighborhood of s,(x), the integrand of (7)
becomes

®(0, x) ~ exp {%") [bsy(x) — 2]}

X exp {’-’;i [ — bso(X)]}, 23)

where s = s4(x) + o. If this expression is used in (7)
and (8), we get

769 ~ exp [2 [) = 501 560 + 50 = 7 )
1 — bsy(x) 3

1 — bsy(0)

. (24

The derivative of fat x = 0 is then obtained from (22)
and (24):

£10) = —54(0) + gso(O)[l — bsOT% (25

8 A general review of such approaches to various problems is
found in R. Brout, Phase Transitions (W. A. Benjamin, Inc., New
York, 1965).
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An interesting case arises when b is negative
(= —p). Then (21) has two real solutions if

d + log {f(x + 1)}
is less than one. One of these solutions is between 0
and —1/B, the other is smaller than 1/8. If ¢* is much
smaller than 1 and f not too large, this is fulfilled and
the saddle-point method gives an accurate result. We
get the following solutions:

(1) sp(x) &~ —(x + 1)é,

() so(x) ~ —1d|[B — 1/8 log {|d|/f(x + 1)}. (26)
For /(o) this gives

(1) f(0) ~ (1 + BJ2) + O(e*),

Q) f'(o) ~ |d|[B + 1/ log {|d|/B}. @7

We also see that (25) has a pole if bsy(0) = 1. This
merely expresses the fact that the width of the Gaus-
sian approximation in (23) is large and that this
method, strictly speaking, is inapplicable. The pole
has no direct meaning, although it indicates an
approximate site of a possible phase transition.

We treat the functional integrals in the same way.
Before writing down the formal expressions, we draw
some conclusions from (27) which are immediately
applicable in the physical case. We get such expressions
if we have a negative interaction and a small value of
exp {d}. The latter quantity is essentially the fugacity.
The first expression in (27) for the derivatives of the
generating functional gives the density, and we find
that it is small for the first type of solutions; in fact,
it is proportional to the fugacity, as it should be.
The second solution, however, gives a very large
density which increases with the fugacity. This is, of
course, physically impossible. (It would mean that the
pressure is negative.) Therefore, only the first solution
is physically possible, which means that we have
symmetrical paths of the type C,(—) in Fig. 1. The
second type of solution, corresponding to antisym-
metrical paths of the type C,(—), is not possible for
small values of the fugacity. However, for larger
values of the fugacity, it behaves in the same way as
the first solution and can represent a physically pos-
sible state. It seems possible that this indeed is the
liquid state. A rough estimate, made in I, shows that
the transition to the liquid state really occurs in a
region where the two solutions are equally possible.

The corresponding relations for the multidimen-
sional case can be written in a formula similar to (24).
We do it for the discrete case and use (11) for the
integrand. The saddle point obeys the equation

s?l(u) + (un + 1) exXp {/3 z (pnn’ng’(u)An' + Bn} = 0.
(28)
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Then (11) gives
Fli ] ~ exp {33 (530) — @)

x {zg Punli () + 52018, ~ 1

x exp {—1% log [det F(u)/det F(0)]}.

(29)
Here F is the matrix {F,,}:

an’ = ﬁ/z[(Pnn’ - ﬂ 2 (pﬂn"‘pn’n"sgz”(u)An"]' (30)

The quotient of the determinants can, of course, be
written as the quotients of the products of the eigen-
values when the logarithm gives a sum which, in the
continuous limit, becomes an integral.

From (28) we can now evaluate derivatives ds%(u)/
du(r) which are used to get the distribution functions
from (30).

4. THE PROBLEM OF HARD CORES

In the formulas (13)-(15), it has been necessary to
assume that @(r) is always finite. This is probably not
fulfilled for real potentials, but, as has already been
mentioned, the actual behavior for small r is usually
immaterial in physical problems.

As in earlier problems, we first study the behavior
of formula (7) when & is very large. This will show the
general method. If we integrate along the imaginary
axis, we can use the aforementioned series in powers
of e*:

2
I(x) = const xfexp (-b—;—) [1 4+ (x + )etetator

+ _%(x + l)zeZba+2a+b+ .. ]

Jew (3)
= const X | {exp 7

+ (x + 1)e* - exp [ﬂs_;—_lf]

b(s + 2)* _3b
2 2

When b — o0, we get the following relation from (8)

when we integrate along the entire imaginary axis:

li =1 x 32
fmfO=l4m O

If we integrate along an allowed channel parallel to the
real axis, the integrand becomes

+ le® exp [ ] + } ds. (31)

ba® .
O(x, o) = exp [—2- + i(2n 4+ V7o

_(@2n+ 1)2m?

b —@+Wmmﬂ'm)
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Here s = o + i(2n + 1)7. It is easy to see that it is a
monotonically decreasing function of 6. When o is
finite, it is certainly zero if b is infinitely large. There-
fore, for the paths of the type C,(+) or C,(+) in Fig.

1, the integrals along the parts parallel to the real axis
are zero. We thus have to consider only parts along the
imaginary axis where (31) is valid.

- We now consider two important cases. The first one
is the discrete lattice gas, for which (11) is immediately
valid with all A, = 1. However, we must have
Qnn = ©, as otherwise we would allow several
particles at the same point. We can do the same
expansion as in (31). It is easy to see that the result
(32), when integrating along the entire imaginary axis
for all variables, is equivalent to '

Ipg(uy, - v o5 upg; Co)

= const xfexp (zs Sm

B) T {1+ o+ 1)

X exp [ 3 Bansn + B2 | T ds,. (30
In formula (34), all ¢,, = 0, and BY is given by (12)
without ¢,,,,. Cy means that all s” are integrated along
the same path. Formula (34) is in fact equivalent to
the one derived by Siegert for the partition function.®

In principle, we can use this method to treat singular
potentials with infinite ¢(0) or an infinite hard core.
We can use the same formula, (34), when the hard core
is taken away. This is, as before, only valid for paths
parallel to the imaginary axis. We get, in the discrete
case,

Ipg(uy - - upg; Co)

= const xf exp { 525 ﬂ_tpm}
n,m 2

x TT [1 + O,y + 1) exp {z B&amsm +

Bgﬂ ds,.

(33)

In (35) ¢,, is chosen in such a way that it is zero
inside the hard core. 6" is an operator, which obeys
the following rules:

0,0, =0, if n and m are inside the same core,

= 1, otherwise.

5. CONNECTION WITH WIENER INTEGRALS

The only type of functional integral which is
extensively studied is the Wiener integral, which can

9 A. J. Siegert, in Statistical Physics; 1962 Brandeis Lectures
(W. A. Benjamin, Inc., New York, 1963), Vol. 3.
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be written as

J= lxmf Jexp [ (S"“A Sn ):I

X F(sy - s,) I ds,. (36)
Such an integral can be properly defined.?

Formally, it can be written as

3 _f fexp {f [ds(x)] }F[s] 1:[ ds(x). (37)

Our integrals cannot, in general, be written in this
way. However, in the cases where all s-variables are
integrated along the imaginary axis, it can be trans-
formed to this form, when a and & are allowed to go
to infinity. One obvious way is the case of an one-
dimensional Coulomb potential which obeys the
equation

d e(x
d"”ﬁ ) 5(x). (38)
We make the following substitution in (14):
. d?
s(x) =i ‘—1; 1(x). (39)

The Gaussian factor is then

fs(x)«p(x ~ x)s(x)dx dx’ = —f [%x):l-dx. (40)
X
The complete integral is

J(u) = const x fexp {—f [é%x):l 2d

f [u(x) + 1] exp [it(x) + B(x) dx]} T ),
(a1)

where @(0) = 0, which is why it causes no difficulty
here. B(x) would include a background change distri-
bution. Equation (41) is a true Wiener integral,
written in a formal way, and is equivalent to the
integral derived by Lenard and Edwards.1!

In fact, an integral of the type (41) can be written
down for all positive-definite integrals. We note that
the quadratic form can be written (here, for the sake

10 See, for instance, the first two works of Ref. 1. This type of
integral was first treated in the papers by: N. Wiener, J. Math. &
Phys. 2, 131 (1923); N. Wiener, Proc. London Math. Soc., Ser. 2,
22, 454 (1924).

i1 S, F. Edwards and A. Lenard, J. Math. Phys. 3, 778 (1962).
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of simplicity, we consider the one-dimensional case):
f ()P — x)s(x') dx dx’
dk
= [0 + 0190 5
27

= — f [2(k) + tz_(k)]kzﬂ( = f —[Mrdx. (42)

27 dx
Here
s,(k) = f s(x) cos kx dx, s_(k) = f s(x) sin kx dx
(43)
and
t(k) = ilgH(k)/K]s, (k). (44)

This transformation gives the following integral:

dx(x)] 2 I

X

J(u) = const xfexp {—[
+ f [u(x) + 1]exp [—i f d% P (x — x)H(x") dx’

¥ B(x)i| dx} I dix). (45)

@*(x) is the Fourier transform of g¥(k), which is a
well-defined function.

6. THE EXTERNAL FIELD AVERAGE

The fact that the integrals are so closely related to
the molecular-field approach suggests that the func-
tional integral can be interpreted as an averaging
procedure over possible external, complex densities.
In fact, this appears to be a valuable approach,
because a number of different physical problems can
evidently be written by functional integrals in essen-
tially the same way.

We first consider Eq. (4) without an interaction
potential, but with an external density p:

0F olu; pl

Su(r) = exp [a — BU®)

y f o — ©)p(e") & — Qo]ﬂu, ol.

(46)
This equation has the solution

Ffu; p] = exp { f & u(r)

X exp [—ﬁ j olr — 1)p(r) dr + B(r)}},
@7

where B is the same as in (15). This means that (14)
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can be written in the following form:

F[u] = const X f exp |: f s(Ms(r)o(r — 1) d°r dsr’]
X Folu + 1, —s] T ds(r). (48)

This is, of course, an averaging over the external
field s(r).

We immediately see that the integral (34) is of the
same type, since a nonnormalized generating func-
tional for an external density p,, is

Ioluy - - ups pr 0 pul

=1I{1 + (. + Dexp[~3 Banpn + Bal}.  (49)

We can also get the same expression in the quantum-
mechanical case. There, instead of distribution
functions, we use the Green’s functions

G (rity, -

- (%)"<T[w(r1to PRI - R EEDD. (50)

. .. ’
H r'ntn’ l'l,tl’ s * r,ntn)

At the beginning we assume that the particles obey
Bose statistics. As in the classical case, we use a
generating functional here:

Flu, v]
el ¥al B CXCORRLAAPT R 8
1 (n!)

X u(rty) - u(r,t,)
x o(ryty) * + - o(rLt) dry dty - - - A% dt, .

(51

We thus obtain a chain of equations for the Green’s
functions, which can be written in terms of § as!?

[ii + h_2V2:|6:T'[u,v]
ot 2m du(r, 1)
0F
= o, )F + U(r, t) ——
u(r, 1) (r )6u(r, 5
BF

ny f o(r — 1) (52)

Su(r’, ou(r't)du(r, 1)

By using an integral transformation in the function
space, a formal solution of (52) was obtained in I in
the form of a functional integral:

Fiu,v] =Lexp {f[p(r, Hu(r, 1) + q(r, Hu(r, )] d° dr}
x F[p,qldpdq. (53)

!2 This equation was first derived in P. C. Martin and J. Schwinger,
Phys. Rev. 115, 1342 (1959).
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Cis a suitable path in the complex function space, and
= . a h2 2 3
F = const X exp —fq(r,t)(t-—+ Ty )p(r,t)d rdt
ot 2m
+ B[ U@, D, 0 d'r s
ip ,
+ -ifp(r, Nq(r, Ho(r — 1)
X pr't)qr’t) dr dor' dt]. (54)
We can rewrite (54) by using
[rdsexp (— 21, 0 = pts D, 00
X gle ~ P, D) = plE’, D4, ] di & |
= const; X = f H ds exp {— lzé f [s(r, ) p(r — ¥)s(x't)
+ 25(r, Do — r)p(r')q’'t)] &°r d°r' dt}
ip
2

X exp {— p(r, Dq(r, 1)

X g(r — r)p(t’, Hq(r't) d®r &%’ dt:. (55

As in the classical case, we regard the functional
integrals as limits of multidimensional integrals, in

CLAS BLOMBERG

the sense that all expressions except those with
physical meaning are purely formal. From (57), we
see that the solution in the presence of an external
density, but without interaction potential, is

Folp, ¢; p
0 B e 3

= const, Xexp {—fq(r, 1) (1 — 4+ — V?) p(xt) d°r dt
ot 2m

+[[ve 0+ e = e, |

x p(r, Dq(r, 1) &r dt}. (56)
By the use of (55), (56) can be rewritten as
F[p, q] = const, 'J‘exp {— %3
X fs(r, Do — r)s(r', ) &°r &' dt
x Folp, q; —is] I ds. (57)

Together with (56), this expression is essentially the
same as (48): an averaging over an external density.
In I, the form (53) was used only for Bose systems.
It would be applicable to a system of fermions if the
variables, #, v, p, and g were not ordinary functions,
but belonged to an anticommuting algebra. This
seems to be a complicated task, although the expres-
sions have a formal meaning. However, (57) can
be used directly for a Fermi system if &, is the inde-
pendent particle solution in an external field.
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The operators of Elliott are extended in such a way that they also describe an SU, algebra in the mixed-
shell space AG*, where A * is given as the direct sum of two spaces . (0p) and A(0d, 1s) spanned by the
single-particle wavefunctions in the (Op) and (0d, 1s) shells of a harmonic-oscillator potential. The
representation of SUj in this space AU* is investigated in detail by the aid of the weight diagram in a way
analogous to that of Banerjee and Levinson. The basis is expressed in an explicit manner using the one-
particle wavefunctions in the usual shell model. The states arising from two- and three-particle systems
are classified according to the irreducible representations in this extended space.

1. INTRODUCTION

The SUs-coupling scheme of Elliott! has made it
possible to reveal the rotational character of some
nuclear levels on the basis of single-particle shell
model in a harmonic-oscillator potential, especially
for the (0d, 1s) nuclei with remarkable success. The
structure and the representation of the SU; algebra,
which constitute the mathematical foundation of the
Elliott scheme, have been investigated by several
authors?* for the purpose of wider application to the
theory of nuclear structure. Banerjee and Levinson?
have established a formalism to treat the residual
interactions within this scheme, while Moshinsky?
and his collaborators have developed another for-
malism to construct the irreducible state-vectors in
polynomial forms of creation operators, which is
applicable not only in the SU; scheme but also
in the seniority scheme, and then applied it to the
analysis of the (04, 1s) nuclei.

Physically speaking, the operators of Elliott are
composed of the transport operators which carry a
nucleon from a state (n/m) to another state (n'/'m’)
in a same energy shell; that is to say, the acting space
of these operators is limited to the shell space of a
definite energy. On the other hand, if one attempts to
apply this scheme to the configurations extending over
different shells, (0p)?(0d, 1s)’ for example, one makes
the direct product™® of the SU,-irreducible state-
vectors belonging to each configuration (0p)® or
(0d, 1s5)®, and then decomposes it by the Clebsch-

1 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128, 562 (1958);
A272, 557 (1963).

2 K. M. Banerjee and C. A. Levinson, Phys. Rev. 130, 1036 (1963).

3 M. Moshinsky, ‘‘Group theory and the many body problem” in
Physics of Many Particle Systems, E. Meeron Ed. (Gordon and
Breach, Science Publishers, New York, 1964).

4 R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, Rev. Mod.
Phys. 34, 1 (1962).

5 B. J. Verhaar, Nucl. Phys. 21, 508 (1960).

¢ H. Horie and T. Yokozawa, Phys. Letters 7, 145 (1963).

Gordan coefficients of the SU; group. The irreducible
components thus formed are assumed as the eigen-
states of the compound configuration in the Elliott
scheme.

In such formulation, however, the operators of
Elliott are reduced to simple sums of two kinds of the
transport operators belonging to the (Op) and (0d, 1s)
shell, respectively. As the result, the nucleons are
carried separately in each shell by these operators,
while the transport of nucleons into another shell does
not take place at all. Because the effective interaction
between nucleons should be derived from the second-
order invariant (Casimir operator) constructed from
the operators of Elliott, the matrix elements of the
above interaction involve the direct integrals only but
no exchange integrals between the states of different
shells. Moreover, one meets with the same situation
for the analysis of the particle-hole systems; if one
applies the direct-product procedure to the configura-
tion (0p)~"(0d, 1s)*, for example, one cannot expect
any contribution from the exchange integrals between
particle and hole, which are usually considered in-
dispensable™® for the evaluation of energy of the
collective states in the particle-hole systems.

Thus, one way of amending the above failure in the
direct-product procedure within the framework of the
SUj; scheme, would be to construct the generators of
SU, algebra in the nine-dimensional mixed-shell
space M*(0Op, 0d, 1s) as linear combinations of the
transport operators acting not only within one shell
but also over different shells. If it were achieved, the
matrix elements of the Casimir operator would
certainly involve the exchange integrals and, thus, a
more satisfactory SU; scheme would be obtained also
for the particle-hole systems.

?L. 8. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab.

Selskab, Mat.-Fys. Medd. 32, No. 9 (1960).
8 M. Baranger, Phys. Rev. 120, 957 (1960).
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In this article, we verify the existence of the genera-
tors of SU, algebra in the mixed-shell space A* by
extending the operators of Elliott and then proceed
to investigate its representations in A* following
Banerjee and Levinson. It should be noticed, however,
that the generators and the Casimir operator in our
scheme do not conserve the parity, because they
involve the transport operators carrying nucleons
from one shell to another. Thus, the basis of the
irreducible representations of our scheme cannot be
expected to give the realistic physical states immedi-
ately; some procedures must be performed in order
to project this basis into the states with definite

parity.
In Sec. 2, we define nine operators vt (t =0, 1, 2;
gq=1t,t—1,---,—1t)as linear combinations of the

transport operators in the mixed-shell space by
modifying the forms of the operators of Elliott. The
commutators among eight of these, v\ (1 =1, 2),
are shown to close among themselves, so that these
eight operators may be considered as generators of a
Lie algebra. Moreover, because the structure constants
appearing in these commutation relations are iden-
tical with those of Elliott, one may conclude that this
algebra should be SU,. In Sec. 3, the weight diagram
for this algebra is investigated in comparison with
those of Banerjee and Levinson. The basis of our
scheme is expressed in terms of one-body oscillator
wavefunctions in the usual shell model. In Sec. 4, the
states arising from two- and three-particle systems are
classified according to the irreducible representations
in AG* for the chain of subalgebras U, » SU,; @ Rs.

2. GENERATORS OF SU; ALGEBRA

Before introducing our new operators, we summa-
rize briefly the outline of the formalism of Elliott.
As is well known, the quantum states of a single
particle moving in a harmonic-oscillator potential are
classified into energy shells §(N) corresponding to the
energy values of fio(N + §), where o is the frequency
of the oscillator and N is any positive integer or zero.
Each energy shell 6(N) consists of degenerate orbital
states (n/m) with definite parity, where / = N, N — 2,
+++,1,0,and n = (N — [). Thus, the wavefunctions
¢(nlm) of a single particle in §(N) span an s-dimen-
sional vector space M,, where s=3,(2/+ 1).
Hereafter, for the sake of simplicity, we designate by
w aset of quantum numbers (n/m) of a single nucleon
in a harmonic-oscillator potential.

At first, one introduces the transport operators E¥’
by the following expression:

E¥ = aja, ¢
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where 4. and a, are the creation and annihilation
operators of a single nucleon, obeying the commuta-
tion relations:

[a:9 au]+ = 6;1"1 s [a;:’ a:]+ = [au': au]+ = 0 (2)
If one restricts the states u to those belonging to
&(N), all the operators E*" commute with the Hamil-
tonian ¢ = hw(3, afa, + $). Thus, physically speak-
ing, the nucleons are carried by these operators
among the states within a definite energy shell. The
commutation relations of E* are calculated by the
use of (2), giving the following result:

(B, Eiy] = ERiou — ELLou,

Bas f1s fhos po € 8(N). (3)
As is seen from the above formula, the commutators
of E¥ are expressed again in terms of linear combina-
tions of E¥’; that is to say, they are closed among
themselves with respect to the commutator product,
so that these s* operators constitute® the generators
of the unitary algebra U,. The same holds also for an
equivalent set of operators 4’ which were introduced
by Elliott! in the forms of the irreducible tensors of
rank ¢ with respect to the three-dimensional rotation
group Ry:

uf =@+ 03 @mig | im)ELY,
m,m’

t=14+0,14+0~1,---, |l =1
g=1tt—1,---,—t. (4
The commutation relations among the ul? are
expressed as follows!:
(w1, uy(kk"]
=>2r+ D¥esqp | tsrov)

X {(=DH S kYW (eslk'; vl (1K)

— S(IKYW (tsl'k; rk'yull(k1)}. Q)

Next, the operators of Elliott which describe the
SUj, algebra are introduced in terms of u{ or, equiva-

lently, in terms of 