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The genera~ techn~ques deve~oped .in ~? earlier .pa~er p. Math. Phys. 10, 494 (1969)] are applied to 
evaluate the SIngularItIes and dIscontInUItIes of umtarIty Integrals. The results are conveniently expressed 
in terms of what we call mechanism (or M) diagrams. 

1. INTRODUCTION 

A unitarity integral is regarded as an integral over 
real loop momenta of an integrand which is a product 
of mass-shell 15 functions and mass-shell amplitudes 
possessing the Landau-Cutkosky singularity structure. 
This paper applies the results of a previous paper, 1 

hereafter called I, to the singularities of unitarity 
integrals occurring for physical momenta. The main 
problem in doing this is the framing of a suitable 
language or notation in which to deal with combina­
torial complications. Since the anticipated singularities 
lie on arcs of Landau curves which can be related to 
Landau diagrams, and since the unitarity integrals 
themselves can be represented by unitarity diagrams,2 
it is natural to develop a diagrammatic technique. In 
fact, it is already known3 (and here confirmed in 
greater detail) that, roughly speaking, the singularities 
ofunitarity integrals correspond to diagrams obtained 
by replacing the "bubbles" of the unitarity diagram by 
Landau diagrams corresponding to possible singulari­
ties of the bubbles. The diagram so obtained is called 
a mechanism (or M) diagram, and plays a central role 
in providing simple rules for further important 
properties of the singularities, namely, (i) in dis­
tinguishing which arcs of a Landau curve may be 
singular, (ii) in determining whether (and if so in 
what sense) the evaluations of the unitarity integral 
on the two sides of the singularity I> and 1< are 
analytically related, (iii) in determining (where rel­
evant) the discontinuity of the unitarity integral, 
paying special attention to the integration region and 
over-all numerical factors, and (iv) in providing general 

• The resear~h reported in this document has been sponsored in 
part by the AIr Force Office of Scientific Research under Grant 
AF EOAR 65-36 through the European Office of Aerospace Re­
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Phys. 10, 494 (1969). 
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rules for the quantities I> - I <,,-if> where I <'H£ is 
a continuation of 1< to the same side as I> . 

The work applies to any unitarity integral, however 
many particles are involved, and to any singularity, 
providing that the corresponding Landau diagram has 
no more than one line joining any two bubbles (a 
restriction we intend to remove in a future paper). We 
exclude points where the singular curve has a node or 
intersects other singular curves. In Sec. 2 we recall 
how Landau singularities and unitarity integrals are 
conveniently related to Landau and unitarity dia­
grams, and in Sec. 3 we use the idea of a mechanism 
diagram to find what singularities unitarity integrals 
may have. The M diagram is relevant for each of the 
three classes of singularity distinguished in I-gener­
ative, explicit, and regenerative-and it also provides 
a rule for the natural distortion prescribing the 
analytic relation, if any, between 1< and I> . In Sec. 
4 we find that the main difficulty in using the results 
of I to evaluate the discontinuity due to a specific 
generative mechanism is that, when we have identical 
particles, a given singularity may be generated by 
many different sets of singularity surfaces, and we must 
have a technique for counting the different pinch 
points that arise. This is provided by a simple group­
theoretic treatment of permutational symmetries in 
the relevant diagrams. In Sec. 5 we derive rules for 
evaluating I> - (I <),,-i£ that are valid, no matter how 
the singularity originates. This is our main result, and 
it is employed in the subsequent paper, in which the 
unitarity equations are used to determine the singu­
larities of the amplitude itself. 

2. LANDAU DIAGRAMS 

Consider a diagram representing a sequence of 
intermediate scattering processes that may occur for a 
given number of initial and final external particles. By 
energy-momentum conservation at each vertex, each 
internal line carries a four-momentum q, which is a 
linear combination of the external momenta p and 
loop momenta k, just as in a Feynman diagram. 

Copyright © 1969 by the American Institute of PhYSics 
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(a) 

(c) (d) 

~ + + 
(1) 

FIG. I. Examples of Landau diagram; (a), (b), and (f) are non­
simple. With nL and np as explained in the text we have (a) np = 
nL =2, (b) np=nL=6, (c) np =6,nL =2, (d) np=nL= 1, 
(e) np = "L = 2, and (f) np = 8 nL = 4. 

Associated with one such diagram will be the set of 
Landau equations: 

q2 _ m2 = 0 for each internal line, 

L aq = 0 for each loop i (2.1) 
k 

(where the summation runs over lines carrying k and 
is measured in the sense of the loop), which implicitly 
define a Landau curve L(p) = O. If the equations have 
a solution for physical p (so that the Landau curve 
enters the physical region for the amplitude) and for 
real q, then each a is real and (making some choice of 
over-all factor) has a definite sign, as does each qo. 
Corresponding to a particular solution of this sort, we 
draw a diagram orientated so that positive energy 
flows in a definite sense, say from right to left, and we 
label the lines with the signs of the a's. This diagram we 
call the Landau diagram, and examples are given in 
Fig. 1. Note that to preserve the sense of energy flow 
we may be obliged to stretch out a vertex, as in the 
so-called "pseudothreshold" of 1 (c). 

Our Landau diagram thus corresponds to a partic­
ular solution of the Landau equations rather than to 
the curve itself. If a diagram has a symmetry that allows 
internal lines to be permuted without altering its 
structure (while holding external lines fixed and 
paying no regard to line labels or sense), this tells us 
that any new association of q's to internal lines which 
is effected by the permutation is also a solution to the 
equations at the same p. These symmetry operations 
form a group which we call G F' of order n F' It is also 
convenient to define a group G L, of order n L , which 
is the subgroup of GF which respects both the sense 

of the internal lines and their labels (+, -). 
Illustrations appear in Fig. 1. 

In what follows we shall assume, for simplicity, 
that only one Landau diagram corresponds to the 
Landau curve under consideration, and that the 
various solutions at a particular p are all related by 
symmetry operations which are elements of GF • This 
restriction is not essential, as we note in Sec. 5. 

As explained in I, we can express the Landau curve 
as 

L(p) == L a(q2 - m2) = 0 (2.2) 

and define a normal variable 'YJ by 

(2.3) 

where Lv runs over lines carrying p and a summation 
over the p's is understood. This variable depends, of 
course, on the choice of over-all sign for the a's. (If 
the a's have the same sign, we shall conventionally 
choose them to be all positive.) 

Unitarity Integrals 

Unitarity integrals are conveniently represented by 
diagrams, called J diagrams, of which examples are 
given in Fig. 2. The contribution (also called J) that 
a unitarity integral makes to the right-hand side of the 
unitarity equation is given by the rules2 : 

(i) A+ or A- for each + or - bubble, respectively, 
(ii) - 2rriO+(q2 - m2) for each internal line, 

(iii) S i(2rr)-4 d4k for each loop, 
(iv) (nj)-l where nj is the symmetry number of the 

diagram, 
(v) _ (_l)number of minus bubbles. 

(2.4) 

The symmetry number nj is defined as the number of 
permutations of internal lines that leave the structure 

(a) 

(c) 

~ 
~ 

(b) 

(d) 

FIG. 2. Examples of I diagrams. 
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of the diagram unchanged, and is made up of factors 
n for each n-particle intermediate state joining two 
bubbles. 

The integrand thus has c5-functions constraints 

D(p, k) == q2 - m2 = ° (2.5) 

and real singularities which are the real singularities of 
the bubbles. These we assume to be the positive-IX 
parts of Landau curves.4 They can be written 

S(p, k) := I &(q2 - m2) = 0, (2.6) 

where the &.'s are all positive and theq's are the momenta 
of the lines of the corresponding Landau diagram for 
the bubble. &. and q are solutions to the Landau 
equations for that diagram and so are expressed in 
terms of the external and loop momenta p and k that 
appear in I itself. We further assume, as for Feynman 
integrals, the + and - amplitudes are 'YJ + i€ and 
'YJ - i€ limits, respectively, on to 'YJ real. Hence the 
singularities S of the integrand obey as S + i€ or 
S - i€ prescription accordingly as they occur in 
a + or - bubble, that is, the sign of the prescription 
is that of the bubble label. 

For "simple" singularities (those corresponding to 
Landau diagrams with only single lines joining any 
two bubbles) we assume that the discontinuity in 'YJ of 
the + amplitude is given in terms of the corresponding 
Landau diagram by the Cutkosky rules: 

(i) A+ for each bubble, 
(ii) -21Tic5+(q2 - m2) for each line, 
(iii) S i(21T)-4 d4k for each loop, 
(iv) (nL)-I, where nL is defined above. 

(2.7) 

This agrees with the result obtained in perturbation 
theory (see I, Sec. 4), if we note that any inequality of 
nL and nF will be compensated by the appearance of 
c5+ rather than c5 in the rules above. This reduces the 
number of pinch points counted, according to argu­
ments similar to ones that will be presented in Sec. 4. 

In the case when more than one singularity coming 
from a particular bubble participates in the pinch, it is 
the multiple discontinuity at their intersection which is 
relevant. As we see later, this vanishes unless the 
singularities can be put together in one hinged diagram 
[such as Figs. 2(c) or 2(d)], in which case the multiple 
discontinuity is given by the rules above.s 

3. SINGULARITIES OF UNITARITY 
INTEGRALS 

Unitarity integrals satisfy the appropriate conditions 
for Theorems 1 and 2 of I. We distinguish four 

4 This and following assumptions are proved in succeeding papers. 
Though the proof employs results derived in this paper, it is in­
ductive, and the argument not therefore circular. 

" This is associated with what Pham (Ref. 1) calls a fiber product. 

possibilities: 
(a) Generative singularity, in which the S's coming 

from a particular bubble can be represented by one 
diagram for that bubble (so that if more than one S 
comes from a particular bubble, they are to correspond 
to the hinged diagram just discussed). In the unitarity 
diagram I we replace each bubble by the Landau 
diagram corresponding to its particular participating 
singularity, if any, and label the new bubbles with the 
sign of the parent bubble, obtaining what we shall call 
the M diagram. According to I, Sec. 2, the resulting 
singularity has equation L(p) == I as + I IXD = 0. 
By (2.2) and (2.6) this is 

L(p) == I lX(q2 - m2) = 0, (3.1) 

where the summation extends over the lines of the M 
diagram, the q being its internal momenta. Further, 

IX= 
{

IX for phase space lines appearing in M (zero if 
they do not participate), 

&.0' for lines that appear in M through having 
been inserted in the bubbles of I. 

(3.2) 

We consider the lines of M as being labeled with the 
signs of the IX'S, if nonzero, and with the label 0 if 
IX = ° (which can only apply to phase-space lines). 
Then from (2.2) we recognize (3.1) as the equation of 
the Landau singularity corresponding to the Landau 
diagram obtained by contracting out the 0 lines. In 
Fig. 3 we give examples of the procedure 1-* M -* L. 

(b) Generative singularities not of type (a). In this 
case two or more S's coming from a particular bubble 
cannot be represented by a single diagram. The 
resultant singularity cannot therefore be represented 
by a Landau diagram, and would not appear to be a 
Landau singularity. Although this sort of pinch is 

(a)5~_ 
6 . 8 

FIG. 3. Examples of the procedure 1--+ M --+ L for 
generative mechanisms. 
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(Q)~~~-~ 
~~~ 

(blX- -x++:+- -:!5x+ 
+ - +-+ + 

FIG. 4. Examples of the procedure 1-.. M -.. L for 
explicit mechanisms. 

genuine, we shall see that such singularities are 
spurious as they have zero discontinuity.6.7 

(c) Explicit singularity. This is just case (a) with no 
S's and hence no insertions, and can lead only to 
Landau singularities (see Fig. 4). 

(d) Regenerative singularity. In this case we have a 
singularity of a bubble which does not depend on the 
integration variables. Diagrammatically, the effect is 
that the M diagram is hinged in a characteristic way, 
as in Fig. 5. We sum up possibilities (a), (c), and 
(d) in 

Rule 1: Physical unitarity integrals may be singular 
on the Landau curves corresponding to diagrams 
obtained by inserting some (or no) physical sub­
diagrams into the bubbles and contracting some (or 
no) phase space lines. 

Natural Distortions 

According to the first theorem of I, to be singular 
a particular mechanism must satisfy 

that is, the quantities (J€ take the same sign for each 
singularity, and €nat is an increment of that sign. If 
the singularity is explicit, we understand €nat = 0, 
as this equation suggests. Furthermore, according to 
Theorem 2 of paper I, the integrals I> and 1< (eval­
uated in 1J > 0 and 1J < 0) are not analytically related 
if €nat = O. For brevity we shall say the mechanism is 
singular + if €nat ~ 0, and singular - if €nat ~ O. 
With this definition explicit mechanisms are both. As 
the sign of the €i associated with each Siin ourunitarity 
integral is simply the label of the bubble, (3.3) implies 
that, for singularity, sign (J = sign Enat times the label 
of the bubble. By (3.2), as oc > 0, this is also the line 

• I. T. Drummond, Nuovo Cimento 29, 720 (1963). 
1 F. Pham, Ann. Inst. H. Poincare 6, 89 (1967). 

label of any line inserted into the bubble. So we have 

Rule 2.' The mechanism corresponding to a partic­
ular M diagram is 

singular + if every line joining + bubbles has label + 
and every line joining - bubbles has label -, 

singular - if every line joining + bubbles has label -
and every line joining - bubbles has label +, 
and nonsingular otherwise. 

Note that although the line labeling of an M diagram 
has an arbitrary over-all sign, the rule itself is intrinsic 
because the notion of singular ± also depends on this 
sign through the definition of 1J. The mechanism 
diagrams in Figs. 3 and 5 are singular +. 

Effects of Contracting Out 0 Lines 

According to Theorem 1 of I, there is the further 
necessary condition for singularity that, for non­
participating D's, D = O. In terms of the M diagram, 
this means that each 0 line must satisfy both momen­
tum conservation and q2 - m2 = O. First we note 
that if one 0 line joins two bubbles, then all other 
lines joining these two bubbles must be 0 lines, if L 
is to be sensible. 

Suppose only one 0 line joins two bubbles. Its 
momentum is determined by momentum conservation 
in terms of the other lines of M, and hence, on the 
Landau curve, in terms of the external momenta p. 
When q2 = m2, which is necessary for singularity, the 
Landau equations which involve this line in addition 
are also satisfied, but with the corresponding ex zero. 
Thus the Landau curve corresponding to the diagram 
got by contracting a single 0 line is nonsingular except 
at the effective intersection with the higher-order curve 
corresponding to the participation of the line. 

Now consider a case where many 0 lines join two 
given bubbles. If k are the loop momenta they form, 
then the participating S's and D's are independent of 
k and we have the infinite degeneracy situation con­
sidered in Sec. 3 of paper I. Reality and the mass shell 
conditions for the 0 lines imply 

<Iq)2 ~ <I m)2, 

where I runs over the 0 lines. Consequently, singu­
larity occurs only on the part of the Landau curve 

~ ~~+ A+ + .--:po . • ---..". 
- + + -

+. + 

FIG. 5. An example of the procedure 1-.. M -.. L 
for a regenerative mechanism. 
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where this is true. The transition between singularity 
and nonsingularity takes place when the equality 
holds, in which case the Landau equations for the 
higher-order curve in which these 0 lines participate, 
with zero oc's, are also satisfied. Thus we have the 
anti hierarchial effect,S mentioned in I, that the singu­
larity ofunitarity integrals may be affected by effective 
intersections with higher-order Landau curves. 

These two phenomena are quite awkward in that we 
can no longer classify singularities solely by the oc signs 
on L. Fortunately, they will each be automatically 
accounted for by our subsequent discontinuity for­
mula, and need not be explicitly considered. 

From our analysis we discover that unitarity inte­
grals are in general singular on different parts of 
Landau curves from Feynman integrals, so that we 
cannot say they have global i€ prescriptions, both 
because the sense in which they are limits on to 'YJ = 0 
depends upon the signs of the oc's and because they may 
be singular in regions containing places where the 
normal variable 'YJ may cease to be defined. 

4. DISCONTINUITIES OF UNITARITY 
INTEGRALS 

According to the ideas of paper I, we can isolate 
contributions to a given discontinuity that are due to 
different mechanisms by choosing suitable R regions 
to surround the pinch points. The first main discon­
tinuity result of this paper is that the contribution to 
dif';- I arising from a given generative mechanism is 
given by 

M> - (M<)Hfnat' (4.1) 

where M is an integral obtained from the M diagram 
corresponding to the generative mechanism by the 
diagrammatic rules below. M> is M evaluated in 
'YJ > 0 and (M <)q-ifnat is the continuation of M < 
evaluated in 'fJ < 0 into the region 'YJ > 0 following an 
'YJ - i€nat detour at the singularity 'YJ = O. The rules 
are 

(i) A+ or A- for each + or - bubble; 
(ii) - 21Ti{)+(q2 - m2) for each line; 

(iii) J i(21T)-4 d'k for each loop; 
(iv) (n M)-l where n M is the symmetry number of the 

M diagram; 
(v) - ( - 1 )number of minus bubbles; 

(vi) the integration is restricted to regions in the 
space of loop momenta of M that are not 
contracted out. These regions surround the 
pinch points corresponding to the line labeling 
of the M diagram. 

(4.2) 

8 P. V. Landshoff, D. I. Olive, and J. C. Po\kinghorne, Nuovo 
Cimento 43, 444 (1966). 

The symmetry number n M is the number of permuta­
tions of the internal lines of M that preserve M, 
holding external lines fixed and taking into account 
the labeling of its bubbles and of its lines. The re­
semblances between these rules and the unitarity and 
Cutkosky rules (2.4) and (2.7) are of course significant 
and fortunate for the ease of future analysis. We now 
derive these rules. 

First Steps in the Proof 

In paper I (Theorem 3) we showed that the contri­
bution to the discontinuity of the integral arising from 
a particular generative mechanism characterized by a 
pinch of singularity surfaces S and constraint surfaces 
D is given by 

(4.3) 

where 

c == r II dif~! f dk, ( 4.4) 
JR<k»O i 

where R > 0 is a region surrounding the pinch point 
k, Y. are> or < chosen arbitrarily, andfis under­
stood to contain the constraints. In our case f is a 
product of A+'s, A-'s, and mass-shell () functions. In 
S > 0, dif~ ffor an S occurring in a + bubble is got by 
replacing that A+ by its Cutkosky discontinuity (2.7). 
If S occurs in a - bubble, then as - is found by 
Hermitian conjugation of a + amplitude, so is its 
dif: dif A- = (dif A+)t. Under Hermitian conjugation 
of the rules (2.7), each A+ becomes A-. According to 
the rules, there is also an imaginary factor (i)/-m, 
where I and m are the numbers of loops and lines of 
L, which under conjugation becomes (_i)/-m, thereby 
introducing a factor (_I)m-l. Now for any connected 
diagram, m - I = v-I, where v is the number of 
vertices. Therefore in S> 0 dif~ A- is given directly 
in terms of the L diagram corresponding to S by the 
rules 

(i) A- for each bubble, 
(ii) -21Ti{)+(q2 - ml) for each line, 

(iii) J i(21T)-4 d'k4 for each loop, (4.5) 
(iv) (nL)-l as in (2.7), 
(v) _ (_ I)number of minus bubble8. 

Since in Eq. (2.6) we adopted the convention ~ > 0, 
it is in the region S > 0 that the Cutkosky formula is 
valid with real contours of integration. Further, the 
Cutkosky integrals vanish in S < 0 since, according to 
Pham,? there is a real vanishing cycle in S > O. 
Accordingly, we choose to set each Y. in (4.4) equal to 
>. Inserting (2.7) and (4.5) into (4.4), we see that we 
do indeed get an A+ or A- factor for each (+) or ( - ) 
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bubble of the M diagram. Further, each (-) bubble 
brings an extra factor (-1), so we have understood 
aspects (i), (ii), (iii), and (v) of (4.2). We go on to 
discuss (iv) in the next subsection. As for (vi), the 
restriction on the uncontracted loop momenta 
appearing on the original integral follows from the 
R region ideas of I, whilst the fact that the loop 
momenta which correspond to the use of the Cutkosky 
formula for dif's of the integrand are similarly 
restricted is due to the existence of the vanishing cycle 
already noted. The argument is unaffected by infinite 
degeneracies associated with multiple 0 lines; compare 
the discussion of this point in I. 

The Symmetry Factor 

The factor (n[ II nc)-1 (where no are symmetry 
numbers associated with inserted Cutkosky formulas) 
for one contribution is not, in general, the nj,l given 
by our rules. This is because the M diagram may 
represent more than one mechanism. For example, in 
Fig. 3(a) for the equal-mass case L is generated in I not 
only by the pole at S238 = m2 , but also by the pole at 
S237 = m2 and the contributions to the discontinuity 
from the two mechanisms are the same. The numerical 
factor is therefore twice the (n[nc)-1 of each contri­
bution, or 2 X (2 X 1)-1, which is nil, n}.f the 
symmetry number of the M diagram, as predicted by 
the rules. Similarly, in Fig. 3(b) the three generative 
mechanism in I involving poles in (S569 and S239) , 

(S568 and S238), and (S567 and S237) yield a contribution 
which when expressed as an integral over just one 
R region carries a numerical factor 3 X (6 X 1)-\ 
= nil· 

For identical particles, symmetries imply that pinch 
points can occur together in sets-for if there is one 
mechanism making I singular at a given p, then there 
may be many, as in the above examples. Furthermore, 
as a symmetry in the M diagram reflects a symmetry 
in the Landau equations, a given set of 8's may pinch 
at several places at once. We have chosen to represent 
all these symmetry-related pinches by one M diagram; 
conseq uently, to find the numerical factor associated 
with its contribution we shall have to count how many 
such pinch points there are. The first step is to count 
the number of mechanisms, that is, the number of 
distinct insertions of Landau singularities into the 
bubbles of I that lead to a given M. 

Let us number the internal lines of the unitarity 
diagram I in order that we may distinguish them, and 
let G[ be the group of permutations of these lines 
which preserve the structure of I when the external 
lines are held fixed. The order of G[ is n[, the number 
appearing in the rules (2.4). Let us similarly label 

the corresponding lines of the M diagram and permute 
these labels according to elements of G[ to get a new 
diagram. If the permutation is such that the resultant 
diagram can be rearranged into its original form while 
holding external lines fixed, then the singularities of 
the unitarity integrand indicated by these two M 
diagrams are the same. Examples are (78) in Fig. 3(b) 
and (13)(24) in Fig. 3(d). Such permutations form a 
group which we call G s, a subgroup of G[. Per­
mutations for which this rearrangement is impossible 
[e.g., (78) in Fig. 3(a)] lead to different singularities of 
the unitarity integrand which nevertheless generate 
the same singularity r unless we break our assumption 
that r corresponds to a unique Landau diagram. 

The cosets of Gs in G[ are in one-to-one corre­
spondence with the distinct sets of similar singularities 
of the I integrand giving r. By Lagrange's theorem, 
there are nI/nS of these sets. In order usefully to 
re-express this number ns we now number all internal 
lines of the M diagram and define 

6111 = group of permutations oflines of Mleaving 
it invariant, while holding external lines 
fixed and respecting bubble labels, 

G+(G_) = group of permutations of lines of Mjoining 
+ (-) bubbles that leave M invariant, 
holding all other lines fixed. 

By invariant we mean that the final diagram can be 
rearranged into the original diagram without per­
muting any lines. 

Then G+ ® G_ is an invariant subgroup of 62\II and 
the quotient group 62\II/G+ ® G_ is isomorphic to the 
Gs defined above. 

According to Bose (or Fermi) statistics, the unitar­
ity integrand is invariant under permutations of 
phase-space momenta given by 8[, and so the n[/ns = 
n[n+n_/fi M symmetry-related sets of 8's contribute 
equally to the discontinuity across r. The discontinuity 
contributed by one set has a numerical factor (n[)-1 
coming from I [see (2.4)] and factors (nt-)-1 and (n_)-1 
coming from the inserted Cutkosky formulas (2.7) 
and (4.5). Hence, adding contributions, the over-all 
numerical factor associated with the M diagram 
contribution is 

1 1 1 n[n+n_ 1 
------=-

provided we integrate the M integral over the R 
regions associated with all the pinch points involving 
one particular set of 8's. 

In (4.2) we integrated over what may be a smaller 
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number of R regions, namely, those associated with 
pinch points corresponding to a specific line labeling 
of the phase space lines in M, and we had a numerical 
factor (n M)-l rather than the above. In order to get 
this form, which is useful in later work (paper III of 
this series, the following paper), we define 

GM = group of permutations of internal lines of M 
which leave M invariant while holding ex­
ternal lines fixed and taking into account 
both bubble and line labels (+, -, or 0). 

Then G M is a subgroup of G M, though not an in­
variant one, and its left co sets in G M correspond to 
elements of Gs giving distinct rearrangements of 
labels (+, -, and 0) on the phase-space lines. Thus 
for each pinch point corresponding to a specific line 
labeling there is a family of fi Min M distinct pinch 
points involving the same S's but different line label­
ings, as obtained by these cosets. Each member of 
such a family contributes a numerically equal amount 
to the total discontinuity, and if we integrate over the 
R regions associated with just one member of each 
family, the numerical factor is 

as quoted in (4.2). 

nM_1_ = _1_ 

nM fiM nM 

We have implicitly assumed that all pinch points 
discussed so far can be treated independently. By a 
later result dif's for singularities in different generating 
sets annihilate each other at their intersection, while 
pinch points for the same S's but corresponding to 
different line labelings must be distinct, in the cases 
we are considering. 

The pinch points we are left with, namely, those 
corresponding to a specific line labeling, are permuted 
among themselves by elements of GM , but we cannot 
in general tell whether or not they are distinct, and 
so do not separate their contributions further. 

5. EVALUATION OF I> - I<~_i' 

Regenerative and Explicit Mechanisms 

In I we saw that the integral formula we have just 
used to get our first result (4.2) generalizes to the 
situation in which many generative mechanisms and a 
regenerative or explicit mechanism operate at the same 
time in the integral to give (Theorem 4 of I) 

I> - I <~-i. = (~c) - (~c) , 
+ > + <~-i' 

where 

c = r IT dif}fJ dk 
JR>O 

C = J dif;jdk 

c = r jdk 
JR>O 

for generative mechanisms, 

for regenerative 
mechanisms, 

for explicit mechanisms, 

(5.1) 

and ~+ is the sum over all singular + mechanisms. 
We now translate this into M-diagram terms to obtain 
our final result. 

In the case of an explicit mechanism, as in Fig. 4, 
the M diagram is I itself. M is both singular + and 
singular -. The numerical factor is nIl, and the only 
symmetries of such an I are found by permuting 
lines joining the same two bubbles, which must carry 
the same line labels (in the case where they are not 
contracted out, this is implied by ~ rxq = 0). In this 
case therefore n M = nI and the numerical factor is 
still given by nii. 

A regenerative mechanism corresponds to L itself 
being inserted in a bubble of I to form an M diagram. 
L is recovered from M by contracting all the phase­
space lines, which therefore have label o. The inserted 
lines will all carry labels + if we take it that we know L 
is singular only on the positive-rx Landau curves. The 
contribution to the discontinuity is then given by the 
M-diagram rules, for in this case nInL = nM, while 
the R-region specification is made automatic because 
of the existence of a vanishing cycle for the L dis­
continuity. 

Finally, in order to apply Theorem 4 of!, we must 
confirm that when generative and a regenerative 
mechanism act together, 

difL IT difs, j = O. 
; 

Since IT; difs; f is given by the Cutkosky rules, the 
nonvanishing of the expression above would be equiv­
alent to saying that the M diagram for the generative 
process has L as a regenerative singularity. This would 
mean that the diagrams M and L could be hinged, 
and indeed that L could be hinged with itself, since 
M goes into L by contracting internal lines. The two 
vertices of L which are put together in the hinging 
process must have external lines exhausting all 
external lines of L, if the hinging is to be possible. 
This cannot be so unless L has only two vertices with 
external lines; the result thus follows for all other 
graphs, and, in particular, for all simple graphs. 
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To sum up, 

1> - I <~-i< = (t M» - (t Mt~_i<' (5.2) 

where the sum runs over all singular + M diagrams, 
which are the diagrams got by inserting some (or no) + 
lines into + bubbles and some (or no) - lines into -
bubbles of 1, which, by contracting some phase space 
lines (those labeled 0), give L, and whose remaining 
lines are labeled with the sign they have in L. 

The Spurious Singularities 

We now consider case (b) of Sec. 3, when one of the 
bubbles A of I contributes two singularities, say Sl 
and S2, to a given generative mechanism. By (5.1) the 
resulting contribution to the discontinuity has a factor 
difs1 difss A in the integrand which is integrated over a 
neighborhood of the intersection of Sl and S2' This is 
nonzero only if difs2 A, which is a Cutkosky integral, 
is singular on Sl . Since Sl is a Landau singularity and 
since our previous results apply equally well to 
Cutkosky integrals, we consider the possible M 
diagrams by which this could be so. 

Consider the possibility of a generative mechanism. 
Since difs2 A is evaluated close to S2' which is the 
positive-ex arc of a Landau curve, the internal momenta 
very nearly satisfy the Landau equations. The same 
applies to the corresponding lines of the M diagram. 
Hence the internal momenta of the M diagram must 
satisfy two different sets of Landau equations, corre­
sponding to Sl and S2' Then a third set of Landau 
equations is also satisfied, namely, those of M itself, 
and so if the double discontinuity is nonzero because 
of a generative mechanism, we are on another Landau 
curve, a situation we have excluded from consideration. 

Similar arguments apply to explicit mechanisms, 
while if Sl is a regenerative singularity of difs • A, then 
the M diagram is a hinged diagram, and we have 
case (a) of Sec. 3, which has already been considered. 

6. COMMENTS 

Notice that our formulas (5.2) remain true when 
there is the form of nonsingularity, discussed in Sec. 
3, associated with the presence of 0 lines in M. This 
occurred because the nonparticipating t5-function 
constraints could not be satisfied simultaneously with 
the Landau equations. By virtue of the R region, the 
momenta of the M integral corresponding to + and 
- lines are constrained to lie close to the pinch values 
given by the Landau equations; by the same token it is 
impossible to find real momenta which also satisfy the 
t5-function constraints corresponding to the 0 lines. 
Hence the integrand has zero support and the M 
functions M> and M < both vanish. 

This means that an important simplification has 
occurred. Although the arcs of possible singularity 
are not solely classified by the ex assignments of the 
lines of L, in that transitions between singularity and 
nonsingularity occur at effective intersections with 
higher-order curves, nevertheless the form of the 
discontinuity formula which is applicable can be 
classified according to the ex signs of L. 

Finally, we recall our assumption that our Landau 
corresponds to just one Landau diagram L. If, as may 
be the case, it corresponds to several such diagrams, 
the modification to our procedure is obvious, and we 
add separately the M diagram contributions corre­
sponding to each L. 
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Drawing on the understanding of unitarity integrals acquired in pr~vious pa~rs [J. Math. Ph~s: 10, 
494, 545 (1969)], we show that unitarity demands that connected amplitudes be singular on the posltIve-or. 
arcs of all "simple" Landau curves in their p~~sical regions: F~rther '. w~ ~how th~t the amplitudes are 
nonsingular on mixed-ex arcs, while on the posltIve-cx arcs theIr dlscontmUltIes are gIven by the Cutk~s~y 
rule. This confirms arguments from pertur~ation ~heory and de~onstrates h?w a weak analytICIty 
assumption can generate in an exact way a smgulanty scheme relating to causality. 

1. INTRODUCTION 

In this paper we apply the results of the preceding 
papers1.2 of the series to determine the physical­
region singularities of connected S-matrix amplitudes, 
showing them to be the positive-IX arcs of Landau 
curves with associated discontinuities given by the 
Cutkosky formula. We restrict our attention to 
singularities corresponding to simple Landau curves, 
that is, curves whose Landau diagrams have no 
more than one line joining any two bubbles. The 
discussion of the nonsimple case requires refinements 
of technique which we postpone to a later paper. 

The procedure is a generalization of one already 
carried out successfully in the study of particular 
examples.3 It consists of comparing the physical 
unitarity equation holding on one side of a Landau 
curve with an analytic continuation of the unitarity 
equation holding on the other side. The two are, in 
general, different because of the mechanisms which 
make unitarity integrals singular, which were discussed 
in II. From their simultaneous validity in Sec. 2 we 

* The research reported in this document has been sponsored in 
part by the Air Force Office of Scientific Research under Grant AF 
EOAR 65-36 through the European Office of Aerospace Research 
(OAR), United States Air Force. 

1 M. J. W. Bloxham, D. I. Olive, and J. C. Polkinghorne, J. Math. 
Phys. 10, 494 (1969). We shall call this paper I. 

• M. J. W. Bloxham, D. I. Olive, and J. C. Polkinghorne, J. Math. 
Phys. 10, 545 (1969). We shall refer to this paper as II. 

8 (a) D. I. Olive, Nuovo Cimento 19, 326 (1963); P. V. Landshoff, 
D. I. Olive, and J. C. Polkinghorne, J. Math. Phys. 7, 1593 (1966); 
(b) D. I. Olive, Phys. Rev. 135, B745 (1964); R. J. Eden, P. V. 
Landshoff, D. I. Olive, and J. C. Polkinghorne, The Analytic 
S-Matrix (Cambridge University Press, London, 1966); (c) P. V. 
Landshoffand D. I. Olive, J. Math. Phys. 7,1464 (1966); (d) M. J. W. 
Bloxham, Nuovo Cimento 44, 794 (1966); (e) P. V. Landshoff, D. I. 
Olive, and J. C. Polkinghorne, J. Math. Phys. 7, 1600 (1966); 
J. K. Storrow, Nuovo Cimento 48, 593 (1967). (a) and (b) deal with 
normal thresholds and poles, respectively, which arise only through 
explicit and regenerative mechanisms. (c) and (e) deal with triangle 
singularities arising only through generative and regenerative 
mechanisms, while (d) deals with a singularity arising through all 
three mechanisms. Our analysis in this paper generalizes all these 
arguments except for those of (a) and (e), which deal with non­
simple graphs. 
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are able to deduce an equation of the form 

+ + 
!(difA)(l - Ir) = !M> - !M<'!-iE' (1.1) 
R ~E G~ 

The terms on the right involve known quantities 
arising from the various generative and explicit 
mechanisms operating in the unitarity integrals, 
while the terms on the left arise from regenerative 
singularity mechanisms and involve unknown quan­
tities, the discontinuities of several amplitudes A 
across singularities related to the Landau curve under 
consideration. The number of terms to be included 
in the original unitarity equation depends upon the 
values of external momenta, and this is also true of 
(Ll), but the argument is phrased in a way that will 
take this fact into account. 

The first step in solving (Ll) is to simplify the right­
hand side by means of a cancellation theorem obtained 
in Sec. 3 which states that a certain sum of M terms 
adds to zero. The second step (Sec. 4) is to invert the 
operators on the left-hand side of (1.1) and obtain a 
unique solution for dif A, the required discontinuities. 
Section 5 deals with alternative continuation proce­
dures and the relaxation of certain assumptions made 
earlier. Section 6 sums up our conclusions. 

We wish to emphasize two points about our argu­
ment, one methodological, the other more fundamental. 
To evaluate the right-hand side of (1.1) we need to 
know discontinuities of amplitudes across singularities 
corresponding to subdiagrams of the diagram under 
discussion. These subdiagrams involve fewer loops 
and their properties have been determined at an 
earlier stage of the inductive argument. To invert the 
equations we consider successive intervals between 
thresholds in the total energy, and since the energy at 
which the discontinuity of a subdiagram is evaluated 
never exceeds the total energy, we can indeed follow a 
well-defined induction procedure. 
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Finally, we emphasize that our discussion uses only 
unitarity, connectedness structure, and a relatively 
weak analyticity assumption. The latter is simply 
that the physical amplitudes defined in any neighbor­
hood of the physical region are analytically related, 
and that the 'fJ + i€ prescription provides the correct 
analytic relation for A+ across the positive-at arcs of 
Landau curves (which can actually be proved in 
specific examples). No use is made in this work of 
crossing or Hermitian analyticity. 

2. THE ANALYTIC CONTINUATION 
OF UNITARITY RELATIONS 

Paper II indicated that unitarity integrals are 
singular on Landau curves. We therefore consider 
one such Landau curve r which corresponds to a 
Landau diagram L which is simple, as defined in the 
introduction, and not hinged.4 We consider points of 
r which lie on no other Landau curves and which are 
not themselves nodes. Our technique is to compare 
the physical-unitarity relations holding one side of r 
with the analytic continuation of physical unitarity 
from the other side of the curve. In making the com­
parison we shall only continue the infinitesimal 
distance necessary to cross the curve. 

Specifically, we shall consider the 'fJ - i€ continua­
tion of unitarity written in the sst form, that is, the 
form in which - (i.e., "minus") bubbles appear to the 
right of + bubbles. For the moment we assume that 
'YJ - i€ is the correct path of continuation for the -
bubbles. Later we show that arguments which were 
based on 'YJ - i€ or 'YJ + i€ continuation for either the 
sst or st S form would lead to the same singularity 
structure, and that in fact no assumption need be made 
as to the correct analytic continuation for the ampli­
tudes, except on positive-at arcs. The unitarity relations 
are of the form 

A( +) - A( -) = L I';, 'fJ > 0, 
'" 

A( +) - A( -) = L I~, 'fJ < 0, 
'" 

(2.la) 

(2.lb) 

where, on the right-hand side, we sum over all 
integrals in the unitarity relation for given external 
momenta. If there are new terms in unitarity which 
appear as we cross r (corresponding to explicit 

• For any simple Landau diagram there may be other diagrams 
leading to the same Landau curve which are found by replacing 
single-particle lines by pseudothreshold sets (2m - m)2, etc., if 
energy-momentum conservation permits. These further diagrams, 
however, correspond to pinch points of the unitarity integrals 
which are distinct from those of the simple Landau diagram under 
discussion. Their contributions can, therefore, be considered 
separately, though we defer this until paper IV of this series. How­
ever, we note that, since pseudothresholds necessarily correspond 
to mixed CIt'S, these further diagrams are expected to cancel in any 
unitarity equation and so not affect the amplitude. 

singularities), the corresponding I~ will be zero, 
but this is taken account of in the formalism of II. 
If (2.1 b) is now continued across r in an 'fJ - i€ 
sense, A( -) will continue into itself but A( +) will 
be taken on to the wrong sheet of r, where we denote 
its value by A(i). Subtracting the continued equation 
from (2.1a) gives 

A( +) - A(i) = L (I'; - I'!:HE)' (2.2) 

'" 
The left-hand side is what we wish to evaluate. If it is 
zero, r must in fact be nonsingular; if it is nonzero, r 
is singular and (2.2) evaluates the discontinuity 
across it. According to (5.2) of II, (2.2) can be re­
written as 

+ 
A( +) - A(i) = L L (M'; - M'!:pt-iE), (2.3) 

'" + 
where the sum L extends over all the singular + 
mechanism diagrams associated with the singularity 
of the integral I'" on r. Note that, as explained in II, 
this sum may include terms with 0 lines which rep­
resent integrals that in fact vanish over a range of 
external momenta. An example of this is provided by 
single-particle 0 lines: an M diagram containing such a 
line contributes nothing except at an effective inter­
section with the Landau curve whose diagram includes 
this line. Similarly, the formalism automatically takes 
anti hierarchy into account, the switch from singularity 
to nonsingularity of an integral being matched by the 
vanishing of the contribution from one or more M 
diagram terms. Thus, no explicit account need be 
taken of this phenomenon.5 It will sometimes be 
convenient for the manipulations not to remove such 
diagrams from (2.3), even though their contributions 
vanish. 

The Iterative Procedure 

We now examine more carefully what information is 
used in evaluating the right-hand side of (2.3). In 
obtaining the explicit terms nothing is assumed. In 
obtaining the generative terms we have assumed 
Cutkosky discontinuity formulas for the singularities 
participating in the generative mechanism. Such a 
singularity corresponds to a subset of the internal 
lines of the diagram L whose Landau curve we are 
discussing. This defines a partial ordering of singular­
ities which allows the Cutkosky assumption to be 
made inductively. To evaluate the regenerative 
contributions, on the other hand, we would need the 
Cutkosky formulas for a set of singularities with the 
same internal lines as L and with different numbers of 
external lines attached to the bubble of L in ways 

• A particular example of the effect has recently been discussed by 
D. Branson, Nuovo Cimento 54A, 217 (1968). 
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which are consistent with the given external momenta. 
These singularities must be considered simultaneously 
with L, and it obviously is not permissable to assume a 
Cutkosky formula for them without proof. We shall 
simply assume that each singularity has the same iE 
prescription in the appropriate amplitude A and write 
its discontinuity as an unknown quantity dif A. 
Returning to (2.3), this means that if L has positive 
or.'s, we must replace the Cutkosky form in each re­
generative M diagram by a connected bubble labeled 
dif A where A is the relevant amplitude. If the M 
diagram is CB-, where C represents the Cutkosky form 
and B- the remainder of the diagram, then we replace 
it with (dif A)B-. If L has mixed or.'s, we expect we 
shall find it to be nonsingular, and there are non­
singular regenerative M diagrams in (2.3) according 
to the definitions of these M diagrams given in II. 
However, as we cannot assume L to be nonsingular 
from the outset, we must retain the set of regener­
ative terms (dif A)B- exactly as in the positive-or. 
case. Finally, we note that regenerative and gener­
ative mechanisms in the same llX do yield a sum 
of M integrals for each mechanism separately, as 
dif L difs A = 0 with S a singularity participating in a 
generative singularity. The argument is given in II. 
The equation we have to discuss in the inductive 
argument is therefore 

+ 
dif A - L L (dif A)B- = L L (M'; - M"<'1-i')' 

IX R IX E.G 
(2.4) 

where the sum may run over many A's and B-'s. 

Partitions and Explosions 

We can regard the M diagram as being partitioned, 
the internal lines cut by the partition being the phase 
space lines of the original unitarity integra1.6 Accord­
ing to II, the mechanism diagrams which are singular 
+ for L have the following properties: 

(i) Each line cut by the partition bears positive 
energy from right to left and is labeled with a +, -, 
oro; 

(ii) internal lines and bubbles to the left of the 
partition carry + labels, while those to the right of 
the partition carry - labels (this is for the sst 
form of unitarity); 

(iii) contraction of 0 lines and omission of bubble 
labels gives the diagram L. 

These properties are valid regardless of whether the 
mechanism concerned is generative, explicit, or 
regenerative. Indeed, for a given L we may define M 

• We shall allow a partition which cuts only external lines, classing 
this as a regenerative M diagram. It corresponds to minus the 
dif A term on the left of (2.4). 

(a) 

I 

I 

~ (b) ~ giving 

I 

I 

~ A (c) giving 
+ : + -

I 

I 

(d) ~ 
giving A I + 

> I 

(e) giving A 
I 

I 

(f) A giving ~Q_th. four-particle 
+ I - threshold 

I + 
I I 

FIG. I. A diagram (a) together with possible explosions (b)-{f) of 
the vertex X. The dotted line is the partition. 

diagrams as labeled diagrams with associated parti­
tions satisfying the properties above. Any such dia­
gram must be an M diagram in the original sense, 
because, by contracting all lines not cut by the parti­
tion, we obtain the' unitarity integral which would 
possess the singularity mechanism. Further, it is easy 
to recognize whether the mechanism is generative, 
regenerative, or explicit. 

We can reverse this procedure and enumerate all 
possible M diagrams by introducing the concept of 
explosions at vertices of the L diagram. An explosion 
of a vertex is given by replacing it with a + bubble 
or - bubble or any other term occurring in the 
unitarity equation for the process represented by the 
bubble at the vertex (with 0 labels on all the new lines 
introduced). Having done this at each vertex, we retain 
those diagrams which satisfy the conditions above 
and which are compatible with energy-momentum 
conservation for the values of external momenta 
considered. Figure 1 illustrates the explosion proce­
dure. 

Disposable Vertices 

A particularly important type of vertex in the orig­
inal Landau diagram is that at which all the incoming 
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FIG. 2. A vertex which has a unique exploded version (below the 
three-particle subenergy threshold). 

internal lines are - lines and all the outgoing internal 
lines are + lines. We call such vertex a disposable 
vertex because it will be possible to form mechanism 
diagrams in which the partition passes either to the 
right or to the left of the vertex. Moreover, in such a 
case there will also be diagrams in which the partition 
passes through lines introduced by exploding the 
vertex, and the set of all possible explosions will 
exactly correspond to the set of all terms in the 
unitarity equation appropriate to the process repre­
sented by the original vertex. For this reason dispos­
able vertices playa vital role in the cancellation effects 
discussed in the succeeding section. 

Explosions can also be made at vertices which are 
not disposable; an example is given in Fig. 2. In 
these cases, however, the set of possible explosions is 
limited, and it is not possible to have M diagrams with 
partitions running to either side of the vertex, though, 
as Fig. 2 illustrates, it may be possible to displace the 
partition to one of the sides. We call these vertices 
explodable vertices. Their existence can lead to possible 
partitions which are not obvious on inspection of the 
original Landau diagram. An example is given in 
Fig. 3. 

3. THE CANCELLATION THEOREM 

The right-hand side of Eq. (2.4) can now be read 
as a sum over all possible M diagrams that correspond 
to singular + generative and explicit mechanisms, 
without reference to the particular unitarity integrals 
fa in which they arise. To simplify this sum we prove 
the following cancellation theorem: 

+ 
~ At == O. (3.1) 

G,E,R 

That is, the sum of all the M integrals corresponding 
to singular + M diagrams for L vanishes when the 

FIG •. 3. A. Landau diagrat? with an associated partitioned 
mechamsm diagram made possible by the existence of an explodable 
vertex. 

FIG. 4. A Landau dia­
gram without a dispos­
able vertex. 

integration regions are suitably standardized in the 
way discussed below. The result holds on either side 
of r, that is, for M> or M < • The basic idea is that all 
unitarity terms appear at a disposable vertex, and 
their sum vanishes by the unitarity equation valid 
for that vertex. The first step is to show that in the 
physical region the Landau diagram always contains 
at least one disposable vertex. At first sight this might 
not seem to be so, for it is easy to write down Landau 
d.iagrams which do not have this property; Fig. 4 is a 
sImple example. However, the Landau eq,uations 
cannot be satisfied by real internal momenta in the 
physical region with the ex assignments of Fig. 4. This 
~s because the assignment of positive energy to the 
mternal momentum vectors directed as shown pre­
vents the condition 

(3.2) 

being satisfied for the upper triangular loop. This 
generalizes in the following way. In the Landau 
diagram suppose we choose a - line and follow to the 
left through a sequence of - lines as far as is possible. 
The sequence stops at a vertex at which the only 
outgoing lines are either + or external lines. If there 
is no disposable vertex, then there must be at least 
one + line which is incoming at this vertex. We then 
follow back to the right through this and succeeding 
+ lines as far as possible. The chain ends at a vertex 
at which the incoming lines are all - lines or external 
lines. If there is no disposable vertex there must be at 
least one outgoing - line at this vertex. This we 
follow to the left, and so on. Eventually, because of 
the finite number of lines in the diagram, the sequence 
must close to form a loop. By construction the 
momenta of this loop do not satisfy the ~ exqo == 0 
condition as each term is strictly negative. We 
conclude that for possible arcs of Landau curves in 
the physical region there must be a disposable vertex. 

Standardizing the R Region 

In order to obtain the cancellation (3.1) it is 
necessary that all the integrals corresponding to each 
M diagram should be taken over the same region of 
integration. We first show that this is possible. 

Different M diagrams will give different status to a 
loop momentum k which occurs in the Landau dia­
gram. For some it will be a loop momentum in the 



                                                                                                                                    

GENERAL DISCUSSION OF SIMPLE LANDAU SINGULARITIES. III 557 

corresponding unitarity integral, in which case, as 
explained in I and II, its region of integration is 
confined to a small real arbitrary region R surround­
ing the pinch point (or pinch points). In other mech­
anism diagrams k may correspond to an integration 
in a Cutkosky formula inserted into the unitarity 
integrand. Its range of integration in that case is not 
confined by R region considerations but, as was 
noted in II, the fact that there is a real vanishing 
cycle on positive arcs means that in this case also the 
integration is in fact confined to a real neighborhood 
of the value (or values) of k corresponding to the 
solution of the Landau equations for L. The loop 
momenta which must be contracted out to form L 
from M have an unrestricted region of integration 
since they correspond to an infinite degeneracy 
situation as discussed in I. 

It is therefore possible to choose a standardized R 
region for the momenta appearing in L which is the 
same for all M diagrams, the remaining momenta 
being unrestricted. In fact, this standard R region can 
be taken to be the same as an R region for the Feyn­
man integral associated with L. Of course, the uni­
tarity integrals have more singularities than the 
Feynman integral, but these are irrelevant-provided 
we are near a point on a single Landau curve, since in 
that case no other singularities can intersect the 
pinch point. 

The Cancellation 

Let us imagine that the integrations over the loops 
to be contracted out are carried out first. These are 
unrestricted and hence are genuine unitarity integra­
tions, dependent only upon the momenta carried by 
the remaining lines of the M diagrams. The cancella­
tion actually occurs before the remaining integrations 
are performed, so let us suppose the momenta borne 
by the + and - lines take some fixed value lying in the 
R region discussed above. Initially we consider the 
case when L has associated symmetry number (n L) 
unity so that there is no ambiguity as to which lines 
of the M diagram correspond to which lines of the L 
diagram. 

The explosions permissable at each L vertex 
depend solely on the momenta which we have now 
fixed, and so are independent of each other. We 
select a disposable vertex V and group the' terms of 
(3.1) into sets corresponding to diagrams which have 
the same explosions at all other vertices. Our aim is to 
show that unitarity at V will cause the sum of contri­
butions from each such set to vanish. If there is more 
than one disposable vertex, the choice of which to use 
is arbitrary. According to the rules of M-diagram 
contributions given in II, when the partition passes to 

FIG, 5. A simple example of the cancellation mechanism on a mixed­
ex arc. All contributions are generative. 

the left of V the term to be inserted at V is - A-, 
where A is the amplitude for that vertex, and when it 
passes to the right of V, the appropriate term is A+; 
when the partition runs through lines introduced by 
exploding V, the term is minus the appropriate 
contribution to the right-hand side of the unitarity 
equation for the bubble at V. Thus we get precisely 
all the terms in the unitarity equation valid for the 
momenta incident on vertex V, because all such 
terms give genuine singular + M diagrams. All 
the factors corresponding to the other lines and 
vertices are common factors within a given set and 
hence we can indeed use unitarity at V to get the set to 
cancel to zero. Examples are given in Figs. 5 and 6. 
Hence the whole of (3.1) does cancel to zero, at least 
if the numerical factors are correct. These we now 
proceed to discuss. 

The Case When L Has Symmetries 

In this case there will be more than one way of 
identifying M lines with L lines. 

Let X be the diagram obtained from the M diagram 
by contracting out 0 lines and labeling the fused 
vertices to indicate the unitarity term applicable there. 
Thus X differs from the diagram L only in having its 
bubbles labeled. Following II, let G M be the group 
of permutations of internal lines of M that leave it 
invariant, while respecting line and bubble labels, and 
let Go be the subgroup permuting only 0 lines. Then 
Go is an invariant subgroup of G M and the quotient 
group GMIGo is isomorphic to Gx , the group of 
permutations of internal lines of X that leave X 
invariant while respecting line and bubble labels. 
Now G x is itself a subgroup (though not an invariant 

A-A-
I 

(a) (b) (c) 

FIG. 6. A simple example of the cancellation mechanism on a 
positive-ex arc. (a) Regenerative: the left-hand side of Eq. (2.3); 
(b) generative; (c) regenerative. 
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(0) ~ 3 010 - 7 

~ 8 

~[~ =e:: ::e:::e: 
(C)~~ 

+ :e:: :e:: :::e:. 
:B= ::e= =e:B: 

+ + 
:n= :r:r: =e:: 
=e= =e= :::e:e: ]~ + + 

""0:0: :e=e: :Q:0:. 

FlO. 7. An L diagram with symmetry factor two and M diagram contributions. 

one) of G L' the group of permutations of internal 
lines of L that leaves L invariant, respecting line 
labels, and the co sets of Gx in GL correspond to 
orientations of the diagram X which differ if the 
internal lines are identified, but not otherwise. 

In the cancellation argument we want all these 
different orientations so as to ensure that, once the 
lines are identified, each vertex indeed appears with 
all possible explosions. Therefore we rewrite a partic­
ular M diagram as the sum over the nL/nX orienta­
tions of itself, compensating for this by a numerical 
factor n x/n L' That is, we write 

~ f M(q) = _1 nx f I M(Piq), (3.3) 
nM JR nM nL JR i 

where Ii indicates the sum over the nL/nX co sets of 
G x in GLand Pi is an element of the ith such coset. 
(It is irrelevant whether or not Piq = q.) We have used 
the fact that the integration region R is invariant 
(by choice) under GL . Since nx = nM/nO' the over-iall 
numerical factor associated with each oriented term 
is not nJil but (non L)-l, which is just right, as nz} is 
common to all the terms and nol is the I).umerical 
factor appropriate to the unitarity integrals associated 
with the exploded vertices. We can now pick out the 
values of the integrands for chosen q E R and cancel 
as before, recognizing a specific vertex by the lines 
attached to it. 

As an illustration, we consider the L given in 
Fig. 7(a). This has nL = 2 because of the symmetry 

(12)(34)(56)(78), which effectively interchanges the two 
disposable vertices. In Fig. 7(b) we have written down 
all the singular + M diagram terms appearing below 
the 5-particle threshold, writing the numerical factor 
associated with the possibility of the above permuta­
tion explicitly, i.e., l if the disposable vertices have 
identical labels and 1 otherwise. Using (3.3), we 
rewrite these terms as in Fig. 7(c),. Now we see that 
both the rows and the columns in the array cancel, 
corresponding to whether we choose to cancel on the 
top or bottom disposable vertex. 

4. INVERSION AND UNIQUENESS 

We recall the equation derived so far: 

+ 
I (dif A)(1 - B-) = I (M> - M <q-i.), (4.1) 
R E,G 

I M = 0 in 'YJ > 0 or 'YJ < O. (4.2) 
E,G,R 

Using (4.2) with 'YJ > 0 and 'YJ < 0, (4.1) becomes 

+ 
I dif A(1 - B-) = -I (M> - M <,,-i.)· 
R R 

Now for positive IX'S, the contribution from a regenera­
tive mechanism diagram has the form CB, with C a 
Cutkosky integral. C = 0 in 'YJ < 0 because of the 
existence of the vanishing cycle. So 

+ 
I dif A(1 - Jr) = -I M> . (4.3) 
R R 
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(a) (b) (el 

FIG. 8. Landau diagrams discussed in this section. 

This equation also holds for mixed IX'S, as there are no 
singular + regenerative M diagrams, as we noted 
earlier, and the right-hand side is actually zero. 
Notice how the terms M q-il have disappeared. We 
have not had the problem of examining the details 
of the analytic continuation because the terms 
appeared in combination whose sum vanished in 
1J < O. 

We now note that (4.3) is consistent with what we 
wish to prove. The terms on the left-hand side were 
defined in Sec. 2 exactly by the property that if we 
replace each dif A by the Cutkosky formula C> on 
the positive-Ii arc, then 

2 dif A(l -.s-) becomes 
R 

The Cutkosky formula is thus a manifest solution to 
(4.3) in the positive-IX case. 7 On the mixed-IX arcs our 
anticipated solution dif A = 0 also satisfied (4.3), as 
both sides vanish. It remains only to be shown that 
these solutions are unique. 

Let us define new bubbles, labeled ~, which repre­
sent dif A+ where L has mixed IX, and dif A+ - C near 
positive-IX arcs. Then our result (4.3) can be summed 
up as 

2~(l -.s-) = 0, (4.4) 
R 

where each term is obtained from a positive-IX singular 
+ regenerative M diagram by replacing the Cutkosky 
formula part with a ~ bubble and several ~ bubbles 
with different numbers of external lines may appear 

~[- +I=:Q + ill 
[=0= J~' 

+ L :0[ n + :G: + &K]"O 
FIG. 9. Equation (4.4) for Fig. 8(a). 

(a) 

+ =0. 
(b) 

FIG. 10. Collections of terms appearing in Fig. 9. 

in the sum. We wish to conclude from (4.4) that each 
~ = O. 

Let us write out in full Eq. (4.4) for the specific 
example of the analysis of the singularity associated 
with Fig. 8(a). This is done in Fig. 9. The ~ bubbles 
in the equation correspond to Figs. 8(a), 8(b), 8(c), 
respectively. As this example illustrates, either all 
left-hand lines are connected to a ~ bubble or only 
some of them are. This is in contrast with right­
hand lines of ~, which may be greater in number 
than the incoming lines if there is sufficient energy 
for the relevant intermediate state. ~'s, which have the 
same number of outgoing lines as the original unitarity 
equation, appear attached to operators (1 - B-) 
which sum to give matrix elements of -st. For 
example, the first two terms in Fig. 9 may be rewritten 
as in Fig. 1O( a). ~'s which appear with fewer left-hand 
lines do not have this property. For example, in the 
third term of Fig. 9 we lack the factors shown. in 
Fig. lOeb), because these would not give a connected 
contribution. However, the fact that at least one 
outgoing momentum line is not attached to the ~ 
bubble means that it is evaluated in an energy range 
which will already have been dealt with at an earlier 
stage in the argument. Such ~ bubbles are thus already 
known to be zero. Consequently, the surviving terms 
in (4.4) take the form 

2L1iSt(01)St(02)'" S\On) = 0, (4.5) 
i 

where the right-hand lines of each ~ bubble have been 
formed into sets 01 ••• On according to the vertex 
of the Landau diagram at which they are incident 
[for Figure 8(a), 01 is the top right-hand line, O2 the 
remaining three]. St(Oi) operates on the subspace of 
the lines 0i and the sum includes all phase-space 
integrations that correspond to possible intermediate 
states, as in Fig. lO(a). The ~/s in (4.5) have the same 
left-hand and internal lines, but have different 
numbers of lines in the sets 0;, corresponding to the 
different intermediate states. Equation (4.5) was 
derived from the unitarity equation for a particular 

• A special case of This argument has been given for the pole by 
H. P. Stapp in High-Energy Physics and Elementary Particles 
(IAEA, Vienna, 1965); J. Math. Phys. 9, 1548 (1968). 
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(a) 

N[§]'N[0]" 
(b) 

FIG. I I. Equations (4.5) for the singularities of Figs. 8(a) and 8(b). 

amplitude, and the Ll bubble for this amplitude will 
be one of the Ll i that appear. If we start from unitarity 
equations for amplitudes corresponding to each of the 
Lli' we obtain a closed set of equations like (4.S) which 
can readily be solved by postmultiplication by S(Oi)'S 
and the use of unitarity to give the unique solution 
Ll i = 0, each i. 

For example, the surviving terms of Fig. 9 may be 
written as in Fig. II(a). A similar analysis applied tothe 
singularity associated with Fig. 8(b) yields Fig. I I (b). 
Multiplication of the expression in Fig. II (a) on the 
right by the expression in Fig. 12(a) and of the ex­
pression in Fig. l1(b) by the expression in Fig. 12(b) 
and adding yields, from the application of unitarity, 
the equation in Fig. 12(c). 

As the sequence of argument is well defined and 
the inversion problem now explicitly solved, our 
result holds for all the simple Landau singularities 
in the physical region of any amplitude. 

S. OTHER CONTINUATIONS 

So far we have only considered the 'f} - iE continua­
tion of unitarity written in the sst form. We could 
also consider the 'f} + iE continuation of this form, 

(a) 

(b) 

(e) 

FIG. 12. Quantities relevant to the 
manipulation of Fig. 11. 

or either 'f} ± iE continuation of the st S form in which 
+ bubbles lie to the right of - bubbles. We now 
discuss all these possibilities, retaining for the moment 
the supposition that 'f} + iE is the correct path of 
continuation for + bubbles. We do not wish to 
recapitulate the complexities of the preceding discus­
sion, so we write the equations in a symbolic way 
which adequately displays their structure. The four 
possible equations are 

+ 
'f} - iE, sst: ~ dif A+(1 - B-) = ~dif I, 

OE 

-
'rJ + iE, sst: ~ -(1 + B+) dif A- = ~dif I, 

OE 

(S.la) . 

(S.lb) 

+ 
'rJ - iE, stS: ~ (1 - B+) dif A+ = ~dif 1', (S.lc) 

OE 
-

'rJ + iE, stS: ~ -dif A-(1 + B+) = ~dif I', 
OE 

(S.ld) 

in which I represents unitarity integrals written in the 
sst form and I', integrals in the st S form, and by 
dif I we really mean I> - 1< q ± iE' The integrals I and 
I' are related by the transformation (+) +-4 - ( - ) 

applied to each bubble, as are - B- and .8+. There is a 
one-to-one correspondence between integrals I having 
+ ( - ) singularity mechanisms and integrals I' having 
-( +) mechanisms. Thus, if (S.la) leads to dif A+ as a 
Cutkosky integral with + bubbles, then (S.ld) gives 
dif A- as the same integral with + bubbles replaced 
by - bubbles and an over-all factor ( -I )n+1, where n 
is the number of bubbles. This agrees with the rules 
stated on the basis of Hermitian conjugation in II. 
The relation between (S.la) and (5.lc) may be stated 
by saying that the arguments which, when read from 
right to left, diagrammatically apply to (S.la), apply 
to (S.lc) when read from left to right. A similar 
relation exists between (S.lb) and (S.ld). Thus all 
procedures lead to the same picture of the singularity 
structure. 

Finally, we consider the effect of changing the 
assumption that 'f) + iE is the correct prescription for 
the + amplitude. Supposing that 'f} - iE is in fact the 
correct continuation interchanges the left-hand sides 
of (S.la) and (S.lb), and of (S.lc) and (S.ld). On 
mixed-IX arcs, where all these right-hand sides are 
zero, this makes no difference. On positive-IX arcs, 
however, the interchange would have serious results, 
for the inversion procedure would no longer give for 
dif A+ a Cutkosky formula with only + bubbles. At 
the next stage of the induction argument this altered 
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Cutkosky form would spoil the cancellation mech­
anism even for the mixed-IX arcs. We conclude there­
fore that 'YJ + ie is necessary on positive-IX arcs. This 
assumption for each Landau singularity is not quite 
as extensive as it seems, for if the scattering amplitude 
is to be the real boundary value of an analytic function 
almost everywhere in the physical region, the continua­
tion prescriptions across different Landau curves are 
linked in the sense that they must agree at effective 
intersections between the curves. Thus an 'YJ + ie 
prescription for one curve implies a similar prescrip­
tion for all curves with which it has an effective 
intersection, all curves with which these other curves 
have effective intersections, and so on. This implica­
tion is limited by the noncontinuity of 'YJ (and hence 
of the prescription) across cusps or nodes of the 
curves. The positive arcs are believed to be free of these 
singular points, so that this hierarchial constraint 
works to maximum effect. On the other hand, it is 
highly satisfactory that either an 'YJ + ie or an 'YJ - ie 
prescription can be adopted on the mixed-IX arcs, 
for these are known to be capable of having such 
cusps and nodes. 

6. CONCLUSION 

In this paper and its successor (which will deal with 
Landau diagrams having multiple lines) we will have 
given a complete description of the singularity 
structure in the physical region which is required by 
unitarity and the weak assumption of analyticity 
described in the introduction. This structure may be 
described as the minimum singularity structure. It is 
obtained by taking the singularities represented by 
explicit terms and adding to them all the singularities 
generated through the iterative mechanism. It is 
possible to conceive of further mechanisms, such as 
the sequences of complex singularities approaching 

the physical region discussed by Martin,S which would 
give further singularities consistent with unitarity. 
We have excluded these in the hope that the criterion 
of simplicity, or mimimal singularity, is the one 
chosen by nature. 

In S-matrix theory it seems necessary at present to 
define the "minimum singularity structure" through 
an iterative mechanism such as that described above. 
We have been able to obtain precise results in the 
physical region, because crossing and Hermitian 
analyticity do not come into play and because the 
analytic continuations required are only infinitesimal 
and consequently make less demand on technical 
resources. Outside the physical region a similar but 
more involved iteration procedure is expected to 
operate.9 •lO We believe that it is an important aspect 
of our discussion that it shows how such iteratively 
defined singularity structure can be made to yield 
precise results. 

Finally, we note that results similar to ours have 
been linked by some authors to causal properties of 
wavepackets.ll The fact that we can deduce it from 
unitarity and a weak analyticity assumption is 
therefore some indication of how analyticity leads to 
causality. The reverse direction of the argument is 
still, of course, completely ununderstood. 

8 A. Martin, "Inability of Field Theory to Exploit the Full 
Unitarity Condition" (CERN Preprint Th. 727). 

• R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, 
The Analytic S-Matrix (Cambridge University Press, London, 
1966), Sec. 4.10. ' 

10 For an example ol!tsid~e physical region, see J. C. Polking­
horne, J. Math. Phys. 7, 2230 (1966). 

11 B. N. Valuev, SOy. Phys. JETP 20, 433 (1965); S. Coleman and 
R. E. Norton, Nuovo Cimento 38, 438 (1965); A. Peres, Ann. 
Phys. (N.Y.) 37, 179 (1966); F. Pham, Ann. Inst. H. Poincare, 6, 
89 (1967); D. lagolnitzer, "S-Matrix and Classical Description of 
Interactions" (Sac1ay preprint, November, 1966); C. Chandler and 
H. P. Stapp, "S-Matrix Causality Conditions and Physical-Region 
Analyticity Properties," reported in Proceedings of XlIith Inter­
natiollal Conference on High-Energy Physics (Univ. of California 
Press, Los Angeles, 1967). 
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Lower bounds to the gr?und-state ,energy of a system c~mposed o~ N identical particles interacting by 
two-body forces (and ~osslbly ~lso wIth an external potentIal) are derIved, They are expressed in terms of 
the gro~nd-sta~e ene~gtes of (sImpler) sy~t~ms compose,d of a smaller number of particles having masses 
and/or InteractIon.s dlffe~ent from the ongInal.ones. This reduction process may be continued all the way 
down to systems InvolVIng one and two partIcles only. The generalization to systems containing some 
identical and some distinguishable particles is also discussed. 

1. INTRODUCTION 

The framework of this paper is the nonrelativistic 
quantum theory of many identical particles inter­
acting among themselves by two-body forces, and 
possibly also with an external potential. The scope of 
this paper is to provide lower bounds to the ground­
state energy of the system composed of N such parti­
cles, in terms of the ground state energies of simpler 
systems. The mathematical tool employed to obtain 
these results is the Rayleigh-Ritz minimum principle, 
which is,however, used in a somewhat unconventional 
way, so that it yields a lower rather than an upper 
bound to the quantity of interest. 

Throughout this paper, by ground-state energy we 
mean the energy ofthe lowest-lying state of the system; 
this state may be a (normalizable) bound state or it 
may just mark the beginning of a continuum, the 
first case being generally the most interesting one. 

No restriction on the two-body potential or on the 
external potential is detailed, the only requirement for 
the validity of the results being the applicability of 
the Rayleigh-Ritz principle. In particular the results 
hold both for potentials which diverge at large 
distances (corresponding to closed problems) and for 
potentials which vanish asymptotically. 

The approach and results of this paper are anal­
ogous to, but more general than, those of Post,! 

1 H. R. Post, Proc. Phys. Soc. (London) A69, 936 (1956). See also: 
H. R. Post, Proc. Phys. Soc. (London) A79, 819 (1962); R. L. 
Hall and H. R. Post, Proc. Phys. Soc. (London) A90, 381 (1967); 
R. L. Hall, Proc. Phys. Soc. (London) A91, 787 (1967); O. Ya. 
Savchenko, Yad. Fiz. 6, 645 (1967) [Sov. J. NucI. Phys. 6, 468 
(1968)]. Other papers which consider similar problems but employ 
different techniques are: N. W. Bazley and D. W. Fox, Phys. Rev. 
124, 483 (1961); R. Sugar and R. Blankenbecler, Phys. Rev. 136, 
B492 (1964); F. J. Dyson and A. Lenard, J. Math. Phys. 8, 423 
(1967); F. Calogero and Yu. A. Simonov, Nuovo Cimento S6B, 
71 (1968). Additional papers may be traced from the references 
in these. 

The main difference between the present approach 
and that of Post (which is restricted to the case with 
only interparticle forces present and no external 
potential) is that he performs an exact separation of 
the center-of-mass motion which we do not make. 
This separation restricts the applicability of the 
approach and therefore eliminates the possibility to 
obtain some of the results we get. But in those cases 
where both approaches apply, the previous elimina­
tion of the center-of-mass motion is an advantage 
which is reflected in Post's bounds being more stringent 
than those derived here. It would of course be easy to 
modify our approach in such cases so as to reproduce 
Post's results, but because this would merely corre­
spond to a repetition of his work we confine ourselves 
to pointing out which of our results should be 
discarded as being merely a less stringent version of 
the results previously obtained by Post. 

In the following section the results are derived and 
discussed. ~ome examples, and in particular the limit 
of large N, are treated in Sec. 3; they demonstrate, at 
least in some cases, the stringency of the bounds 
obtained. Section 4 contains some final comments, 
including a discussion of the generalization to systems 
containing some identical and some distinguishable 
particles. 

We use throughout a unit system such that Ii = 1. 

2. RESULTS 

Let us consider the system composed of N identical 
particles of mass m interacting with an external 
potential W(ri ) and among themselves via the two­
body potential V(ri ; r}). Here and in the following, ri 

labels the position of the ith particle in 3-space and all 
other internal degrees of freedom which this particle 
may possess (spin, isotopic spin, etc.); generally the 

562 
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potentials are multiplicative functions of the inter­
particle distance times operators acting on the 
(discrete) variables which label these additional 
degrees of freedom. 2 

We indicate by EN the ground-state energy of this 
system. This is the quantity we want to minorize. 

Let us then consider a comparison system com­
posed of n particles of masses mi = mjhi' interacting 
between themselves via the two-body potentials 
Vi;(ri ; r;) == gi;V(ri ; ri); the ith particle also interacts 
with the external potential/; W(ri ). We indicate with 
En(h; g;f) the ground-state energy of this system, 
the arguments h, g, and f indicating respectively the 
sets {hi}, {gii}' {fi}' 

If all the scale constants hi coincide, hi = h, the 
identity En(h; g;f) = hEn{l; gjh;fjh) holds, the argu­
ments gjh andfjh indicating of course the sets {gi;jh} 
and {/;jh}. This identity, whose proof follows by 
inspection from the respective Hamiltonians or, 
equivalently, from a dimensional count, is often used 
in the following to express the results in the most 
convenient way. 

The results of this paper are based on the following 
lemma. 

Lemma: If the number n of particles of the com­
parison system does not exceed the number N of 
original particles 

nsN, (2.la) 

and if the scale constants hi and the coupling constants 
gi; and /; are adjusted so that the sum total of, 
respectively, the kinetic and the potential energies are 
the same in the two systems, namely, 

n N 

!h i =21 == N, (2.1b) 
i=1 i=1 

n N 
2' g;; = !' 1 == N(N - 1), (2.1c) 

i,i=l i,i=l 

n N 

2 h =! 1 == N, (2.1d) 
i=1 i=1 

then the ground-state energy En(h; g;f) of the com­
parison system provides a lower bound to the ground­
state energy EN of the original system: 

(2.2) 

Here and in the following the prime on a double sum 
indicates that the diagonal terms should be omitted. 

2 The 2-body potentials are assumed to depend (and operate) upon 
the degrees of freedom of each of the two particles, but not upon 
the state of the two-particle subsystem, In' particular, exchange 
forces are excluded (although some of the results below remain 
valid even when exchange forces are present), 

Proof: The Rayleigh-Ritz principle, applied to the 
comparison system, implies that 

{'Y, [~lh/1i +i'~: g;;V(ri; r;) + i~ hW(ri)]'Y} 

~ En(h; g;f), (2.3a) 

where hiTi == - (2mjhi)-1"V; is the kinetic energy of 
the ith particle and 'Y is any normalized trial function. 
If we now choose 'Y to be a function of the N coordi­
nates r i , which is completely symmetric or antisym­
metric under the exchange of any two coordinates 
ri , r;, we may, in Eq. (2.3a), freely substitute any 
other label in place of the index i of Ti and of the 
indices i and j in the arguments of Vand W [note the 
role played at this point by the restriction of Eq. 
(2.1a); it is required that all the n coordinates which 
appear in the Hamiltonian of Eq. (2.3a) be treated 
symmetrically or antisymmetrically]. Taking advantage 
of this possibility and using Eqs. (2.1) we may there­
fore rewrite Eq. (2.3a) in the form 

{'Y, [i~T; +i1~ Veri; r;) +i~ w(ri)]'Y} 

~ En(h; g;f). (2.3b) 

If we now choose 'Y to be the (unknown, but certainly 
symmetric or antisymmetric) ground-state wave­
function of the original N-particle system, the lhs of 
this inequality becomes the lhs of Eq. (2.2). Q.E.D. 

Before proceeding to derive more specific results 
from this lemma, there is one important remark to be 
made, which implies, in some cases, a strengthening 
of the lemma. 

It refers to the case in which also the comparison 
system contains some particles which are equal, 
namely which have identical masses and interactions. 
The lemma may then be strengthened by requiring that, 
in evaluating the ground-state energy En(h; g;f) of the 
comparison system, these particles be treated as 
identical particles, obeying the same statistic as the 
original particles. The validity of this remark is easily 
justified through a re-examination of the proof of the 
lemma. The fact that it may modify the lemma only 
in the sense of making its conclusion more stringent is 
implied by the observation that any restriction, such as 
a (partial) symmetry requirement, upon the ground 
state of the comparison system can only raise (or 
lea\ e unchanged) its energy. 

The arbitrariness in the choice of the constants n, 
hi' gi;, and/; , which is implicit in the formulation of 
the lemma, provides great flexibility. This is exploited 
below to derive a few significant examples of the kind 
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of results which are implied by the lemma, and by the 
remark following it. These examples, far from ex­
hausting the potentiality of the lemma, are merely 
meant to illustrate it. 

The first choice we consider is 

n = N - 1, hi =h = h = N/(N - I), 

go = g = N/(N - 2), 1::;;; i,j ::;;; n. (2.4) 

It is consistent with Eqs. (2.1) and corresponds to the 
elimination of the Nth particle from the system, its 
kinetic and potential energy being evenly distributed 
among the other particles. It yields the following 
theorem. 

Theorem 1: The ground-state energy of the system 
composed of N identical particles interacting with an 
external potential W(ri ) and through the interparticle 
two-body potential V(r i ; rj) is not less than N/(N - 1) 
times the ground state energy of the system composed 
of N - 1 such particles interacting with the same 
external potential but through a two-body potential 
which is (N - l)j(N - 2) times stronger than that 
of the N-body case: 

E >E (~.~.~) 
N - N-1 N _ 1 ' N - 2 ' N - 1 

= -- EN - 1 1; -- ; 1 . (2.5) N (N-l) 
N-l N-2 

Repeated application of this theorem yields the 
following corollary. 

Corollary 1.1: The ground-state energy EN of the 
system composed of N identical particles of mass m 
interacting via the two-body interparticle potential 
Veri; r1) and with the external potential W(ri) is not 
less than Nj2 times the ground-state energy of the 
system composed of two such particles interacting 
with the same external potential and among themselves 
through a two-body interparticle potential, which is 
N - 1 times stronger than the original interparticle 
potential: 

EN ~ E2[IN; IN(N - 1); iN] 

= iNE2(1; N - 1; 1). (2.6) 

Thus a lower bound to the ground-state energy of an 
N-particle system is obtained from the solution of a 
much simpler problem. Of course, this corollary 
follows directly from the lemma if one sets n = 2, 
hi = h = tN, g12 = g21 = tN(N - 1), i = 1, 2. 

In the case without external potential, namely if 
W = 0, this result may of course be written with 
zero in place of the argumentJ, but it provides a less 
stringent bound than Post's result,1 which in our 

notation reads 

EN ~ E2(N - 1; IN(N - 1),0) 

= (N - I)E2(1; IN; 0). (2.7) 
As mentioned in the introduction, the difference is 
due to the preliminary elimination, performed by 
Post, of the center-of-mass motion; this can, of 
course, be performed only if no external potential is 
present. Note, however, that even in this case such 
an elimination prevents the establishment of more 
general results, such as the lemma and theorem given 
above and also some of the theorems and corollaries 
given below. The fact that the result of Post is more 
stringent follows from the obvious inequality 

E2(N - 1; g; 0) ~ E2(IN; g; 0), (2.8) 

which is a consequence of the positivity of the kinetic 
energy and of the fact that for all values of N larger 
than two, N - 1 is larger than tN; for N = 2 both 
results, Eqs. (2.6) and (2.7), hold with the equality 
sign and reduce to trivial identities. 

Another choice of the constants, which is also 
consistent with Eqs. (2.1), is 

n = N, hi = h, 0::;;; h ::;;; (N - 1)/N, 

hN = N - heN - 1), ga = N/(N - 2), (2.9) 

giN = gNi = 0, h = 0, IN = N, 
1 ::;;; i, j::;;; N - 1. 

This choice corresponds to decoupling the Nth 
particle from all the others and transferring to it all 
the interaction with the external potential. It yields the 
following theorem. 

Theorem 2: The ground-state energy EN of the 
system composed of N identical particles of mass m 
interacting via the two-body interparticle potential 
V(ri ; rl) and with the external potential W(r;) is not 
less than the sum of (a) h times the ground-state energy 
of the system composed of N - 1 such particles, 
interacting via the two-body interparticle potential 
N[h(N - 2)]-1 Veri; rl) but with no external potential, 
and (b) [N - heN - 1)] times the ground state energy 
of one such particle interacting only with the external 
potential N[N - heN - 1)]-1 W(r) , h being an arbi­
trary nonnegative number less than (N - l)/N: 

EN ~ EN _ 1 (h; N ~ 2 ;0) 
+ EI(N - heN - 1); 0; N) 

= hEN _ 1 (1; N ; 0) 
heN - 2) 

+ [N - heN - 1)]El(l; 0; N ). 
N - heN - 1) 

(2.10) 
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Combining this result with that of Post, Eq. (2.7), 
we obtain the following corollary, which we write 
directly as an inequality. 

Corollary 2.1: 

E > (N - 2)hE (1' N(N - 1) . 0) 
N - 2 '2h(N _ 2) , 

+ [N - h(N - 1)]E1 (1; 0; N ). 
N - h(N - 1) 

(2.11) 

Here E2(1, g, 0) is the ground-state energy of the 
system composed of two identical particles having 
the same mass and obeying the same statistic as the 
original particles but interacting through a 2-body 
interparticle potential which is g times the original 
interparticle potential. Note that this corollary reduces 
the evaluation of a lower bound for the ground-state 
energy of a system composed of N identical particles 
to that of the ground state of one- and two-body 
systems only. The arbitrariness in the choice of h 
[except for the inequality in Eq. (2.9)] should also be 
emphasized. 

Another interesting choice of the constants is the 
following one: 

n = N, hI = h2 = hi = 1, 

g12 = g21 = g, gli = g2i = gil = gi2 = 0, 
gi; = g' = [(N - 2)(N - 3)]-1 [N(N - 1) - 2g], 

fl = f2 = f, h =f' = (N - 2)-I(N - 2f), 

3 ~ i,j ~ N. (2.12) 

This is also consistent with Eqs. (2.1); it corresponds 
to particles 1 and 2 interacting only between them­
selves, through the potential g V(r1; r2), and with the 
external potential fW(r1.2), and the remaining N - 2 
particles interacting between themselves through the 
potential g'V(ri ; r;) and with the external potential 
f'W(r i ), with g' andf' adjusted to satisfy Eqs. (2.1). 
It yields, therefore, the following theorem. 

Theorem 3: The ground-state energy of the system 
composed of N identical particles interacting via the 
two-body interparticle potential V(ri ; r;) and with the 
external potential W(r;) is not less than the sum of (a) 
the ground-state energy of the system composed of 
N - 2 such particles interacting via a two-body 
interparticle potential which is [(N - 2)(N - 3)]-1 X 
[N(N - 1) - 2g] times the original one, and with an 
external potential which is (N - 2)-I(N - 2f) times 
the original one, and (b) the ground-state energy of the 
system composed of two such particles interacting 
through a two-body interparticle potential which is 

g times the original one and an external potential 
which is ftimes the original one, g andf being arbitrary 
constants: 

EN ~ EN- 2(l; [(N - 2)(N - 3)]-1 [N(N - 1) - 2g]; 

[N - 2]-I[N - 2f]) + E2(l; g;f). (2.13) 

The special choice 

g = HN(N - 1) - (N - 2)(N - 3)] = 2N - 3, 

withf = 1 andf = 0, yields two corollaries which we 
write directly in the form 'of inequalities. 

Corollary 3.1: 

EN ~ EN_2 + E 2(1; 2N - 3; 1). (2.14) 

Corollary 3.2: 

EN ~ EN _ 2 (1; 1; N/(N - 2» + E 2(1; 2N - 3; 0). 

(2.15) 

Note that the first one yields a lower bound to the 
ground-state energy of the system composed of N 
identical particles in terms of the ground-state energy 
of the system composed of N - 2 such particles with 
the same forces, and it might, therefore, be directly 
useful for phenomenological analysis. 

For potentials which vanish at large distances, some 
additional interesting results may be easily obtained. 
To this end let us introduce the minimum value G 
necessary and sufficient for the two-body problem 
with the same particles and with the interparticle 
potential GV(r1; r2) to possess one (zero-energy) 
bound state. Of course, G is less than unity if V(r1 ; r2) 

itself is sufficiently attractive to sustain a two-body 
bound state. Similarly, let us introduce the minimum 
value F necessary and sufficient for the single-particle 
external potential FW(r) to sustain a (zero-energy) 
bound state. We assume, of course, that at least one 
of the two potentials V, W is attractive at least in some 
region, otherwise the ground-state energy of any 
N-body system is simply zero; and in the following 
discussion we consider for simplicity only positive 
values of G and F, although this restriction is not 
really necessary. 

Having introduced these definitions, we remark 
that they imply that 

(2.16) 

The combination of this equation with the previous 
inequalities yields some interesting results whose 
explicit derivation is left to the reader. We mention 
explicitly only the following theorem, which follows 
from Post's result, Eq. (2.7). 
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Theorem 4: If the potential Veri; r;) through which 
certain identical particles interact pairwise is too 
weakly attractive to sustain a two-body bound state, 
the minimum number of such particles which is 
necessary to build up sufficient attraction to yield a 
negative-energy ground-state is the smallest integer 
not less than 2G, where G is such that the potential 
G V(r1 ; r 2) is just sufficient to sustain a (zero-energy) 
two-body bound state. 

This theorem may, for instance, be used to obtain 
a lower bound for the number of 4He atoms which 
constitutes the smallest "droplet" of liquid helium 
at zero temperature.3 

In the theorems and corollaries given above we have 
concentrated upon the results which obtain by 
"eliminating" from the N-body system one particle 
(Theorem I), or "factoring out" one particle (Theorem 
2) or a two-particle compound (Theorem 3). This 
procedure was dictated by the aim to eventually 
reduce the N-body problem to subproblems involving 
at most two bodies, such problems being of course 
substantially easier. But, of course, the scope of the 
lemma is much broader, as it is exemplified by the 
following theorem, which is written directly as an 
inequality. 

Theorem 5: 

EN ~ E M (1; g;f) 

+ EN_M(I; [(N - M)(N - M - 1)]-1 

X [N(N - I) - M(M - l)g]; [N - M]-1 

X [N - MI]), N ~ M + 2, M ~ 2. (2.17) 

This theorem follows from the lemma (with n = N 
and hi = 1) and corresponds to a choice of the 
constants go and f. such that, in the comparison 
system, the first M particles interact between them­
selves via the two-body potential gV and with the 
external potential jW, while the N - M remaining 
particles interact between themselves via the potential 
g'Vand with the external potential f' W, with g' and 
f' adjusted so that the sum total, respectively, of the 
internal and external interaction energy is unchanged, 
i.e., Eqs. (2.lc) and (2.ld) are fulfilled. Again the 
values of g and j are arbitrary. Note that Theorem 3 
is merely a special case of this theorem, corresponding 
to M = 2. 

3 A preliminary computation yields for this lower bound the 
value 11 ± 1. the error reflecting the uncertainty on the (phenom­
enological) potential. One of us (F. C.) wishes to acknowledge a 
suggestive conversation with Professor G. Morpurgo about the 
possibility to perform a computation of this kind. 

In the following section we give some examples of 
applications of these results. Here we discuss in a 
qualitative manner what one might expect as regards 
the stringency of these bounds. These comments will 
also bring out the difference between the fermion and 
the boson case, which has been hidden up to now. 

The essence of the lemma is the fact that a uniform 
distribution of kinetic and potential energy among all 
the particles of the system-and the requirement of 
total symmetry or antisymmetry ofthe wavefunction­
which are characteristic of the system composed of N 
identical particles, raise the energy of the correspond­
ing state, relative to that of a comparison system in 
which the kinetic and the potential energies are 
distributed less uniformly among all the particles, 
and to which no symmetry requirement applies (or 
it applies only partially). Of course, this statement is 
true only if the sum totals of the kinetic and potential 
energies, respectively, in the two systems are the same, 
the precise meaning of this equality being defined by 
the formulation of the lemma. 

Once this basic point is understood, it is easy to 
anticipate which cases are more likely to be charac­
terized by stringent bounds. They are just those in 
which the symmetry requirement is less important. 
Generally, for a system composed of N identical 
particles with no internal degrees of freedom and 
obeying Bose statistics, the symmetry requirement is 
irrelevant for the determination of the ground-state 
energy, because in this case for "dynamical" reasons, 
the ground-state wavefunction would be completely 
symmetrical even if the particles were distinguishable. 
Just the opposite situation prevails in the case of 
Fermi statistics, provided the number of particles is 
sufficiently large for the Pauli principle to play a 
dynamical role. (This is not the case for systems 
composed of up to four nucleons, since there are just 
four available states for each nucleon, corresponding 
to the internal degrees offreedom of spin and isospin, 
and the forces depend very weakly on these degrees of 
freedom; for instance, the ground-state wavefunction 
of the alpha particle is spatially symmetrical, just as 
it would be if the four nucleons were distinguishable 
particles.) 

In conclusion, one may hope that results, such as 
those of Corollaries 1.1 and 2.1 and Theorem 4 above, 
which "reduce" the N-body system all the way down 
to two-body systems, yield stringent bounds also for 
values of N much larger than 2, only if the ground­
state energy of the original system is not strongly 
affected by symmetry requirements; generally, this is 
the case if the ground-state wavefunction of the 
original system is spatially symmetrical, because 
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generally this is directly implied by the dynamics, even 
without an extra symmetry requirement. As regards 
results such as those of Theorems I, 2, and 3, and of 
Corollaries 3.1 and 3.2, this consideration, although 
always valid, is less important. These conclusions are 
perhaps best illustrated by the discussion of an 
explicit example, say N identical fermions without 
internal degrees of freedom and interacting by 2-body 
attractive forces. For large values of N the ground­
state energy of such a system is much raised by the 
Pauli principle, which forces the wavefunction to be 
completely antisymmetrical and, therefore, to have 
many zeros (resulting in a possible decrease of the 
average potential energy) and a lot of curvature 
(resulting in an increase of the average kinetic energy). 
Thus a lower bound such as that of, say, Corollary 
2.1, is certainly very poor, because it neglects almost 
completely the effect of the Pauli principle. On the 
other hand, a result such as, say, Corollary 3.1, is 
for large N much more stringent, because the lower 
bound still retains almost fully the effect of the Pauli 
principle; namely, it retains that effect for N - 2 
particles. But in any case, this result cannot be very 
stringent, because the effect of the Pauli principle 
between 2 and N - 2 particles is not taken into 
account. On the other hand, if the particles were 
bosons, the symmetry requirement would have no 
effect at all on the ground-state wavefunction, and 
therefore the hope that all bounds be reasonably good 
would not be unrealistic. That this hope is fulfilled, 
at least in some cases, is indeed confirmed by the 
examples treated in the following section. 

3. EXAMPLES 

In this section we consider some examples to give 
an idea of the stringency of the bounds considered in 
this paper. We limit ourselves to very simple cases, 
which can be managed without any analytical or 
numerical effort. 

We begin with the limit of large N, restricting the 
consideration to the boson case which is the only one 
in which one may hope to obtain reasonably stringent 
bounds. 

We note first of all that, if the two-body interparticle 
potential Veri; ri) has a finite negative minimum 
- JVrninl, the reduction of the N-body problem to 
one- and two-body problems through anyone of the 
theorems and corollaries of the previous section leads 
eventually to the trivial result: 

EN;;:: _tN2 JVrninl [1 + O(N)-l], N -- 00. (3.1) 

If, on the other hand, the potential does not have a 
finite minimum, the theorems and corollaries may 

yield more interesting results. For instance, in the 
case of an interparticle potential 

V(ri ; ri) = -e2/1ri - ril, 

corresponding to an attractive Coulomb-like inter­
action between all pairs (Newtonian forces), and no 
external potential, the result of Post, Eq. (2.7), implies 
the inequality 

EN;;:: _(l6)-lN2(N - l)me4• (3.2) 

Here and below m is the mass of the particles. This 
lower bound may be compared with the upper bound 

EN ~ -(67T)-lN2(N - l)me4• (3.3) 

Both these results have been given by Post1 ; the 
second one is obtained by a straightforward applica­
tion of the Rayleigh-Ritz variational principle with a 
Gaussian trial function depending only upon the sum 
of the squares of all interparticle distances. An upper 
bound which is certainly more stringent is4 

EN ~ - [4/(97T)][N(N - 1)(N - 2)-1(3N - 4)-1 

x reiN - ·mr(iN - 3)]2me4• (3.4) 

For large N, these results yield 

EN = -c-1N3e4m , N - 00, (3.5) 
with 

16 ~ c ~ 67T (3.6) 

leading to a determination of EN accurate to ± 8 %. 
Note that the upper bounds, Eqs. (3.3) and (3.4), 
coincide in this limit. 

The combination of Post's lower bound, Eq. (3.2), 
with the upper bound of Eq. (3.4) yields, for small 
values of N, a determination of the ground-state 
energy of the system under consideration which is 
even more accurate. In fact for N = 3 and N = 4 one 
finds, respectively, 

-'!!me4 < E < _ (li)2me4 

8 - 3 - 57T ' (3.7) 

- me < E4 < - - me, 3 4 (105)2 4 

- - 64 
(3.8) 

which are accurate to ±4% and ±5.5%, respectively. 
Other examples for small values of N may be found in 
the paper by Hall and PosU 

In the fermion case, and always considering particles 
which interact via the two-body interparticle potential 
Veri; ri) = -e2/lri - ril, one obtains in place of Eq. 

• F. Calogero and Yu. A. Simonov, Phys. Rev. 169, 789 (1968). 
The upper bound of this paper is the most stringent bound that may 
be obtained by inserting in the Rayleigh-Ritz principle a trial func­
tion which depends only on the sum of the squares of all interparticle 
distances. 
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(3.7) the result 

_ .2... me4 < E < _ ( 1252704 )2me4• (3.9) 
32 - 3 - 12762757T 

Here the lower bound is again obtained from the Post 
result, Eq. (2.7), taking into account the requirement 
of antisymmetry on the two-body problem, which 
implies that the lowest P-wave state has to be used in 
place of the S-wave ground state; this accounts for the 
difference (a factor of 4) between the lhs of Eqs. (3.7) 
and (3.9). The upper bound is obtained instead by 
applying the technique of Ref. 4 to the 3-fermion 
problem (with vanishing total angular momentum). 
These bounds imply a determination of the ground­
state energy accurate to ± 50 %. It should again be 
emphasized that these results are reported here only 
to give an idea of the stringency ofthe bounds in the 
various cases. Note, incidentally, that one is consider­
ing fermions having no internal degrees of freedom 
(and therefore no spin). 

4. FINAL REMARKS 

As we have already emphasized, the lemma of Sec. 
2 constitutes a rather general result. However, it is not 
the most general one that may be formulated, as it is 
restricted to systems composed of identical particles 
only. In fact, the extension to systems which contain 
some identical and some distinguishable particles is 
already implicit in it, since the presence of the dis­
tinguishable particles may be considered, from the 
point of view of the identical particles, as merely 
contributing to the "external" potential W(r i ). Thus in 
conclusion it may be quite generally stated that the 
essence of all the results of this paper is the possibility, 
in order to establish a lower bound to the ground-state 
energy of a system containing some identical particles, 
to distribute at one's convenience among them the 
kinetic and potential energies, with the only constraint 
of keeping their sum totals unchanged. The extra­
ordinary flexibility afforded by this possibility is best 
illustrated by the consideration of an example. 

Consider a system composed of four identical 
particles of mass ma , five identical particles of mass 
mb , and 13 identical particles of mass m •. All these 
particles interact among themselves via two-body 
interparticle potentials; specifically, Vaa(ri ; rj) is the 
potential between two particles of mass ma , yab(ri ; ri) 
is the interparticle potential between one particle of 
mass ma and one of mass mb , etc. This is clearly a 
complicated system. But the previous remark implies 
that the ground-state energy of this system is not less 
than the ground-state energy of a comparison system, 
composed of four particles of mass ma , four particles 

of mass m~ = (!)mb, and four particles of mass 
m~ = (l-\)m., interacting as follows: The first two 
particles of mass ma interact only between themselves, 
via the potential 6 vaa ; the first two particles of mass 
m~ interact only between themselves, via the potential 
10 Vbb; the first two particles of mass m~ interact only 
between themselves, via the potential 78 Vee; the third 
particle of mass ma and the third particle of mass 
m~ interact only between themselves, via the potential 
20 vab; the fourth particle of mass ma and the third 
particle of mass m~ interact only between themselves, 
via the potential 52 vae; and the fourth particle of mass 
m~ interacts only with the fourth particle of mass m~, 
via the potential 65 Vbe. Clearly this system is a very 
simple one, being in fact only the union of six com­
pletely disconnected 2-body systems. Thus a lower 
bound to the ground-state energy of the original very 
complicated system may be obtained solving only 
two-body problems. 

Obviously this reduction to problems involving 
only two bodies can be applied to any system com­
posed of Nl identical particles of mass ml , N2 identical 
particles of mass m2 , etc., up to N K identical particles 
of mass mK' all interacting between themselves, 
provided Nr ~ K + 1, 1= 1,2,··· ,K; the reduced 
problem may consist of K 2-body problems with 
appropriate masses and potentials V(l- I)VII and 
of tK(K - 1) 2-body problems with appropriate 
masses and potentials IJVIJ (here of course VII 
indicates the potential between identical particles of 
type I, and VIJ the interparticle potential between a 
particle of type I and one of type J). It is also clear that 
the reduction we have indicated is merely one possi­
bility among several. Which one of these is likely to 
produce a more stringent bound must be discussed in 
each case, keeping in mind the considerations which 
have been offered at the end of Sec. 2. 

It should finally be emphasized that the remarks 
referring to the (partial) symmetry constraints which 
may be imposed upon the comparison system (in 
particular the remark after the lemma in Sec. 2) also 
apply in this more general context. 

Note Added in Proof· In the case without external 
potential another interesting choice for the constants 
in the lemma is the following one: 

n = N, hi = h = N/(N - 1), hN = 0, 

giN = gNi = g = tN, gil = 0, 
1 :::;; i, j:::;; N - 1. 

One is thereby attributing an infinite mass to the Nth 
particle, so that it does not move, and is letting the 
remaining particles interact only with this one, so 
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that they become essentially independent from one 
another. In the boson case, this choice leads again to 
the result (2.6) (with f = 0), but in the fermion case 
the remarks after the lemma leads to the inequality 

N-l 

EN ~ ! E~n)(lNI(N - 1); iN) 
n=l 

N-l 

= iN(N - 1)-1 ! E~n)(1; N - 1), 
n=1 

where E~n)(h; g) is the nth energy level of the problem 
with two distinguishable particles having masses 
m/h and interacting through the interparticle potential 
gV [or, equivalently, of the problem with one particle 
of mass m/(2h) in the external fixed potential gV]. 
Of course in the sum, each level must enter as many 
times as required by its multiplicity. This result,how­
ever, for N> 3, is superseded by that of Hall,s who 
by a previous separation of the center-of-mass motion 
obtains 

6 R. L. Hall, Proc. Phys. Soc. (London) A9l, 16 (1967); other 
references are given in this paper. 
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The advantage of this approach is that it retains 
more fully the effect of the Pauli principle; it is, 
therefore, particularly convenient at large N. For 
instance, for V(ri' ri) = -e2/lri - r;l, the last formula 
yields the lower bound6 

EN ~ -lme'N2(V + 1); V integral, 

iV(V + i)(V + 1) :::;; N - 1 

< HV + 1)(V + t)(V + 2). 
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The Newman-Penrose fonnalism for obtaining the recent conserved quantities in general relativity is 
discussed and a group-theoretic interpretation is given to it. This is done by relating each triad of the 
orthononnal vectors on the sphere to an orthogonal matrix g. As a result, the spin-weighted quantities 
TJ become functions on the group of three-dimensional rotation, TJ = TJ(g), whereg E 0 8 , An explicit fonn 
for the matrix g is given and a prescription for rewriting TJ(g) as functions of the spherical coordinates is 
also given. We show that a quantity of spin weight s can be expanded as a series in the matrix elements 
Ti,.. of the irreducible representation of 0 3 , where S is fixed. Infinite- and finite-dimensional representa­
tions of the group SUI are then realized in the spaces of TJ'S and Tim. It is shown that the infinite­
dimensional representation is not irreducible; its decomposition into irreducible parts leads to the 
expansion of TJ in the T/",., the latter providing invariant subspaces in which irreducible representations 
act. 

1. INTRODUCTION 

Recent research on conservation laws for the 
electromagnetic and gravitational fields by Newman 
and Penrose1 features a new differential operator 5 
and a class of functions • Y;m (t/> , 0), called spin-s 

1 E. T. Newman and R. Penrose, J. Math. Phys. 7, 863 (\966). 

spherical harmonics, all defined on a sphere. The new 
operator and functions appear in the study of the 
Bondi-Metzner-Sachs group. The 8 Yim form a com­
plete orthonormal set for each value of s in the sense 
that certain field functions 'YJ, called quantities of 
spin-weight s, can be expanded in series in the. Y;m . 
Quantities 'YJ of spin-weight s are those field functions 
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discussed and a group-theoretic interpretation is given to it. This is done by relating each triad of the 
orthononnal vectors on the sphere to an orthogonal matrix g. As a result, the spin-weighted quantities 
TJ become functions on the group of three-dimensional rotation, TJ = TJ(g), whereg E 0 8 , An explicit fonn 
for the matrix g is given and a prescription for rewriting TJ(g) as functions of the spherical coordinates is 
also given. We show that a quantity of spin weight s can be expanded as a series in the matrix elements 
Ti,.. of the irreducible representation of 0 3 , where S is fixed. Infinite- and finite-dimensional representa­
tions of the group SUI are then realized in the spaces of TJ'S and Tim. It is shown that the infinite­
dimensional representation is not irreducible; its decomposition into irreducible parts leads to the 
expansion of TJ in the T/",., the latter providing invariant subspaces in which irreducible representations 
act. 

1. INTRODUCTION 

Recent research on conservation laws for the 
electromagnetic and gravitational fields by Newman 
and Penrose1 features a new differential operator 5 
and a class of functions • Y;m (t/> , 0), called spin-s 

1 E. T. Newman and R. Penrose, J. Math. Phys. 7, 863 (\966). 

spherical harmonics, all defined on a sphere. The new 
operator and functions appear in the study of the 
Bondi-Metzner-Sachs group. The 8 Yim form a com­
plete orthonormal set for each value of s in the sense 
that certain field functions 'YJ, called quantities of 
spin-weight s, can be expanded in series in the. Y;m . 
Quantities 'YJ of spin-weight s are those field functions 
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obtained by contraction of tensor (of any rank) fields 
with a certain complex triad. 

Consequently, the operator 0 and the functions 
s Yim were studied by Goldberg, Macfarlane, Newman, 
Rohrlich, and Sudarshan.2 They showed that 0 is 
related to the angular-momentum operator K and 
the s Yim are related3 to the matrix elements of the 
irreducible representations TIm of the three-dimen­
sional rotation group 0 3 , The relevance of 0 and 
8 Yim to the rotation group was stimulated by the 
similarity of certain relations appearing in the 
Newman-Penrose formalism to those appearing in 
the usual theory of angular momentum. It was shown 
that, by choosing the Euler angles appearing in 
T;"n and K in a certain way, an identification with 
m Yin and 0 is obtained. If T;"n and K were to be written 
in terms of some three variables other than Euler's 
angles,4 one might still find a way to make such an 
identification possible. 

The question arises as to whether the Newman­
Penrose formalism has a closer connection to 0 3 , 

This question becomes increasingly important because 
of the unclear physical meaning of the new conserved 
quantities. Giving a group-theoretic interpretation to 
the formalism could lead to a better understanding of 
these conserved quantities which might be of im­
portance to astrophysics and probably to the rest of 
physics. In this paper we answer the above question 
positively, thus giving the Newman-Penrose formalism 
a group-theoretic basis. 

In general there exists a close connection between 
the usual theory of spherical harmonics and that of 
group representations which was first pointed out by 
both Cartan and Weyl, though it is not our purpose to 
go into this question here. 5 

It should be mentioned that Gel'fand and Shapir06 •7 

have presented a method for expansion of certain 
combinations of components of vector and tensor 
fields. The expansion was made in terms of generalized 
spherical functions, the latter are the representation 
matrix elements T;"n' written as functions of Euler's 
angles. When the field quantities are evaluated on the 

2 J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, 
and E. C. G. Sudarshan, J. Math. Phys. 8, 2155 (1967). 

3 In Ref. 2, the relationship of the functions spin-s spherical 
harmonics to the four-dimensional rotation group and to the 
Lorentz group was also indicated. 

4 Representations of the three-dimensional rotation group in 
terms of direction and angle of rotation was given by H. E. Moses, 
Ann. Phys. (N.Y.) 37, 224 (1966); M. Carmeli, J. Math. Phys. 9, 
1987 (1968). 

• See, for example, R. Godement, Trans. Am. Math. Soc. 73, 496 
(1952). 

• J. M. Gel'fand and Z. Ya. Shapiro, Usp. Mat. Nauk 7, 3 (1952); 
English translation in Am. Math. Soc. Trans\. (2) 2, 207 (1956). 

, I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representa­
tions of the Rotation and LorelllZ Groups and their Applications 
(Pergamon Press, Inc., New York, 1963). 

surface of a sphere, one has again to make certain 
identification of its variables, similar to what has been 
shown in Ref. 2. 

Finally, we point out that generalized surface 
harmonics were also introduced and discussed by 
Moses.s We only mention that Moses' generalized 
surface harmonics, denoted by Y'j'n(cp, e), are related 
to the spin-s spherical harmonics 8 Yim(cp, e) of New­
man and Penrose by 

y~m( cp, e) = -8 Yim( cp, e)e-iS<P. 

In Sec. 2, we define quantities rJ as functions over 
the group 0 3 , These quantities are defined in the same 
way Newman and Penrose define their quantities of 
spin-weight s. However, whereas previously the 
additional rotational degree of freedom was fixed, we 
here do not make this convention and our 1]'s depend 
on three angles. , 

In Sec. 3, we relate these three angles to the three 
variables of the elements of 0 3 , The expansion of the 
functions 1] in terms of the matrix elements of the 
irreducible representations of 0 3 is given in Sec. 4. 
The last section is devoted to the connection between 
infinite- and finite-dimensional representation of 0 3 in 
the spaces of the 1]'s and the T;"n' respectively. 

2. QUANTITIES OF SPIN WEIGHT s 

In the three-dimensional Euclidean space with 
spherical coordinates r, e, cp, one introduces a triad9 of 
unit vectors ;1' ;2, ;3 on each point of a sphere of 
radius r. The two vectors ;1 and ;2 are taken to be 
in the tangent plane to the sphere at the spherical 
angles cp and e, whereas ;3 is taken to be normal to the 
sphere there. The vectors ;1 and ;2 are defined up to a 
rotation with an angle, which we denote by CP2' in the 
tangent plane about an axis in the direction of ;3' 
The rotation of ;1 and ;2 about ;3 is given a definite 
mathematical expression in the sequel (see Sec. 3). 

By introducing the above rotation, we have added 
a new variable CP2 upon which the two vectors ;1 and 
;2 depend. Accordingly, these two vectors depend on 
the spherical angles cp, e as well as the new angle CP2: 

The vector ;3' on the other hand, depends only on cp 
and e: 

(2.2) 

Of particular interest to us is the behavior of ;1 
and ;2 under the rotation about ;3' Such a rotation 

8 H. E. Moses, Ann. Phys. (N.Y.) 41, 166 (1967). 
• In Ref. 2, these three vectors were denoted by a, b, and c. 
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can be represented by the orthogonal matrix 

(

COS 1p sin 1p 0) 
0.= -sin1p cos1p 0 . 

o 0 1 

(2.3) 

Denoting the column of the three vectors ;1' ;2' ;3 
by;, 

(2.4) 

then under the rotation 0. we have 

;' = 0.;. (2.5) 

It is convenient to introduce the complex vector 
;+ and its complex conjugate ;_ defined by 

;± = 2-!(;1 =t= i;2)' (2.6) 

Under the rotation (2.3) these complex vectors trans­
form as 

;~ = e±i!J!;±. (2.7) 

A quantity 'f} is now said to be of spin weight s if 
under the rotation 0. it transforms as 

(2.8) 

where s is an integer. 
Examples of quantities of spin weights 1, 0, and -1 

are obtained by scalar multiplication of a vector field 
v with ;=r' ;3: 

'f}±1(cP, 0, cP2) = v(cP, 0). ;±(cP, 0, cP2), 
'f}o(cP, 0) = v(cP, 0). ;3(cP, 0). (2.9) 

Further examples of quantities of spin weights of 
any order can be obtained in a similar way from 
tensor fields. 

I n the following, we restrict ourselves to quantities 
'f} obtained by contraction of tensor fields with the 
triad ;±, ;3' In other words, the 'f} functions are 
components of tensor fields along the complex triad. 
These components generally depend on the three 
angles cP, 0, cP2' By relating these angles to the three 
parameters appearing in the three-dimensional rota­
tion group (such as Euler's angles or direction and 
angle of rotation4

), the quantities 'f} can be considered 
as functions of g: 

'f} = 'f}(g) , (2.10) 

where g is an element of 0 3 • 

U~ing the well-known relationship between the 
rotation group and the special unitary group of order 
two, SU2, we consider 'f} as functions on the group 
SU2 also: 

'f} = 'f}(u), (2.11) 
where U E SU2 • 

In the next section, we give the explicit dependence 
of g on the angles cP, 0, and cP2' We also find out what 
should be substituted for g in order that 'f} be written as 
a linear combination of components of the original 
tensor field. 

3. RELATION OF 'f) FUNCTIONS TO THE 
ROTATION GROUP 

We now relate the quantities 'f} to the elements g of 
the rotation group 0 3 , 

First we relate the triad field ;, given by Eq. (2.4), 
to g E 0 3 in such a way that for each triad ; there 
corresponds a rotation g E 0 3 , This correspondence 
can be achieved, using a method similar to that 
outlined by Gel'fand and Shapiro,6 by assigning to 
each triad ; a rotation g E 0 3 which transforms a 
certain given triad on the sphere at cP = 0 = 0 to 
;. To find the rotation g, we proceed as follows. 

We introduce a new triad of unit vectors 

(3.1) 

whose vectors are directed along the coordinates 0, cP, 
and r, respectively, and whose origin coincides with 
that of the triad ;. The triad of vectors e is a function 
of the spherical coordinates, e = e(cP, 0). The partic­
ular triad at cP = 0 = 0 is denoted by us by 

(3.2) 

Accordingly, we have 

eO = [e(cP, 0)].p=8=0' (3.3) 

It is easily seen that the three vectors e~, e~, and e~ 
are pointing in the same directions as the Cartesian 
coordinates x, y, and z of the fixed system. The 
transformation g is then defined as that one which 
transforms the triad eO into the triad;: 

(3.4) 

Now the vectors e8 , e.p' and er can be decomposed 
along the Cartesian coordinates, hence along e~, e~, 
and e~. One easily finds that the matrix of rotation R 
which transforms the triad eO into the triad e, 

e = Reo, 
is given by 

(

COS O.cos cP 
R = -sm cP 

sin 0 cos cP 

cos 0 sin cP 
cos cP 

sin 0 sin cP 

(3.5) 

-sin 0) 
o . 

cos 0 

(3.6) 
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The above matrix R can be written as a product of 
three orthogonal matrices 

R = DBA', (3.7) 
where 

( 0 I ~), D = -1 0 (3.8) 

o 0 

B- (~ 
0 

-~n6). cos 0 (3.9) 

sin 0 cos 0 
and where 

C+ -cos cP 

~). A' = co~ cP sin cP (3.10) 

0 

By changing the variable cP, the matrix A' may be 
written as 

(

COS CPt - sin CPt 0) 
A = sin CPt cos CPt 0, 

o 0 1 

(3.11) 

where CP1 = 11'/2 - cpo 
It remains to find the transformation from the 

triad e to the triad ;. Since the angle of rotation CP2 of 
the two vectors ;1 and ;2 was left undetermined, we 
define it by 

; = CD-Ie, 

where the matrix C is given by 

(

COS CP2 - sin CP2 

C = sin CP2 cos CP2 
o 0 

(3.12) 

(3.13) 

For later calculations we have to know the relation 
between the triad ; when CP2 = 0 and the triad e. 
From Eq. (3.12) we obtain 

( ::) = (~:~). 
;s 1~2=O er 

(3.14) 

Using Eqs. (3.12), (3.5), (3.7), and (3.11), we find 
the explicit form of the rotation g E 0 3 which trans­
forms the fixed triad eO into the triad;: 

(3.15) 

The transformation g(CPI, 0, CP2) represents three 
rotations with Euler's angles CPt, 0, and CP2 around 
the z, x, and z axis, respectively, where CPt = 
11'/2 - cpo Hence, for each value of the variables 
cP, 0, and CP2 of the triad; there corresponds a rotation 
g(11'/2 - cP, 0, CP2) E Os, and any function of these 
variables can be considered as a function of g E Os . 

In particular, the vectors ;±, ;3 can be considered 
as functions over the group Os: 

;± = ;±(g), ;s = ;s(g). (3.16) 

A direct calculation shows that 

;±(g) = - 2-![e~( CPt, 0) ± ie/J( CPt, 0)]e'f'~2, 
;s(g) = er(CPI, 0), (3.17) 

where CPt = 11'/2 - cpo 
The above considerations show that all functions 'YJ 

obtained by contraction of tensor fields with the 
complex vectors (3.16), such as those given by Eqs. 
(2.9), are functions of g E Os: 

'YJ = ['YJ(g)]~1="/2-~' (3.18) 

For example, the functions 'YJ., s = 1, 0, -1, given 
by Eqs. (2.9), are given by 

'YJ±t(g) = -2-![vicplo 0) ± iviCP1' 0)]e'f'~2, 
'YJo(g) = vr( CP1' 0). (3.19) 

When we put CP2 = 0, the functions 'YJ become 
functions of the spherical coordinates cP and 0 only: 

'YJ(cp, 0) = ['YJ(g)]~1= .. /2-M2=O' (3.20) 

Using Eqs. (3.19), we obtain the result for 'YJ., s = 1, 
0, -1, for example: 

'YJ±l(CP, 0) = 2-!(v~ ± iV/J), 

'YJo(cp,O) = vr • (3.21) 

In the next section, we relate these functions to the 
matrix elements of the irreducible representations of 
0 3 and SU2 • 

4. EXPANSION OF QUANTITIES OF SPIN 
WEIGHT s 

Let T;"n(u) be the matrix elements of the irreducible 
representations of the special unitary group of order 
two, SU2 , in their canonical basis (called the general­
ized spherical functions by Gel'fand and Shapiro). 
Here, m, n = -j, -j + 1,'" ,j, wherej, the weight 
of the representation, is a nonnegative integer or half­
integer, j = 0, t, 1, t .... The three variables CPl' 
0, CP2 are employed here also so that a function f(u) 
over the group SU2 means a function of the Euler 
angles,f(u) = f(CPl' 0, CP2)' Although the indices j, m, 
n can be half-integers, in general they are restricted in 
our case to integers only. This is so since we have 
limited ourselves to quantities 'YJ having only integral 
weights (compare Sec. 2). The use of SU2 , whose 
relationship to Os is well known, makes it easy to 
extend our results to quantities with half-integral 
weights. 

We mention without prooPo that every continuous 

10 M. A. Naimark, Linear Representations of the Lorentz Group 
(Pergamon Press, Inc., New York, 1964). 
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function f(u) in the group SU2 is the limit of a uni­
formly convergent sequence of finite linear combina­
tions of the functions T~n(u).n This means that the 
functions T;"n form a complete orthogonal system 
for the aggregate of all functionsf(u) whose modulus 
square is integrable with the measure du. 12 Accordingly, 
we have 

00 i 

feu) = 2 2 cx;"nT;"iu), (4.1) 
;=0 m,n=-i 

where cx~n are constants given by 

cx~n = (2j + I)A~n' 
A~n = J feu) T~n(u) duo (4.2) 

We now examine the behavior of different quantities 
under the rotation n, Eq. (2.3). The unitary matrix 
Y E SU2 which corresponds to the rotation n E 0 3 is 
given byI° 

(4.3) 

Furthermore, the matrix TI, when j is an integer, 
sa tisfies10 

T~iYu) = eim'PT;"iu), 

T;"n(uy) = in'PT;"n(u), 

where Y is given by Eq. (4.3) and u E SU2 • 

Accordingly, under the rotation n, the 
feu) transforms into 

f(yu) = 2 2 a;"nT;"n(YU) 
I m,n 

= 2 2 cx;"neim'PT;"iu). 
i m,n 

(4.4) 

function 

(4.5) 

In particular, for a quantity of spin weight s, we have 

1J(u) = 2 2 f3;"n T ;"iu), (4.6) 
I m,n 

1J(Yu) = 22 f3;"neim'PT;"n(u). (4.7) 
i m,n 

On the other hand, 1J satisfies the relation (2.8) 
which, in our present notation, reads 

1J(Yu) = ei·'P1J(u). (4.8) 

Hence, using Eq. (4.6), we have 

1J(Yu) = ei''P2 2f3;"nT;"n(u). (4.9) 
i m,n 

Comparing the two expressions for 1J(Yu) given by 

11 This theorem is valid for compact groups in general. See, for 
example, L. S. Pontrjagin, Topological Groups (Princeton Univer­
sity Press, Princeton, N.J., 1946); M. A. Naimark, Normed Rings 
(P. Noordhoff Ltd., Groningen, The Netherlands, 1959). 

12 The aggregate of all measurable functions I(u) satisfying the 
condition J I/(u)12 du < <Xl provides a complete Hilbert space denoted 
by L"(SU2 ). In this space, the addition of functions and multiplication 
by a number are defined in the usual way, the scalar product being 
defined by (11' I.) = J Nu)!2(u) duo 

Eqs. (4.7) and (4.9), we obtain 

2 2 f3;"n(eimv, - ei''P)T~iu) = O. (4.10) 
i m,n 

Using the orthogonality relation that the matrices 
Y; satisfy, 

J T~n(u) T:;"n'(u) du = (2j + 1)-1t5jj'i5mn,t5nn" (4.11) 

we obtain 
(4.12) 

Thus, we have 

f3~n = t5 msf3;n· (4.13) 

Accordingly, using Eqs. (4.6) and (4.13), we obtain 
for any quantity of spin weight s: 

00 j 

1J(u) = 2 2 f3;n T ;n(u). (4.14) 
i=I.1 n=-j 

It remains to write this formula in terms of the 
original spherical angles. Since, similarly to g E 0 3 , 

U is expressed in terms of 1>1' (), and 1>2' we obtain the 
desired expressions by substituting 1>1 = 7T/2 - 1> and 
CP2 = O. Accordingly,13 

00 i 

1J(cp, () = 2 2 f3;n T;n(7T/2 - cP, (), 0). (4.15) 
j=I.1 n=-j 

For example, a vector field v can be expanded in the 
following way: 

v±( cP, fJ) = 2 f3il,n Til,n( 7T/2 - 1>, (), 0), 
I,n 

Vo(cp, () = 2 f3~,nT~,n(7T/2 - cp, (), 0), (4.16) 
i,n 

where we have used the notation 

v± = -2-1(v", ± iVe), 

Vo = Vr' (4.17) 

A tensor field W of rank two provides nine quanti­
ties W. of weights s = 2, 1, 0, -1, -2. These are 
obtained by contraction of the tensor field W with 
;'1" ;3 and inserting CP2 = 0 [using Eq. (3.14)].14 

18 Comparing the expansion given by Eq. (4.15) with the similar 
one in terms of the spin-s spherical harmonics • YI m(r/> , e) of Newman 
and Penrose (Ref. I), we conclude that 

• Ylm(r/>, e) ,..., T;m(1T/2 - r/>, e, 0). 

The relation comparable to this one in Ref. 2 was shown to be 
somewhat different, i.e., given by • Ylm(r/>, e),..., TL.,m(r/>, e, 0) [see 
Eq. (3.11) of Ref. 2]. The reason for this difference is the way Euler's 
angles are chosen. Our rotation with the angle e is taken about the 
x axis, whereas that of Ref. 2 was taken about the y axis. 

14 The field quantities that were expanded by Newman and 
Penrose are those obtained from contraction of the vector field 
v = E + iB for the electromagnetic case. For the gravitational field, 
in both the linear and the full theory of relativity, the quantity 
analogous to the Maxwell tensor F/Lv is the Weyl tensor C"py~. Just 
as F /LV corresponds to the two vectors E and B, the C,.py~ corresponds 
to two traceless symmetric three-dimensional tensors Ui; and Vii. 
The quantities to be expanded are then those obtained from the 
tensor Wij = Uil + i Vii. Since Wil is symmetric and traceless, one 
obtains only five quantities instead of the nine quantities which are 
usually obtained. See, for example, E. T. Newman and R. Penrose, 
"Some New Gravitationally Conserved Quantities," in Research on 
Solutions of the Gravitational Field Equations, Aerospace Research 
Laboratories Technical Report No. ARL 67-0053, 1967, p. llS. 
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TABLE I. Various spin-weight functions W 8 obtained from the 
tensor field W. We also give their expansion modes in Tin , the 

latter being evaluated at </>' = 1T/2 - </> and </>2 = O. 

Weight s W, Tensor components Expanded in Tin 

±2 W.~±~± 
W",,,,- Woo 

± i( Wo", + W",o) 

±I W· ~±~3 -(W",r ± iWor) 

W'~3~± -(Wr", ± iWro) 

W· ~+~_ W",,,,+ Woo 
+ i( Wo", - W",o) 

0 W· ~3~3 W" T6.n(1T/2 - </>' (), 0) 
W .~_~+ W",,,,+ Woo 

- i(Wo", - W"'O) 

We give in Table I the various spin-weight functions 
Ws obtained from the tensor field W. We also give 
their expansion modes in TIn; the latter are evaluated 
at cPl = 7T/2 - cP and cP2 = O. 

The above results were also obtained by Gel'fand 
and Shapiro6 by using a very tedious method. 

The considerations of this section show how closely 
related the functions 'YJ are to the matrix elements 
T;"n' This relationship has even a group-theoretic 
meaning when T;"n and 'YJ are considered as functions 
on the group 0 3 or the group SU2 • This meaning is 
pointed out in the next section. 

5. CONCLUDING REMARKS 

We conclude our discussion by giving a group­
theoretic meaning to the expansion of the functions 'YJ 
in terms of the T;"n(u), It is shown that the trans­
formations which connect the 'YJ's realize an infinite­
dimensional representation of SU2 in the space of all 
functions 'YJ. This infinite-dimensional representation 
is not irreducible; its decomposition into irreducible 
parts leads to the expansion of 'YJ(u) in the T~n(u), 
the latter providing invariant subspaces in which 
irreducible representations of SU2 act. 

We notice that the set of all measurable functions 
'YJ(u) of weight s [i.e., satisfying Eq. (4.8)] which 
satisfy the condition 

fl'YJ(U)1 2 du < 00 (5.1) 

form a Hilbert space.10 It is denoted by L~S(SU2).15 
We now assign for each U1 E SU2 an operator Vu, 

defined in the Hilbert space L~S(SU2) by 

Vu,'YJ(u) = 'YJ(UU1) , (5.2) 

where 'YJ(u) E L~S(SU2)' The correspondence u1 ~ Vu, 

'6 The scalar product in this Hilbert space is defined by (1], 1]') = 
S 1](u)r(u) du, for any 1], 1]' E Li'(SU.). It can be shown that the 
space Li'(SU.) is a closed subspace of the Hilbert space L"(SU.) and, 
therefore, is complete. 

then realizes an infinite-dimensional representation of 
SU2 in the space LiS(SU2). It is, in fact, a unitary 
representation.16 

The decomposition of this infinite-dimensional 
representation into irreducible parts can easily be 
done if we notice that the matrix elements T1n(u) E 

L~S(SU2) since they satisfy Eq. (4.8). Therefore, 

Vu , T:m(u) = T:m(UU1)' (5.3) 

Since TIm are matrix elements of the irreducible 
representations of SU2 , we have 

j 

T1m(UU1) = ! T:n(u)T~m(Ul)' (5.4) 
n=-i 

Using Eq. (5.3), we obtain 
i 

Vu, T1m(u) = ! T:iu)T~m(Ul)' (5.5) 
n=-j 

Accordingly, the transformation Vu, realizes a 
representation of SU2 in the space RS of (2j + 1)­
functions of the sth row of the matrix Ti. Also, the 
matrix elements of Vu, are T~m(ul)' The representation 
u1 ~ Vu, in the space of functions Tln(U) , n = -j, 
-j + 1,'" ,j, is irreducible, and the Tln(u) form a 
canonical basis in this spaceY 

The above considerations show that the infinite­
dimensional representation of SU2 in the Hilbert 
space L~S(SU2) is decomposed into irreducible parts 
defined in the subspaces RS of the matrix elements 
Tln(u), where j and s are fixed. In fact these are the 
only irreducible components ofthe infinite-dimensional 
representation. This explains the meaning of the 
expansions of 'YJ in terms of T1n . 

'6 This representation is related to the principal series of repre­
sentations of the unimodular group of order two. See, e.g., Ref. 10. 

'7 The operators H ± , Ha of this representation are given by 

PI/> ( () 0 . 0 () 0) H± = e '± cotan o</>, + , o() =F cosec 0</>2' 

. 0 
Ha=,o</>,; 

they satisfy the following relations with respect to the canonical 
basis Ttn,_;, T:n,-J+l' ... , T:n.i: 

H±T~n = [(j ± n + I)(j =F n)llT~.n±" 

HaT:nn = nT:nn , 

where m, n take the values -j, -j + 1, ... ,j. By changing the 
variables </>, into </>. and vice versa and using the relation 

we obtain 
T~m(</>2' (), </>,) = T~n(</>" (), </>.), 

K±T~n = [(j ± m + 1)(j =F m)ltT~±,.n' 

K3T~n = mT:nn , 

where K±, Ka are given by H± ,Hawith</>,and</>.exchanged: 

K± = e=Fil/>.( ± coton () o~. + i o~ =F cosec () o~J, 
K 

. 0 
a =, 0</>2 . 

It then follows that K+ is most related to d. See Ref. 2. 
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The theory of a quantized Dirac field interacting with a classical electromagnetic field is considered. 
The resulting q-number problem is reduced to a closely related c-number problem. The theory is then 
shown to be without divergences. The interpolating field is shown to exist and is local. Also, the S matrix 
is shown to be unitary. 

I. INTRODUCTION 

The problem of an electron in an external electro­
magnetic field has been considered by various people, 
particularly Salam and Matthews l and Schwinger.2 
It was shown by their use of the Fredholm theory that 
the one-particle Green's functions exist for an electron 
interacting with an external electromagnetic field. 

It is also implicit in the work of Salam and Mat­
thews, and explicit in that of Schwinger, that all the 
Green's functions of the theory can be expressed in 
terms of the two-point function. However, it is not 
obvious how the full apparatus of the theory is to be 
recovered from the Green's functions. The difficulty is 
that the theory has, in general, two distinct vacuum 
states: the in vacuum '¥~ and the out vacuum '¥gut. 
The two-point Green's function as defined by Schwin-
ger is 

('¥~ut' (1fJ(x) 1fJ(~»+ 'Yrn) 

('¥~nt' 1fJrn) 

and it is not obvious how to use the standard recon­
struction theorem ofWightman3 to recover the Hilbert 
space and field operators. That theorem assumes a 
unique vacuum state. 

We have avoided the difficulties mentioned above 
by working directly with the fields. These fields are 
operator-valued distributions4 and therefore have a 
meaning only when smeared with suitably smooth 
test functions. They satisfy a system of linear partial 
differential equations. The problem of existence of a 
solution of these equations is reduced here to the 
same problem for a closely related system for complex­
valued functions. 

II. THE FREE DIRAC FIELD 

The free Dirac operators 1fJin(X) are given in the 
usual Fock-space representation as presented, for 

.. This work is part of the author's Princeton Ph.D thesis, 1967. 
t Present address. 
1 A. Salam and P. T. Matthews, Phys. Rev. 90, 690 (1953). 
2 J. Schwinger, Phys. Rev. 93, 615 (1954). 
3 A. S. Wightman, Phys. Rev. 101,860 (1956). 
• A. S. Wightman and L. Garding, Arkiv Fysik 28, 129 (1964). 

example, in Ref. 5. The Hilbert space H(in) on which 
they act is given by 

"" H On ) = EB H~n) (1) 
n~O 

and 
(2) 

where ~ means the n-fold completely antisymmetric 
tensor product. The no-particle (vacuum) H~in) con­
sists of elements which are complex numbers with the 
inner product 

(3) 
and 

min) = H(+) EB H(-). (4) 

A state in H(E), € = ±, is described by a pair of com­
plex-valued functions of the momentum P labeled by 
an index rx taking on the values ±t. (Strictly speaking, 
the states are equivalence classes of functions. Two 
functions belong to the same equivalence class if they 
differ only off the mass shell.) Under the proper 
orthochronous Lorentz group, these states transform 
according to the representations D(l.o) or D(o.l) of 
SL(2, c) depending upon whether € is + or -, 
respectively. The inner products in HE are given by 

(<l>~+)(p), '¥~+)(p» 

=! r <l>~+)*(p)(l) ,¥~+)(p) dOm(p), (5a) 
ap Jv+ maP 

(Il>~-)(p), '¥~-)(p» 

=! r <l>~-)*(P)(£) '¥~-)(p) dOm(p). (5b) 
ap Jv+ map 

Here, p = Pol - p. G, 

P = Pol + p. G. 

(6a) 

(6b) 

Convenient orthonormal basis functions for H: are 
l 

b~:~(p) = ! (E/m)a.pHk/p)(lpI2 + m2)1 for (+), 
p~l 

(7a) 
for (-). 

(7b) 
5 s. s. Schweber. An Introduction To Relativistic Quartturn Field 

Theory (Harper and Row Publishers, Inc., New York. 1962). 
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The Hk/p) may be taken as pairs of ordinary Hermite 

functions of the three-vector p so that each kp 
corresponds to a triple (lp, mp, np) of integers. 

The basis vectors in H~n). are conveniently taken as 
determinants of the b:s: 

b~«lkl'" .,«"k,,)(P, ... , Pn) 

= ~ det (b!lkl(Pl), ... ,b~nk .. (Pn»' (8) 
(n!) 

We have occasion to use such a basis set later on. 
The field operators tpin(f), ipin(f) are defined by 

(tpin(f)cf»~7:~)·· '«"'PI'··· ,Prep!> ... , Pn' ql' ... , qr) 

= r dQm(p){I (n + l)t/(p)u«(p) 
Jv+ « 

X cf)(n+l,r) (p P ... P q ... q)} 
««lo···'tXn.Pl.···'fJr 1, 'n' 1, 'r 

+ r-t 1(-I)n+i+Y(_qi)VPi(qi) 
i=l 

X 
cf)(n,r-l) 

GIlt' .• ,f%n,flt, ... ,Pit' .. ,fJn 

X (PI"'" Pn' ql"", qi"", qr), (9a) 

where A over a letter means "omit this" and the u«, 
vp are the positive- and negative-frequency solutions 
of the Dirac equation. The/(p) are the Fourier trans­
forms of four-component test functions. Throughout 
this paper we use test functions from the space 8 of 
infinitely differentiable functions that are rapidly 
decreasing at infinity. We could, in fact, use a larger 
space consisting offunctions which, together with their 
derivatives, are continuous and £2. For simplicity, we 
have avoided this added complication. 

With the notation u = u*yO we have 

(ipin(f)cf»~7:~) .. ,«n,Plo ... ,P'(Pl' ... , Pn' ql' ... , qr) 

= r dQm(q){I (r + l)t( -1)nvp(q)!(q) 
Jv+ p 

X cf)~7:~:~~«",P Plo ... ,Pr(Pl' ... , Pn' q ql' ... , qr)} 

n 

+ n-l I (-1)'+lU«I(Pi)!( - Pi) 
i=l 

X cf)~7~1::~iil"" ,«",Ph' .. ,Pr 

Also, 
(10) 

and 
(11) 

where 

where Sa and Sr are the advanced and retarded Green's 
functions, respectively, for the free Dirac equation. 

The fields tpin(X) and ipin(X) satisfy the equations 

(- iy . a + m)tp(x) = 0, (14a) 

iO/lip(x)y/l + mip(x) = O. (14b) 

As domain of the field operators we may take all lY 
such that lY(n,r) = 0 for sufficiently large n, r and such 
that lY(n,r) E 8 when restricted to the direct product of 
the relevant mass hyperboloids. 

III. THE INTERPOLATING FIELD 

The most general gauge-invariant interaction of a 
Dirac particle with an external electromagnetic field 
is described by the field equations 

(-iy' 0+ m)tp = (eA- + p,a"PF«p)tp. (15) 

Here, eA- + p,(]"P F«p = B, 

(16) 

Using the retarded or advanced free Green's functions, 
this equation leads to the Kii1l6n-Yang-Feldman6 ,7 

integral equations: 

tp(x) = tpin(X) + f Six - y)B(y)tp(y) dy, (17a) 

tp(x) = tpout(x) + f sacx - y)B(y)tp(y)dy. (17b) 

It is at this point that our procedure differs from the 
usual one (perturbation expansion). In fact, we con­
vert this q-number problem to a c-number problem. 

Since the solutions tp(x) of these equations (if they 
exist) define operator-valued distributions, it is natural 
to consider the smeared equations. We continue to 
use the notation 

tp(f) = ~ ffiX)tpiX) d'x, (18) 

where ex labels the spinor components of tp. 
Thus (suppressing the spinor indices), 

tp(f) = tpin(f) + ff(X)Sr(X - y)B(y)tp(y) dy dx 

= tpin(f) + tp[(f * Sr)B], 

where the * means convolution. So that, finally, 

(l9a) 

where 
(20a) [tpin(!), tpin(g)*]+ = -is(/, g), 

Sex - y) = -(if) + m)~(x - y) 

Sex - y) = Sa(X - y) - Six - y), 

(12) is a mapping of the test-function space 8 into itself if 

and 
(13) 

• G. Kallen, Arkiv Fysik 1,371 (1950). 
7 C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950). 
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B is properly restricted. In fact, if we choose AI' E S 
then B E S. 

Now, S, is a tempered distribution and, therefore, 
/ * S, E OM' the space of infinitely differentiable 
functions of slow growth. Hence, with B E S we see 
that (f * S,)B E S. Furthermore, this mapping T, is 
continuous from S into S. 

In a similar manner we obtain 

"P(T J) = "Pout(f), 
with 

a continuous mapping from S into S. 
We use the notation 

DI = iol'fyl' + ml, 

DBI= DI+IB. 
It then follows that 

IV. THE MAPPINGS T, AND To 

(19b) 

(20b) 

(21) 

(22) 

(23) 

We now show that the use of the mappings T, and 
To reduces the question of the existence of solutions 
for the fields to a c-number problem. To find the 
interpolating fields requires finding the inverse map­
pings T;l and T;;l. If these inverse mappings exist 
and define a continuous mapping of S onto S, we are 
finished. The continuity of the inverse mappings 
follows from a theorem in Gel'fand and Schilow8 that 
states: 

If a continuous linear operator A maps a complete, 
countably normed space X in a one-to-one invertible 
fashion onto the space Y, then the inverse operator 
A-I is also continuous. 

Thus, we need only show that the inverse mappings 
exist from S onto S. This means that we must show 
that, for all hE S, we can find an/E S such that 

T,f= h (24a) 
or 

Taf= h. (24b) 

We restrict the discussion to T, since the discussion 
for To is identical. 

Define the auxiliary function 

g =/* S,. (25) 

With zero initial conditions, the unique solution of 
this equation in OM is 

g =/* Sr· 

Replacing/by Dg in T,f. we get 

Dg +gB= h. (27) 

So g must be a solution of the inhomogeneous, inter­
acting field equation with zero initial data. In the case 
of T;;l we have zero final data. 

The above system of differential equations is 
strictly .hyperbolic and the Cauchy problem is well 
posed. It is well known9 that in this case there is a 
unique solution for g E OM' 

Therefore, T;l and T;;l exist and define continuous 
one-to-one mappings of S onto S. 

It also follows from the strict hyperbolicity of the 
operator DB that for zero initial data 

supp g c V+ supp h (28a) 

and for zero final data 

supp g c V_ supp h. (28b) 

Here, V± supp h is the forward (backward) light cone 
subtended by the support of h. 

From this we can conclude that 

supp T;11 c V+ supp I, (29a) 

supp T;11 c V_ supp I. (29b) 

V. RECIPROCITY RELATIONS 

In this section we prove and list several identities 
relating the Green's functions for the Dirac equation 
and the mappings T" To. 

We start with the following well-known identity 
for the Dirac Green's functions: 

(yOS:'l)( -x) = S,(x) = Six), (30a) 

(yOS:yO)( -x) = Six) = S,(x). (30b) 

Also, since 

and 

we get 
B(y) = B(y). (31) 

It then follows by writing out the following expression 
that 

Then, g E OM and due to the retardedness property S,(T,f - /, g) = S,(f, T ~ - g). (32) 

of S" g vanishes as XO ---+- - 00. Furthermore, Whence it follows that 

Dg=[ (26) (33a) 

8 I. M. Gel'fand and G. E. Schilow, Verallgemeinerte Funktionen 9 Partial Differential Equations, Bers, John, and Schechter, Eds. 
II (VEB Deutscher Verlag der Wissenschaften, Berlin, 1962). (Interscience Publishers, Inc., New York, 1964). 
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and replacing! by T-;ljand g by T;;1g, we get identities (33b) and (34b) and the fact that 

SrCj, T;;1g) = SrCT-;Y, g). (33b) T-;1 DBj = T;1 DBj = Dj, (42) 

In a similar manner, it is possible to prove a lot more 
identities, of which we now make a list since we need 
many of them later: 

SrCTrf, g) = SrCj, Tag), (33a) 

Sa(Taj, g) = SaCj, Trg), (34a) 

SrCTaj, g) = SrU, Trg), (35a) 

SaCTrf, g) = SaU, Tag), (36a) 

Sa(Trj, g) - SrU, Trg) = SaCj, g) - SrU, g), (37a) 

SaCj, Tag) - SrCTaj, g) = SaU, g) - SrU, g). (38a) 

The corresponding identities in terms of the inverse 
mappings are 

SrU, T;;1g) = Sr(T-;1j, g), (33b) 

SaCj, T-;1g) = SaCT;1j, g), (34b) 

SrCj, T;1g) = Sr(T;;1j, g), (35b) 

SaU, T;;1g) = SaCT-;1j, g), (36b) 

SaCj, T-;1g) - SrCT-;Y, g) 

= SaCT-;1j, T-;1g) - Sr(T-;1j, T-;1g), (37b) 

SaCT;;1j, g) - SrU, T;;lg) 

= SaCT;;1j, T;;1g - SrCT;;Y, T;;1g). (38b) 

VI. THE INTERACTING GREEN'S FUNCTION 

We now obtain the smeared Green's functions for 
the interacting Dirac equation 

DBS~(x, y) = b(x - y), 

DBS~(X, y) = b(x - y), 

where the differentials act on x and 

DB = (-iy' a + m + B) 
and 

(39a) 

(40a) 

DBS~(x, y) = b(x - y), (39b) 

DBS~(x, y) = b(x - y), (40b) 

where the differentials act on y. We now define the 
two distributions 

so that 

DBS~U, g) = SrCT;l DBj, g) 

= SrCDj, g) 

= bU, g). 

The proof for the other expressions follows in a 
similar manner. 

That these distributions have the correct support 
properties follows from (29a) and (29b). Thus, if 

V+ suppj n supp g = 1> (43a) 
or 

supp j n V_ supp g = 1>, (43b) 
then 

S~U, g) = 0, (44) 

since Sr has support in the forward light cone. This 
proves that S~ has the same support as Sr' namely, 
the forward light cone. 

Similarly, one shows that S~ has the same support, 
the backward light cone, as Sa. Therefore, S~ and S~ 
are indeed the retarded and advanced Green's func­
tions, respectively, for the operator DB' 

VII. LOCALITY-COMMUTATION RELATIONS 

We constructed "Pin SO that 

["PinU), "Pin(g)*l+ = iSrCf, g) - iSa(f, g). 

Also, we showed that 

so that 

["PU), "P(g)*l+ = iSrCT-;1j, T-;1g) - iSaCT;1j, T-;1g) 

= iSrCT;Y, g) - iSaCj, T;1g) 

= iSr(T-;1j, g) - iSa(T-;/j, g) 

= iS~U, g) - iS~U, g). 

This proves that the interpolating field is local. We 
have used the identities (37b) and (34b) and Eqs. 
(41a) and (41b). 

We now show that the in-field and the out-field 
satisfy the same commutation relations, that is, 

S~U, g) = SrCT;Y, g), 

S~U, g) = Sa{T;;Y, g), 

(41a) ["Pout(f), "Pout(g)*l+ = ["Pin(f), "Pin{g) *1+ . (45) 

(41b) We recall that 

and we show that these are the required retarded and 
advanced Green's functions, respectively. 

That the above defined distributions satisfy the Therefore, 
correct equations (39) and (40) follows from the 

"PU) = "Pin{T-;Y), 

"Pout{!) = (Ta!)· 

(46) 
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and 

[1I'out(f), 1I'out(g)*]+ = [1I'in(T;:-lTaf), 1I'jn(T;:-lTaj*)]+ 

= is,.(T-;lTaj, T;lTag) 

- iSiT;:-lTaj, T-;lTag). 

But from (37b) and (38b) we conclude that 

Sr(T;:-lj, T;:-lg) - Sa(T,.-Y, T;:-lg) 

= SiT;;lj, T;;lg) - Sa(T;;Y, T;;lg) (47) 

and, hence, that 

and 

suppfo C supp B, 

as claimed. 
If f+ is a positive-frequency test function [that is, 

the Fourier transform J+~po, p) of f+ vanishes for 
Po ~ 0], then by construction 

(56) 

We now show that the equation 

(57) 
Sr(T;:-lTaj, T;:-lTag) - SiT;:-lTaj, T;:-lTag) has a solution 

= S .. (f, g) - Sif, g), (48) 

which proves our assertion that the out-field and the 
in-field satisfy the same commutation relations. 

VDI. UNITARITY OF THE SMATRIX-THE 
OUT-VACUUM 

Since the out-field and the in-field satisfy the same 
commutation relations, we need only show that, corre­
sponding to the out-field, there exists a vacuum state 
in the Hilbert space of in-states to conclude that the 
two fields are unitarily equivalent.lo The unitary 
operator connecting them is the S matrix. Recall that 
the in-field was explicitly constructed to have a vacuum 
state (corresponding to no particles being present). 

We now show that the out-field has a vacuum. As 
we saw before, 

1I'out(f) = 1I'in(T;:-lTaf). 

We first show that 

T;lTaf = f + fo, 

where supp fo C supp B. 
But 

T;:-lTaf= Dg, 

where g is the solution of 

DBg = TaJ 
corresponding to zero initial conditions. 

A particular integral of (51) is 

gparticular = f * Sa' 
So 

where 

DBgo = ° 
with initial conditions f * (S" - Sa). 

Hence, 
fo = Dgo = -goB 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

10 L. GArding and A. S. Wightman, Proc. Nat!. Acad. Sci. U.S. 
40, 617 (1954). 

Using a complete orthonormal set of basis vectors, 
as described previously, we look for a solution of the 
form 

n," 

We suppress the indices and simply write 

If>o = '" a b(n,,,) out £.., n,r • 
n,r 

We now set 

Then we get 

1I'jn(f+ + jt)lf>~ut = 0, 

and component by component this reads 

an+1,r f dilm(p) 

(59) 

(60) 

x {~(n + l)t[J+(p) + Jt(P)]UiP)b(n+1,r)} 

" - _ a r-t "'(_I)n+i+1i'+(_q)v (q )b(n,r-ll - n,r-1 £., J 0 j {J j j • 
;=1 

(61) 

If we take the inner product of this expression with 
itself, we get 

1 
2 

la 12 I - an.,.-ll K (62) n+1... n+1.r - (n + l)r n.,.-l, 

where 

I n+1 ... = II f dilm(P){~ [J+(p) +.It(p)]u..(P)} 

(63) 
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and 

K n•r- 1 = II I( _1)n+i+:Yt( -q;)vpiq;) 
;=1 

X (PI> •.• , Pn' q1' ... , q;, ... , qr) r 
(64) 

Using (62), we can express lan+r.rI2 in terms of lan.ol 2 

and lan.r+nI2 in terms of lao'rI 2
• But if we consider the 

expression 

("Pln(J+ + It)<I>ln)(n-1,0) 

= f dnm(p){f (n)lrJ+(p) + ft(p)]u .. (P)} 

x <I>~:-:') ........ jp P1"" ,Pn-1) 

and use (60), we get 

a.n.o = 0, n ~ 1, 

and from the adjoint of (65) we get 

(65) 

(66a) 

a;r = 0, r ~ 1. (66b) 

Therefore, the only nonvanishing coefficients are of 
the form an.n and we call them an' The conditions (66) 
state that particles are created and destroyed only in 
pairs. 

We must now estimate In+1.n+1 and Kn•n . Inte­
grating out the variables that can be done trivially, we 
get 

1n+1•n+1 

= ~ f dnm(P){~ [j'+(p) + It(p)]u .. (P)} 

x [(n + 1)!] -I det [b!;~l" ,,(P1),"', b~:~lkn+l(Pn+1)] Ir 
(67) 

~ ·_1_ 'f flJ+(p) + It(p)]u .. (p)b''''Q(p)12 dnm(p) 
n + 1 !=1 

(68) 

~ n + 1 102/1' = IOal2 > O. 
n + 1 

(69) 

The first inequality comes from the fact that, in 
squaring the determinant, the cross terms obtained 
are either zero or positive due to the orthogonality 
of the basis functions. 

In the expression for K".n, we expandlo+( -q;)vp/q;) 
in terms of the basis vectors for H~-): 

co 

It( -qj)VPi(qj) = ! Crb~~r(q;)· (70) 
r=l 

Then, 

Kn,n = (n + 1) II! Cr[(n + 1)!Jl 

x det [b~~~1(q1)' ..• ,b~-:~lkn+l(qn+1)]11 (71) 

= (n + 1) ! ICr l2 (72) 

= (n + 1) 1011
2 < 00; (73) 

since 
ftES, 

combining the estimates (69) and (73), we get that 

Let 

Then, 

Hence, 

I :: 1= O. 

(02
)" I ! lan l2 ~ laol 2 ! -, = laol2 e9 < 00, 

n. 

:. <I>~l1t E H ln 

(74) 

(75) 

and the out-field has a vacuum state. It is clear that the 
out-field is irreducible since it satisfies the free Dirac 
equation and therefore the S matrix is unitary. 

IX. CONCLUSION 

We have considered the theory of a Dirac field 
interacting with a classical electromagnetic field. We 
have shown that the interpolating field exists and is 
local and furthermore that there is a unitary S matrix. 
The theory is completely free of any divergences and, 
hence, no renormalization is needed. This is due to the 
fact that the field equations are linear and it is not 
necessary to give a meaning to products of field 
operators. If one wishes to define local observables 
such as the current, then a renormalization is needed. 
This renormalization amounts to extracting the 
"correct singular part" from the product of distribu­
tions. No statement was made about the definition of 
such quantities. 

The essential point (that seems to have been missed 
up till now) is that, in a simple theory of this sort, the 
question of the existence of the fields can be clearly 
separated from the question of how one should define 
local observables. 
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Invariant Imbedding and Case Eigenfunctions* 
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A new approach to the solution of transport problems, based on the ideas introduced into transport 
theory by Ambarzumian, Chandrasekhar, and Case, is discussed. To simplify the discussion, the restriction 
to plane geometry and one-speed isotropic scattering is made. However, the method can be applied 
in any geometry with any scattering model, so long as a complete set of infinite-medium eigenfunctions is 
known. First, the solution for the surface distributions is sought. (In a number of applications this is all 
that is required.) By using the infinite-medium eigenfunctions, a system of singular integral equations 
together with the uniqueness conditions is derived for the surface distributions in a simple and straight­
forward way. This system is the basis of the theory. It can be reduced to a system of Fredholm integral 
equations or to a system of nonlinear integral equations, suitable for numerical computations. Once the 
surface distributions are known, the complete solution can be found by quadrature by using the full­
range completeness and orthogonality properties of the infinite-medium eigenfunctions. The method is 
compared with the standard methods of invariant imbedding, singular eigenfunctions, and a new 
procedure recently developed by Case. 

I. INTRODUCTION 

In the past 50 years or so, a number of methods 
have been devised for solving the neutron (or radia­
tion) transport equations. Excluding strictly approxi­
mation procedures such as spherical-harmonics 
expansions, discrete-ordinate methods, etc.,1-3 the 
most important schemes are the Wiener-Hopfmethod, 
which is described in detail in Ref. 2, the invariant­
imbedding technique, first introduced to transport 
theory by Ambarzumian4 and developed extensively 
by Chandrasekhar1 and others,5 and the Case eigen­
function-expansion method.3.6 

Historically, the first exact method was the Wiener­
Hopf method. Because it was basically simpler, the 
invariant-imbedding method became more popular 
after its introduction. Eventually, the eigenfunction­
expansion approach became more widely used than 
either of those methods for a number of reasons 
which are discussed below. (The Wiener-Hopf 
method is in fact identical with Case's method in the 
sense that any problem which can be solved by one 
method can be solved also by the other. Because 
Case's method is simpler and more familiar, we will 
not discuss the Wiener-Hopf method further.) 

* Work supported by the National Science Foundation. 
t On leave from the University of Ljubljana, Yugoslavia. 
: Present address: Dept. of Physics, Virginia Polytechnic Institute, 

Blacksburg, Virginia 24060. 
1 S. Chandrasekhar, Radiative Transfer (Oxford University Press, 

London, 1950). 
I B. Davison, Neutron Transport Theory (Oxford University 

Press, London, 1957). 
a K. M. Case and P. F. Zweifel,Linear Transport Theory (Addison­

Wesley Pub\. Co., Inc., Reading, Mass., 1967). 
• V. A. Ambarzumian, Theoretical Astrophysics (Pergamon Press, 

Inc., New York, 1958). 
& R. E. Bellman, H. H. Kagiwada, R. E. Kalaba, and M. C. 

Prestrud, "Invariant Imbedding and Time-Dependent Transport 
Processes," The Rand Corporation, R-423-ARPA, 1964. 

• K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960). 
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We first note that the traditional derivations of the 
equations of invariant imbedding are based upon 
intuitive physical arguments which, by virtue of the 
known existence of unique solutions of the transport 
equations,7 are, in fact, spurious. However, this 
approach has some real advantages for numerical 
computation. On the other hand, it does not give 
complete knowledge of the neutron distribution in a 
given medium, but only the reflected and transmitted 
intensities. (Admittedly, in a number of applications 
these are all that are required.) 

A really more serious disadvantage of the invariant­
imbedding equations is that they are, in general, not 
uniquely soluble. To guarantee a unique solution, 
additional conditions must be imposed.1 These 
conditions cannot be obtained from the original 
invariant-imbedding arguments, and so must be 
introduced in a somewhat arbitrary manner. 

The Case method,6 on the other hand, has the 
virtue of simplicity and familiarity, since it is based on 
an eigenfunction-expansion technique which is already 
well known to physicists from applications in "classi­
cal" boundary-value problems. Furthermore, no 
intuitive arguments and no extraneous conditions are 
necessary in order to derive the equations and to 
guarantee unique solutions. However, by straight­
forward application of this method, more information 
is frequently obtained than is really required (as, for 
example, the neutron distribution everywhere rather 
than at a surface) and reducing the results to numerics 
is highly nontrivia1.8 

The major purpose of the present paper is to 
rederive the nonlinear integral equations of invariant 

7 K. M. Case and P. F. Zweifel, J. Math. Phys. 4, 1367 (1963). 
8 M. R. Mendelson, thesis, The University of Michigan, 1964. 
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imbedding and the uniqueness conditions in a fashion 
which does not suffer from the deficiencies noted above. 
This is accomplished by using the Case infinite­
medium eigenfunctions. The nonlinear integral equa­
tions follow from a system of singular integral 
equations, which are themselves derived in a simple 
and straightforward way from Case's eigenfunctions. 
It is interesting to compare our derivation with those 
of Sobolev,9 Busbridge,IO and Mullikin,u 

We deal primarily with slab problems-in the 
limit, of course, half-space results are obtained. The 
familiar restriction to plane geometry and one-speed 
isotropic scattering is made. However, the method 
can be applied in any geometry with any scattering 
model (e.g., multivelocity anisotropic scattering) so 
long as a complete set of infinite-medium eigenfunc­
tions is known. 

The results we obtain are not new. However, we do 
feel that our approach yields a coherent, mathemati­
cally satisfying, and simple derivation of singular 
integral equations and equivalent invariant-imbedding 
nonlinear integral equations, together with the con­
ditions which guarantee unique solution. 

In Sec. II, we give a brief review of Case's eigenfunc­
tions and their properties. Then, in Sec. III, the system 
of singular integral equations and the nonlinear integral 
equations-together with the conditions guaranteeing 
uniqueness-are derived for the slab. In Sec. IV, some 
remarks are made for the half-space problems. 

II. THE CASE EIGENFUNCTIONS 

We begin with the Case eigenfunctions of the one­
speed one-dimensional transport equation with iso­
tropic scattering 

( ,u i. + 1) 1jl(x,,u) = £. Jl 1jl(x, ,u') d,u'. (1) ax 2 -1 

These eigenfunctions may be written in the form3•6 

1jlvCx,,u) = c/>(v, ,u)e-x/
v, (2a) 

with 

CV 1 
c/>(v,,u) = - p -- + A(v)15(v - ,u), 'liE (-1,1), 

2 v-,u 

A.( ) CVo 1 
'f ±vo,,u = -2 --, 

'110 T,u 

flc/>(v,,u)dfl=l, vE(-I,I), v=±vo· 

(2b) 

(2c) 

(2d) 

• v. V. Sobo1ev, A Treatise on Radiative Transfer (D. Van Nos­
trand Inc., Princeton, N.J., 1963). 

10 I. W. Busbridge, The Mathematics of Radiative Transfer 
(Cambridge University Press, London, 1960). 

11 T. W. Mullikin, Astrophys. J. 136,627 (1962); 139, 379, 1267 
(1964). 

Here the discrete eigenvalue '110 is a root of the dis­
persion function 

CZfl d,u A(z) = 1 - - -- . 
2 -1 Z - fl 

(3) 

The quantity A(V) which appears in Eq. (2b) is 
related to the boundary values of the dispersion 
function A(z) on the branch cut (-1, I). In fact, 

(4) 
where 

A±(v) = lim A(v ± i€), 'liE (-1,1). (5) 
0«""0 

We note that c, the mean number of neutrons 
emitted per collision, will always be assumed to be 
such that the slab is "subcritical." For C < 1, this 
is certainly true for all slab thickness. 

The eigenfunctions are orthogonal in the sense that 

ftc/>(V,fl)c/>(V',,u)d,u = 0, '11:;.6 v'. (6) 

In fact, the normalization integrals are also known: 

fl,uc/>2(±VO,,u) d,u = ±N(vo), (7a) 

ftc/>(v, ,u)c/>(v',,u) d,u = N(v)15(v - v'), v E (-1, 1), 

(7b) 
where 

(8a) 

(8b) 

(All of the above results, which are well known, are 
restated merely for convenience.) 

We now consider the solution of the so-called 
albedo problem for a slab. This is the problem of 
determining the distribution of neutrons everywhere 
in a source-free slab due to an incident beam. We seek 
the solution, denoted as 1jl(O,,uo -- x, ,u; T), to the 
homogeneous transport equation (1) subject to the 
boundary conditions 

1jl(0, ,uo -- 0, ,u; T) = 15(,uo - ,u), ,uo > 0, ,u > 0, 
1jl(O,,uo -- T, -,u; T) = 0, ,u > 0, (9) 

where T is the thickness of a slab. 
We expand the solution 1jl(O,,uo -- x,,u; T) in terms 

of the eigenfunctions. That is, 

1jl(O,,uo -- x, fl; T) 
= A(vo)c/>(vo, ,u)e-x/vo + A( -vo)c/>( -'110, ,u)ex

/vo 

+ flA(V)c/>(v, fl)e-X/v dv. (10) 

The Case procedure is to determine the expansion 
coefficient as discussed earlier. 
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However, by using the set of eigenfunctions in 
another way, we are led at once to a system of singular 
integral equations for the reflected and transmitted 
intensities. 

III. DERIVATION OF INVARIANT-IMBEDDING 
EQUATIONS 

A. Albedo Problem for a Slab 

Let us first consider the solution of the albedo 
problem defined in the previous section, for it will be 
shown that the solution of any problem can be ex­
pressed in terms of the albedo solution (Sec. III.B). 
We consider a slab whose left-hand surface is at 
x = 0, and whose right-hand surface is at x = r. 

We are primarily interested in the reflected and the 
transmitted distributions "P(O, flo - 0, -fl; r) and 
"P(O, flo - r, fl; r), fl > 0. From the reciprocity 
theorem for one-speed theory3.12 it follows that these 
distributions satisfy the relations 

fl"P(O, flo - 0, -fl; r) = flo"P(O, fl -0, -flo; T), (11) 

fl"P(O, flo - T, fl; T) = flo"P(O, fl - T, flo; T), 

flo > 0, fl > 0. (12) 

In view of these relations, it is convenient to 
introduce so-called Ambarzumian-Chandrasekhar's 
Sand T functions, defined asI 

and 

(1f2fl)T( T; flo, fl) + 8(flo - fl)e-T/f.lo 

= "P(O, flo - T, fl; r). (14) 

Both functions are symmetric: 

SeT; flo, fl) = SeT; fl, flo), (15) 

T(T; flo, fl) = T(T; fl, flo). (16) 

The reflected and transmitted distributions of an 
albedo problem "P(O, -fl; r) and "P(r, fl; r), fl > 0, 
for a given incident distribution "P(O, fl; r), fl > 0, 
can be then expressed as 

"P(O, -fl; T) = 1.. tS(T; fl', fl)"P(O,fl ' ; T) dfl', (17) 
2fl Jo 

"P(r, fl; T) = "P(O, fl; T)e-T/f.I 

1 II + - T(T; fl', fl)1p{O, fJ,'; T) dfl', 
2fl 0 

fl > 0. (18) 

We now derive a system of singular integral 

11 K. M. Case, Rev. Mod. Phys. 29, 651 (1957). 

equations for Sand T by using the intuitive invariant­
imbedding arguments. I 3.14 

Let us take any exponentially decreasing infinite­
medium eigenfunction 

4>(v, fl)e- x
/
v

, v E (0, 1), v = Vo' (19) 

The function 4>(v, fl)e-x/v describes a distribution of 
neutrons for the infinite medium. At x = 0, the 
angular density 4>(v, -fl), fl > 0, can be thought of as 
resulting from the reflection of the "incident" distri­
bution 4>(v, fl), fl > 0, on the slab of thickness T, and 
from the transmission of the "incident" distribution 
4>(v, -fl)e-T/V

, fl > 0, at x = T, through the same 
slab. Therefore, in view of Eqs. (17) and (18), we have 

[1 - e-r!I/V+l/f.I>]4>(v, -fl) 

= 1.. (I S( r; fl', fl)4>(v, fl') dfl' 
2fl Jo 

e-T/vI I 

+ - T(r; fl', fl)4>(v, -fl') dfl', 
2fl 0 

fl > 0, v E (0, 1), v = Vo' (20) 

Similarly, by taking any exponentially increasing 
eigenfunction 

4>(-lJ,fl)exfv
, v E(O, 1), v = vo, (21) 

and reasoning as before, we get 

(e-T/V 
- e-T/f.I)4>(v, fl) 

e-T/vI I 

= - SeT; fl', fl)4>( -v, fl') dfl' 
2fl 0 

+ 1.. tT(T; fl', fl)4>(v, fl') dfl', 
2fl Jo 

fl > 0, v E (0, 1), v = Vo' (22) 

For v E (0, 1), the above equations constitute a 
system of singular integral equations for Sand T, 
while for v = Vo we obtain two conditions which must 
be satisfied by Sand T. 

Because Eqs. (20) and (22) are the basis for our 
further discussion, we now rederive them rigorously, 
without appealing to the above intuitive invariant­
imbedding arguments. Actually, the rigorous deriva­
tion is even simpler than the intuitive one given above. 

To see this, let us define an albedo problem by the 
following boundary conditions: 

"P(O, fl; T) = 4>(v, fl), 

"P( T, -fl; T) = 4>(v, -fl)e-T/V
, 

fl>O, vE(O,I), v=vo, O~x~r. (23) 

13 s. Pahor and 1. Ku§eer, Astrophys. J. 143, 888 (1966). 
10 S. Pahor, Nucl. Sci. Eng. 29, 248 (1967). 
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It can be easily verified by inspection that the 
unique solution of this particular problem is simply 

(24) 

(because it is a solution of the transport equation and 
obeys the boundary conditions). 

By applying Eqs. (17) and (18) to this solution, we 
get Eqs. (20) and (21). This represents a rigorous 
derivation of Eqs. (20) and (21). The same system of 
singular integral equations, including anisotropic 
scattering, was already derived by Sobolev9 and 
Mullikin.ll However, our derivation of these equations 
is much simpler than that of Sobolev and Mullikin; 
furthermore, it is evident how the described technique 
could be applied to any geometry and scattering model, 
once the complete set of infinite medium eigenfunctions 
is known. (Even if the set is not complete, we obtain 
in this way some information on the surface distri­
bution. However, the resulting equations are not 
uniquely soluble.) 

It is interesting to compare the present approach 
with the approach recently developed by Case,!1i 
where the infinite-medium Green's function is used as 
a starting point. In both cases, first the integral equa­
tions for the surface distributions are derived. How­
ever, the corresponding equations are different, 
though equivalent, and the kernels of Eqs. (20) and 
(21), yielded by the present method, are somewhat 
simpler. 

The functions SeT; "'0' "') and T(T; "'0' "') can be 
expressed in terms of Ambarzumian-Chandrasekhar's 
X(",) and Y(",) functions of a single variable, with T 

as a parameter, which are more suitable for numerical 
computations than SeT; "'0' "') and T(T; "'0' ",). 

Let us integrate Eqs. (20) and (22) over '" from ° 
to I. Defining new X(",) and Y(",) functions as 

1 (1 d ' 
X(",) = 1 + 2 Jo S(T;",',,,,) ;, , (25) 

1 t d ' 
Y(",) = e-T//t + 2 Jo T(T;",',,,,) ;, , (26) 

and using the normalization condition (2d), we get a 
system of equations for X(",) and Y(",): 

1 = fX("")4>(v, ",') d",' + e-T/vf y(",')4>(v, -",') d",', 

(27) 

1 = f X(",')4>(v, -",') d",' + eT/V f y(",')4>(v, ",') d",', 

V E (0, 1), v = Vo' (28) 

15 K. M. Case, Proceedings of the Symposium on Transport Theory, 
April, 1967 (American Mathematical Society, Providence, R.I.) (to 
be published). . 

By introducing new functions Z(",) and W{ft) as 

Z(",) = X(",) + Y(",) , 

W("') = X("') - Y("') , 

(29) 

(30) 

we obtain for these functions two uncoupled equations 

1 + e-T
/

V = fZ("")4>(v, "") d",' 

+ e-T
/

V fZ("")4>(v, -"") d",', (31) 

1 - e-T/V = f W(",')4>(v, "") d",' 

- e-T
/

V lol W(",')4>(v, -"") d",', 

v E (0, 1), v = Vo' (32) 

Singular integral equations, such as Eq. (31) or Eq. 
(32), with the condition for v = Vo included, are equiv­
alent to certain Fredholm integral equations.16 These 
Fredholm integral equations were studied in detail by 
Leonard and MuIlikin17 and they derived conditions 
which guarantee the existence and uniqueness of the 
solution. In our case of isotropic scattering, these con­
ditions are satisfied for all subcritical c and certainly 
for c < 1. Therefore, also Eqs. (31) and (32), Eqs. 
(27) and (28), and Eqs. (20) and (22) are uniquely 
soluble. 

What remains to be done is to express S( T; "'0 , "') 
and T( T; "'0' "') in terms of X{ft) and Y("')' In deriving 
these relations, we obtain for X("') and Y("') a system 
of nonlinear integral equations which are convenient 
for numerical computations. 

We introduce two new functions R(T; "'0' "') and 
U(T; "'0' "') as 

(33) 

and we substitute them for SeT; "'0' "') and T(T; "'0' "') 
in Eqs. (20) and (22). By using the explicit form of 
eigenfunctions (2b) and (2c) for v E (0, 1) and v = vo, 
we get, after a partial-fraction analysis and taking into 

16 N. I. Muskelishvili, Singular Integral Equations (P. Noordhotf 
Ltd., Groningen, The Netherlands, 1953). 

17 A. Leonard and T. W. Mullikin, J. Math. Phys. 5, 399 (1964). 
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account Eqs. (25) and (26), the following four and Y(p) , 

equations: 

(35) 

e-'/YX(p) - Y(p) 

ClI i1v(-r;pl,p)d I 

= -.:I.(1I)V(T; '1', p) - - P I P 
2 0 1I-P 

C'I' -.fvi1 R(T; p', p) d ' --e p, 
2 0 'I' + p' 

(36) 

X(P) - e-'/voy(p) 

C1IOil R(T;p',p) d I =- P 
2 0 '1'0 - p' 

C'I'O]l V( T; p', p) d I -T/-O 
-- pe 

2 0 110 + p' ' 
(37) 

e-r/voX(P) _ Y(p) 

= _ C'I'o rl 
V(T;,.p,', p) dp,' 

2 Jo 11 - p' 

C'I'o -.Ivoi
l 

R(T;p',P)d ' --e p. 
2 0 11 + p' 

(38) 

Now, if we first multiply Eq. (27) by X(p) and 
subtract Eq. (28) multiplied by Y(p), then multiply 
Eq. (27) by Y(p) and subtract Eq. (28) multiplied by 
X(p), we get equations identical to Eqs. (35) to (38), 
except that 

R(T; Po,p)-.".X(p)X(po) - Y(p)Y(Po), (39) 

V(T; Po, p) -.". Y(p)X(po) - Y(po)X(p). (40) 

Thus, the above bilinear expressions are solutions 
of Eqs. (35)-(38). These solutions are also unique, 
because Eqs. (35)-(38) uniquely determine R( T; Po, p) 
and V(T; PO' p). 

By expressing SeT; Po, p) and T(T; Po, p) in Eqs. 
(25) and (26) in terms of X(p) and Y(p) [via Eqs. (39), 
(40), (33), and (34)], we get a system of nonlinear 
integral equations for X(p) and Y(p), 

X(P) = 1 + Cp]l X(p)X(p') - Y(p)Y(p') dp', (41) 
2 0 P + p' 

Y( ) = e-'IP, + CPi
i 

y(p)X(p') - X(p) Y(p') d ' 
p 2 I p, 

o p-p 
(42) 

with the conditions, which must be satisfied by X(p) 

1 C1IOiI X(p') d ' + e1lo -"voil Y(p') d I =- --- p -e -- p. 
2 0 110 - p' 2 0 '1'0 + p' 

(43) 

1 e1l0il X(P/) d ' + ClIo .,voi1 
Y(p') d I (44) =- -- p -e -- '1', 

2 0 110 + p' 2 0'1'0 - p' 

following from Eqs. (27) and (28) for 11 = 110 , 

Let us now also show that the system of nonlinear 
integral equations (41) and (42), together with the 
conditions (43) and (44), uniquely determine X{P) 
and Y(p). 

First, we note that X(P) and Y(p) can be analytically 
continued outside the interval (0, 1), by using Eqs. 
(41) and (42). It can be easily verified10 that if X(p) 
and Y(p) satisfy Eqs. (41) and (42), but not necessarily 
(43) and (44), they also satisfy the integral equations 

A(z)X(z) = 1 _ ez [1 X(p) dp 
2 Jo z - p 

ze -r/zi l 
Y(p) d - -e -- p, 

2 0 z + p 

A(z)Y(z) = e-·I'[1 _ cz II X(p) dP] 
2 Jo z + p 

(45) 

- ~ t Y(p) dp, z f/; (-1,1). (46) 
2 Jo z - P 

By applying the Plemelj formulaI6 to the above equa­
tions for z E (0, 1), we get the singular integral 
equations (27) and (28). Since these singular integral 
equations, together with the conditions (43) and (44), 
uniquely determine X(p) and Y(p), the same is true 
for the nonlinear integral equations (41) and (42) 
combined with the conditions (43) and (44). 

We can now easily prove that X{z) and Y(z) are 
analytic functions in the whole complex plane, 
except at z = 0, where they have an essential sin­
gularity. 

Since A(z) = A( -z), we see at once from Eqs. (45) 
and (46) that X(z) and Y(z) satisfy the relationlO 

Y(z) = e-r/zX( -z), (47) 

which is valid in the whole complex plane. In view of 
Eqs. (41), (42), (45), (46), and the conditions (43) and 
(44), the X(z) and Y(z) could be singular only for 
z = -vo and Z E ( -1, 0). However, since X(z) and 
Y(z) are analytic for z = Vo and z E (0, 1), z = 0 
excluded, the same is true also for z = -'1'0 and 
z E ( -1 , 0), because of Eq. (47), while it follows from 
Eqs. (41) and (42) that, for z = 0, the functions X(z) 
and Y(z) have an essential singularity. 
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B. Green's Function for a Slab 

We now show how other slab problems can be 
solved with the help of the solution for the albedo 
problem. Evidently, what we need is the solution of 
the Green's function problem, defined by the non­
homogeneous transport equation 

(,u :x + 1) G(xo,,uo -+ x,,u; T) 

= E. (1 G(xo, fto -+ x,,u'; T) dft' 
2 J-l 
+ b(,uo - ,u)b(xo - x), ° < Xo < T, (48) 

with boundary conditions 

G(xo,,uo -+ 0, ft; T) = 0, ft > 0, 

G(xo, fto -- T, -ft; T) = 0, ft > 0. (49) 

In order to determine the emergent distributions 
G(xo, fto -+ 0, -,u; T) and G(xo, fto -+ T, ft; T),,u > 0, 
we need the infinite-medium Green's function 
G(xo, ,uo -- x, ft; (0) which satisfies Eq. (48). This 
function can be solved in terms of Case's eigen­
functions3 •6 and is, therefore, considered as known. 

Let us seek the solution of our problem in the form 

G(xo,,uo -+ x,,u; T) 

= G(xo, fto -- x, ft; (0) + 1p(x, ft; T). (50) 

By substituting Eq. (50) into Eqs. (48) and (49), it 
follows that the unknown function 1p(x,,u; T) must 
satisfy the homogeneous transport equation (I) and 
the boundary conditions 

1p(0,,u; T) = -G(xo, fto -+ 0, ft; (0), ,u > 0, 

1p(T, -ft, T) = -G(xo, fto -+ T, -ft; (0), ft > 0. 

(51) 

In this way, the Green's function problem for a 
slab is reduced to determining the infinite-medium 
Green's function and to solving two albedo problems 
discussed in the previous section. 

C. Distribution Inside a Slab 

Once the surface distributions for a slab problem 
are known, the inside distribution can be determined 
by using the full-range completeness and orthogonality 
relations of Case's eigenfunctions. In view of the 
results of the previous section, it is sufficient to show 
how the albedo problem, defined by Eqs. (I) and (9), 
can be solved completely in terms of the function 
SeT; fto,,u) or T(T; fto, ft) and Case's eigenfunctions. 

We start with the eigenfunction expansion given 
by Eq. (10). By using the full-range orthogonality 

relations of Case's eigenfunctions (7a), (7b), and (6), 
we can determine the expansion coefficients with the 
help of the function S( T; fto, ft), for instance, by 
setting x = ° in Eq. (10). In this way we get 

N(Y)A(Y) = ,uor/>(Y, ,uo) -.! (IS(T; fto, ft)r/>(y, -,u) d,u, 
2 Jo 

Y E(-1, 1), Y = ±Yo. (52) 

On the other hand, by using the function T( T; ,uo, ft) 
and setting x = T in Eq. (10), we obtain 

N(Y)A(Y) = ftor/>(y, fto)eTlljY-ljl'o) 

+ ieT
/
Y f T( T; fto, ft)r/>(y, ft) d,u, 

y E (-1, 1), Y = ±Yo. (53) 

By using Eqs. (20) and (22), satisfied by S( T; fto, ft) 
and T(T; fto, ft), it can be easily verified that the 
rhs of Eqs. (52) and (53) are indeed identical. 

IV. HALF-SPACE PROBLEMS 

We now briefly discuss half-space problems and 
show how they can be solved exactly in closed form. 

The equations for the half-space problems can be 
formally obtained from the slab equations of the 
previous section by limiting T to infinity and writing 

lim SeT; fto,,u) = S(fto, ft), (54) 

lim X(,u) = HCp,), (55) 

lim T(T; fto' ft) = 0, (56) 

lim Y(ft) = 0. (57) 

(We assume, of course, that c < 1.) The resulting 
half-space equations are much simpler than the 
equations of the previous section. In fact, it will be 
shown that a closed-form solution for H(ft) can be 
obtained. Once H(,u) is known, all other half-space 
problems can be solved exactly in terms of H(ft) and 
Case's eigenfunctions. 

To show that, let us consider the explicit form of the 
singular integral equation for the function H(ft): 

CY il H(ft) A(Y)H(Y) = 1 - - P -- dft, 
2 Oy-,u 

together with the condition 

(58) 

° = 1 _ evo e H(,u) d,u, (59) 
2 Jo Yo - ft 

resulting from Eq. (27) of the previous section by 
letting T approach infinity. 

We assume that a solution of Eq. (58) exists and 
that it satisfies a Holder condition16 for ,u E (0, I) and 
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the condition (59). Guided by the form of the singular 
integral equation (58), we define an analytic function 
F(z) in the complex plane cut from -I to 1 as 

A(z)F(z) = 1 + cz (1 H(ft) dft. (60) 
2 Jo ft - Z 

Since A(z) is analytic in the whole cut plane, with 
A(z) :;6 0, except for z = ±vo, the same is true also 
for F(z) , in view of our assumption on HC/-t) for 
ft E (0,1).16 For z = ±vo, A(z) has simple zeros, so 
F(z) may have simple poles there. However, it follows 
from Eq. (59) that F(z) is analytic also for z = Vo. 

By applying the Plemelj formula16 to Eq. (60), and 
taking into account Eqs. (58) and (4), it follows that 

F+(x) = F-(x) = H(x), x E (0, 1), (61) 
and 

F+(x)A+(x) = F-(x)A-(x) , xE(-I,O). (62) 

We see from Eq. (61) that F(z) is the analytic 
continuation of H(ft), ft E (0, 1). Therefore, 

H(z) = F(z) (63) 

and H(z) is analytic in whole complex plane, cut from 
-1 to 0, except for z = -Vo, where it may have a 
simple pole. 

Let us now consider the product H(z)H( -z)A(z). 
This is an even function of z, analytic in the whole 
complex plane cut from -I to 1, since H(z) has at 
most a simple pole for z = -Vo. Moreover, this 
product is, in view of Eq. (60), also continuous across 
the cut (-1, 1), with H2(0)A(0) = I, as follows from 
Eqs. (58) and (3). Hence H(z)H( -z)A(z) is analytic 
in the whole complex plane and we have 

H(z)H( -z)A(z) = 1. (64) 

Two important results follow at once from the above 
relation. First, we see that H(z) has indeed a simple 
pole for z = -Vo. Second, by combining Eqs. (60) 
and (64), we get the nonlinear integral equation for the 
function H(z): 

H(Z)[1 + ~ (1 H(ft) dftJ = 1, z ¢ (-1,0). (65) 
2 Jo z + ft 

Now, we turn our attention to Eq. (62). We see that 
H(z) is also the solution of the homogeneous Hilbert 
problem. IS By requiring that the solution is analytic 
in the whole complex plane, cut from -1 to 0, with 
a simple pole at z = -vo, we can solve this problem 
uniquely in a closed form. We obtain18 

H(z) = 1 + z exp [---.:... (lIn A+(x) dx J. 
1 + z/'I'o 27Ti Jo A-(x)(z + x)x 

(66) 
18 s. Pahor, Nucl. Sci. Eng. 26, 192 (1966). 

In deriving the above solution we have also justified 
the assumptions, made in the beginning of this discus­
sion, that a solution of Eq. (58) exists and satisfies a 
HOlder condition for ft E (0, 1). 

It is obvious now, from the results of the previous 
section, how to express the emergent distribution for 
the albedo problem in terms of the function H(ft) and 
how to determine the emergent distribution for the 
half-space Green's function problem. 

However, there is the so-called Milne problem, 
characteristic for the half-space, which should be 
mentioned. It turns out that for the half-space the 
homogeneous transport equation (1) has solutions 
even for a zero incident distribution, if we drop the 
condition that solutions are bounded at infinity. We 
may say that in this case we have sources at infinity. 

The Milne problems [whose solution is defined as 
"P(x, ft; '1')] are conveniently defined by the homo­
geneous transport equation (1) and the boundary 
conditions 

"P(O, ft; '1') = 0, p > 0, 

'P(x, ft; v) ---'>- 4>( -'1', ft)e"'/V, 

x ---'>- 00, 'I' E (0, 1), 'I' = Vo. (67) 

We want to determine the emergent distribution 
"P(O, -ft; v), ft > 0. To do that, let us define the 
following "albedo" problem: 

"P(O, p) = 4>(-'1', p), P > 0, 

"P(x, fl) ---'>- 1>( -'I', fl)e"'/v, 

X---'>- 00, v E(O, 1), v = Vo. (68) 

Obviously, the solution of this problem is 

"P(X,fl) = 1>(-v,fl)err/v, fl E(-I, 1). (69) 

Let us decompose the solution "P(x, fl) into two parts: 

where 

"Pl(O, p) = 0, p > 0, 

"Pl(X, fl) ---'>- 1>( -v, fl)e"'/v, x ---'>- 00, (71) 

and 

(72) 

with "Pl(X, fl) and "P2(X, fl) satisfying the transport 
equation (1). Evidently, "Pi (x, fl) is just the solution of 
our Milne problem, while "P2(X, p) is the solution of a 
"proper" albedo problem with "P2( 00, p) = 0. 
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Therefore, we may apply Eq. (17), with T = 00, to 
"P2(0, 1-'). In this way we get 

"P2(0, -I-') = cf>(v, 1-') - "P(O, -I-'; v) 

= 2~ f S{,l, 1-')"P2(0, 1-") dl-", I-' > 0, (73) 

or, in view of Eq. (72), 

"P(O, -I-'; v) = cf>(v, 1-') - 21 eS{I-", I-')cf>( -v, ft') dl-", 
I-' ./0 

ft > 0, v E (0, 1), v = Vo. (74) 

Now, we express the function S(ft',I-') in Eq. (74) 
in terms in the function H(ft) by using Eqs. (33) and 
(39). By taking into account Eqs. (2c), (2d), and (65), 
it follows that "P(O, -ft; v) can be expressed in terms 
of the function H(z) as 

·(0 ) c p v H(ft) "( ).II( "P ,-I-'; v = - ---- + A v U l' - 1-'), 
2 v - I-' H(v) 

I-' > 0, v E (0, 1), v = Vo. (75) 

Of course, the only physically meaningful solution 
is that for v = Vo. However, the other solutions are 
useful for constructing the half-space solutions inside 
the medium. 

Once the surface distribution for any particular 
half-space problem is known, the complete solution 
can be obtained by using the full-range orthogonality 
relations (6), (7a), and (7b). 

For instance, let us construct the complete solution 
of the albedo problem. This solution, denoted as 
"P(O, 1-'0 -+ x, 1-'), satisfies the transport equation (1) and 
the boundary conditions 

"P(O, 1-'0 -+ 0,1-') = 15(1-'0 - 1-'), I-' > 0, 
"P(O, 1-'0 -+ x, 1-') -+ 0, x -+ 00. (76) 

The emergent distribution "P(O, 1-'0 -+ 0, -1-'), I-' > 0, 
can be expressed in terms of the function S(I-'o, 1-'), 
in view of Eq. (13), as 

Because of the condition (76) at infinity, we expand 
"P(O, 1-'0 -+ x, 1-') only in terms of the exponentially 
decreasing eigenfunctions 

"P(O, 1-'0 -+ x, 1-') = A(vo)cf>(vo , I-')e-xiv• 

+ fA(v)cf>(v, ft)e-xiv dv. (78) 

By setting x = ° and expressing "P(O, 1-'0 -+ 0, -ft) 
using Eq. (77), we determine the expansion coefficients 

as has been explained. Taking into account Eq. (74), 
we finally get 

l./J(O II -+ X 11.) _ "P(O, -flo; vo) "-( ) -xiv. 
T , 1""0 'I"" - ( 'f' vo, I-' e 

1-'0 N vo) 

+ (1 "P(O, -1-'0; v) "-( )e-XiV d (79) 
)0 N{v) 'f' v, fl v, 

and this represents the complete solution of the half­
space albedo problem. 

V. CONCLUSION 

The method presented in this paper is based on the 
ideas introduced into transport theory by Ambar­
zumian, Chandrasekhar, and Case. First, the solution 
for the surface distributions is sought. (In a number of 
applications this is all that is required.) By using the 
infinite-medium eigenfunctions, a system of singular 
integral equations together with the uniqueness 
conditions is derived for the surface distributions in a 
simple and straightforward way. This system is the 
basis of the whole theory. 

One could stop there and determine the surface 
distributions by solving numerically the system of 
singular integral equations combined with the unique­
ness conditions. Or, this system can be reduced to 
certain uncoupled Fredholm integral equations which 
can be then used for numerical computations. Finally, 
the surface distributions can be also computed by 
using the nonlinear integral equations. It is evident 
that the question of how to compute the surface distri­
butions is the most important one, since once these 
are known, the complete solution can be found by 
quadrature. 

As far as we know, the system of singular integral 
equations (27) and (28) (v = Vo included) has not been 
used to compute X(fl) and Y(fl). For numerical 
computations, this system can be rearranged so that 
the principle-value integrals disappear. Then it could 
be solved approximately, for instance, by reducing it 
to a system of linear algebraic equations. 

The other possibility, to solve numerically the above 
mentioned Fredholm integral equations, was con­
sidered by Leonard and MullikinY They showed that 
these Fredholm integral equations converge rapidly 
under iteration for all c and T. Unfortunately, the 
kernels of these equations are not simple functions 
and to compute them requires quite a lot of work. 

So, it seems that the simplest way to obtain numeri­
cal values for the surface distributions is the straight­
forward iteration of the nonlinear integral equations 
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(41) and (42). This was done successfully by Chandra­
sekhar and others.Ll9 Since the system (41) and (42) 
is not uniquely soluble, the conditions (43) and 
(44) should be used as a check. At the same time, 
this would give an estimate of the accuracy of the 
iterations. 

19 S. Chandrasekhar, D. Elbert, and A. Franklin, Astrophys. J. 
115, 244 (1952). 
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The nonlinear realizations of the chiral group SU(2) ® SU(2) are studied from a geometric point of 
view. The three-dimensional nonlinear realization, associated with the pion field, is considered as a group 
of coordinate transformations in a three-dimensional isospin space of constant curvature, leaving invari­
ant the line element. Spinor realizations in general coordinates are constructed by combined coordinate­
spin-space transformations in analogy to Pauli's method for spinors in general relativity. The description 
of vector mesons and possible chiral-invariant Lagrangians, which yield the various nonlinear models in 
specific frames of general coordinates, are discussed. 

1. INTRODUCTION 

Chiral-invariant Lagrangians are currently used as a 
practical tool to study the implications of current 
algebra.I •2 The Lagrangians are to be constructed as 
functionals of fields, which have definite transforma­
tion properties under the chiral group SU(2) ® SU(2). 
Because there does not exist a three-dimensional 
linear representation of the group, it has been sug­
gested3 •4 that the pion field transforms according to 
the three-dimensional nonlinear realization. This 
implies that chiral symmetry is a pure interaction 
symmetry not shared by the asymptotic fields. 

A systematic development of the nonlinear realiza­
tions can depart from different points of view. While 
the transformation laws are nonlinear, the transforma­
tions are still implemented by unitary operators in 
quantum theory. Weinberg has studied the most 
general form for the commutators of generators and 
fields.5 On the other hand, for a better understanding 
of the mathematical nature of nonlinear realizations, 
it seems worthwhile to keep the analogy to linear 
representations as close as possible. 

1 S. Weinberg, Phys. Rev. Letters 18, 181s (1967). 
• B. W. Lee and H. T. Nieh, Phys. Rev. 166, 1507 (1968). 
• J. Schwinger, Phys. Letters 24B, 473 (1967). 
• J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967). 
6 S. Weinberg, Phys. Rev. 166, 1568 (1968). 

A nonlinear realization is a representation of the 
group in a curved instead of Euclidean space. We show 
in Sec. 2 that the chiral group is the invariance group 
of the metric in a three-dimensional space with 
constant curvature K = Ilf2. This "fundamental" 
nonlinear realization is associated with the pion field. 
While the field components are the coordinates in the 
curved space, space-time derivatives are tangents 
and transform as contravariant vectors under co­
ordinate'transformations. The Riemannian geometry 
of the curved space replaces' the Euclidean geometry 
of linear-representation spaces. Following Pauli's 
treatment of spinors in general relativity, 6 we study in 
Sec. 3 spinor realizations of the chiral group in general 
coordinates by combined coordinate-spin space 
transformations. The realizations associated with 
vector mesons are discussed in Sec. 4. 

The various nonlinear models treated in the litera­
ture7- I2 result from a specific choice of general pion 
coordinates. This is in complete agreement with 
Weinberg,5 but we think that our more geometric 

• W. Pauli, Ann. Phys. (Leipzig) 18, 337 (1933). 
7 G. Kramer, H. Rollnik, and B. Stech, Z. Physik 154, 564 (1959). 
8 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960). 
• F. Giirsey, Nuovo Cimento 16,230 (1960). 
10 F. Giirsey, Ann. Phys. (N.Y.) 12, 91 (1961). 
11 P. Chang and F. Giirsey, Phys. Rev. 164, 1752 (1967). 
12 L. S. Brown, Phys. Rev. 163, 1802 (1967). 
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point of view might help towards a better understand­
ing of nonlinear realizations and open the way for the 
study of other symmetry groups. 

2. PIONS 

We start with the (f model,8.13 i.e., a real four­
component field pfX(X) (oc = 0, 1, 2, 3) in the (t, t) 
representation of SU(2) ® SU(2). This means that at 
every space-time point x the components pfX(X) span a 
four-dimensional Euclidean space E4 and have the 
transformation law 

p'fX = RppP, (2.1) 

where R is an orthogonal 4 x 4 matrix such that 

Because 
RRT = 1; I R I = 1. 

pfXp" = /2 = (pO)2 + (p)2 

(2.2) 

(2.3) 

is invariant under (2.1), the three-dimensional surface 
of the upper or lower half-sphere of radius j, 

pO = ±(f2 _ n2)t, 

p = n, (2.4) 

is mapped onto itself by (2.1). Equation (2.4) gives a 
special parameterization of a three-dimensional curved 
space Va with constant curvature K = I1J2. We take 
the parameters 7T i (i = 1,2,3), i.e., the coordinates 
in Va, as the three components of the pion field. 
This is a generalization of the usual setup, where the 
field components are coordinates m an Euclidean 
space. The group SU(2) ® SU(2) is represented in 
Va by the coordinate transformations 

7T1i = R:7T! ± R~(f2 - n2)t. (2.5) 

The representation of the isospin subgroup (R~ = 0) 
is still linear. The inner geometry of V3 is concerned 
with the properties which are independent of the 
embedding into the space E4 • Its fundamental 
quantity is the metric tensor 

op" op" 7Ti7Tk (2 6) 
gii7T) = 07Ti o~ = bik + f2 _ n 2' . 

if we use the parameterization (2.4). gik is a covariant 
tensor with the general transformation law 

I ( ') ( ) 07T' 07T' (2 7) gik 7T = gr, 7T 07T,i 07T,k . 

under coordinate transformations 

The contravariant tensor gik is determined by 

girg'k =g~ = bk· 
13 1. Schwinger, Ann. Phys. (N.Y.) 2, 407 (1957). 

(2.8) 

(2.9) 

It can easily be checked that the transformations (2.5) 
leave the metric invariant 

g;k( 7T') = gii 7T' ), (2.10) 

i.e., SU(2) ® SU(2) is the in variance group of the 
quadratic form 

in Va. 
(2.11) 

Each component of the space-time derivative 
O,,7Ti (ft = 0, 1, 2, 3) is a contravariant vector with 
respect to coordinate transformations in V3 with'the 
transformation law 

o Ii o li=~O~ ,,7T 07Tk Jl . (2.12) 

The corresponding contravariant vector is defined by 

(2.13) 

Hence, the only choice for an [SU(2) ® SU(2)]­
invariant Lagrangian of second order in OJl7Ti is 

Lu = !gil7T)OJl7TiOJl7Tk = iOJl7TiOJl7Ti. (2.14) 

The nonlinear models treated in the literature7- 12 

correspond to different systems of coordinates in Va. 
Weinberg5 calls this a redefinition of the pion field. 
With (2.6) we obtain 

_ 1 Jl !(n.oJln)(n.oJln) 
Lu - 2 o"no n + 2 2 ,(2.15) 

2 f - n 

where n is the isovector 7Ti • A transformation to 
stereographic coordinates iTi , 

(2.16) 

leads to 

(2.17) 

and 
1 0 ii; • oJlii; L = - ---<:Jl __ _ 

uu 2 1 + ii;2f4f2 ' 
(2.18) 

which is another nonlinear model. The Lagrangians 
(2.15) and (2.18) are form-invariant under SU(2) ® 
SU(2) because of (2.10). 

The covariant field equations of (2.14) read 

7T
i + {~n}OJl7TmOJl7Tn = 0, (2.19) 

where {":n} is a Christoffel symbol of the second kind. 
The field equation (2.19) is a direct generalization of 
the flat isospin-space equation 

(2.20) 
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While 0/l7Ti is a contravariant vector, a second space­
time differentiation must be performed in an invariant 
fashion. The invariant Bianchi derivative of a vector 
ai is defined by 

(2.21) 

where 

a11! = ::: + Ul}ak (2.22) 

is the usual covariant differentiation. If ai depends 
explicitly on x, 

(2.23) 

we write 

D/lai = o~ai + a11!o/l7T!, (2.24) 

where o~ acts only on the explicitly appearing varia­
bles x. Then D/lai transforms as a contravariant 
vector. Hence, we may write instead of (2.19): 

(2.25) 
if we define 

(2.26) 

for a scalar f. 

3. NUCLEONS 

Our next task is to induce a representation of 
SU(2) @ SU(2) in the two-dimensional spin space of 
the I = t representation of the isotopic SU(2). To do 
so, we generalize a method developed by Pauli6 for 
spinors in general relativity. 

The two-dimensional spin space is related to the 
three-dimensional Euclidean space E3 of the I = 1 
representation by the Clifford algebra 

(3.1) 

Instead of (3.1), we consider the Clifford algebra of V3 , 

the r i matrices by 

'IjJ'( 7T') = S'IjJ( 7T), 'IjJ'+( 7T') = 'IjJ+( 7T)S-l, 

f"i( 7T') = Sf,i( 7T')S-1 = fi( 7T'), (3.5) 

bilinear quantities constructed with the r i transform as 
ordinary tensors, e.g., 

o ,i 
'IjJ'+(7T')ri(7T')'IjJ'(7T') = 'IjJ+(7T)fk(7T)'IjJ(7T)...!!...-. (3.6) 

07Tk 

A representation of the Clifford algebra (3.2) can be 
obtained in the form 

(3.7) 
with 

(3.8) 

It must be emphasized that only the first index of him 
is covariant under coordinate transformations. The 
conditions (3.8) do determine the coefficients him 
only up to an orthogonal transformation acting on the 
second index. We take the solution corresponding to 
the expansion 

gik = (jik + f!Jik' 

him = (gim)!- = «(jim + if!Jm + ... ). (3.9) 

In case of (2.6) we have 

f - (f2 - n 2)!-
him = (jim + n 2(f2 _ n 2)!- 7Ti7T m' (3.10) 

We now turn to the representation of infinitesimal 
SU(2) @ SU(2) transformations in the spin space. 
The isotopic subgroup need not be discussed. It 
has the usual representation. For infinitesimal chiral 
transformations we may write, according to (2.5), 

(3.11) 

If we put 
S = 1 + T, (3.12) 

(3.2) we obtain, from (3.3) and (3.4), 

where the ri(7T) are 2 X 2 spin matrices depending 
on the pion field n. We define the transformation law 
of the r i under coordinate transformations in V3 by 

f,i(7T') = 07T,i f\7T). 
o~ 

(3.3) 

Because the SU(2) @ SU(2) transformations (2.5) 
leave the metric tensor unchanged, there must exist a 
nonsingular matrix S for every transformation (2.5) 
so that 

(3.4) 

If we define the combined coordinate-spin space 
transformation laws of SU(2) @ SU(2) spinors and 

(3.13) 

By differentiation of (3.2) we find that the derivatives 
of r i have the structure 

(3.14) 

where the spin-space operator ~! is determined up to 
the product of the identity and a gradient function, 
if we add the integrability conditions 

o2fi o2fi 

07T!07Tm = 07Tm07T' • 
(3.15) 
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We find 

(3.16) 

The solution of (3.13) is 

T = ~ bN + 1[f fm] obN 
I if I' 07Tm ' (3.17) 

a generalization of the well-known spinor-transforma­
tion law for linear transformations. If we take 

(3.18) 

and use (2.6), we arrive at Weinberg's transformation 
laws for our particular choice of coordinates in Va: 

k. Tr 1 
T = € I€krn 2" 7T n 1 + (f2 _ n2)! • (3.19) 

In order to introduce a covariant derivation of spinors, 
we first consider the usual covariant derivative of ri: 

(3.20) 

Because 

girl = 0, (3.21) 

we conclude by comparison with (3.14) that there 
must exist an isospin matrix Q l so that 

It is given by 

Ql = ~l + l[fm, fn] ogln = -l[f i' f~l]. 
07Tm 

(3.22) 

(3.23) 

With Pauli,6 we define a covarian.t spinor differentia­
tion (denoted by ".I") by the following conditions: 

(a) f~l = fill + [f i
, Qzl = 0, 

(b) (tp+f'tp).l = tp:';f'tp + tp+fitp.l' (3.24) 

(c) (tp+f'tp).l = (tp+fitp)1I1. 

These conditions lead to 

(3.25) 

It is then clear that an invariant space-time differentia­
tion of a spinor has to be defined by 

where 

D~tp = optp - Op7TlQltp, 

D;tp+ = optp+ + tp+QlOp7Tl, 

IOtp , 
optp = Op7T -I + optp, 

07T 

if tp depends explicitly on x. 

(3.26) 

(3.27) 

The Lagrangian 

L",,,, = -ipiYpD'Ptp + miptp, (3.28) 

where tp is a four-component space-time spinor and a 
two-component isospinor, leads to the invariant field 
equation 

(-iYpD'p + m)tp = 0. (3.29) 

If we use the coordinate system (2.6), we find 

n.. 1 1 
u - I€ 7T T - -----=---,-

I - 181) S " 211 + (P _ n2)! ' 
(3.30) 

D;tp = optp - i't. (opn x n)!. 1 ! tp, 
211 + (P - n 2

) 

(3.31) 

which coincides with Weinberg's "covariant deriva­
tive" S and corresponds to Giirsey's second nonlinear 
model.ll Equations (2.25) and (3.29) are free-field 
equations, covariant under SU(2) ® SU(2) in an 
isospin space of constant curvature K = 1/!2. The 
7T-7T interaction and the 7T-N interaction embedded 
in (2.25) and (3.29), respectively, is induced and 
completely determined by the curvature. In the limit 
f -+ 00, the space becomes fiat, the interactions 
vanish, and the symmetry group SU(2) ® SU(2) is 
contracted to isotopic SU(2). 

The most simple form for interacting pion and 
nucleon fields is the sum of (2.14) and (3.28): 

L = -ip( -iy . D' + m)tp + !Op7TiOIJ7Ti. (3.32) 

While the field equations for the nucleon field remain 
unchanged, 

( - iy . D' + m)tp = 0, (3.33) 

there appears an additional term in the pion field 
equation, 

07T
i + {~n}Op7TmOIJ7Tn = lR\mnipiYIJ[fm, fn]tpOP7Tl, 

(3.34) 
where 

R\mn = gir(7T)RrzmnC7T) (3.35) 

is the Riemannian curvature tensor depending only 
on the pion field. 

All interaction terms of (3.32) are due to the curva­
ture of the pion-isospin space and vanish in the fiat­
space limit f -+ 00. But we may add further terms 
that do not have this property. A chiral-invariant 
"trilinear" interaction term must be of the form 

L[ = gipypysfi(7T)tpOIJ7Ti. 

It reduces to the gradient coupling term 

Lr = gipypys'ttp ·oPn 

in the flat-space limit. 

(3.36) 

(3.37) 
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4. p MESONS 

The P meson is usually introduced instead of the 
direct vector interaction of pion pairs in the covariant 
derivative of the 1p field 

D;1p = 0/l1p - igoP/l' (-t/2)1p. (4.1) 

To guarantee the covariance of (4.1) under spin-space 
transformations 

D;S1p = SD;1p, (4.2) 

P/l has to obey a particular transformation law that 
can be deduced from the transformation law of the 
interaction term in (3.26): 

respect to general coordinate transformations in V3 • 

Let us now discuss the transformation properties of 
the P field. According to (4.6) we have in a primed 
system 

(D/lh!,(7T'»h in(7T') -+ gOP/l,mn(7T')· 

Referring to (2.10) and (3.8), we see that 

(4.10) 

hi,( 7T')hkfo( 7T') = gik( 7T') = h;,( 7T')h;"'( 7T') = g;i 7T'). 

(4.11) 

Hence, there must exist an orthogonal matrix S 
such that 

him( 7T') = S m,h;,( 7T'). (4.12) 

D;1p = 0/l1p - 0/l 7TIOz{7r) 1p. (4.3) For infinitesimal transformations it is found to be 

The spin-space operator 0 1 is defined by (3.22). 
Because the matrices ri(7T) have the same functional 
dependance in all coordinate systems related by 
chiral transformations [see Eq. (3.5)]: 

r"i( 7T') = ri( 7T'), (4.4) 

0, in the primed system is given by 

Hence, 
r i (7T')1I1 = [Ol7T'), r i (7T')]. (4.5) 

D;1p' = 0/l1p' - 0/l7T'I0tC7T')1p'. (4.6) 

The interaction term in (4.3) may be written as 

0/l7TIOI(7T) = !(D/lh!.(7T»h;n(7T)1-[-Tm, 'Tn]. (4.7) 

Because of 
(4.8) 

the quantity 

(D/lh!,(7T»hii 7T) -+ gOP/l,mn(7T) (4.9) 

S = 1 + T, T = Tit" (tz)mn = iEmZn ' (4.13) 

This should be compared with the spin-space trans­
formation matrix in the spinor case (3.12) that can be 
written as 

(4.14) 

The transformation law for the p-meson field now 
follows from (4.10) and (4.12). Using an obvious 
matrix notation we may write 

gOP/l(7T') = Sgopi7T)S-l + (~)S-l. (4.15) 

Hence, the P field does not transform as a tensor under 
spin-space transformations nor does the curl of the 
P field. But the quantity 

F/lV = OVP/l - 0/lPV + gO(P/lPV - PVP/l) (4.16) 

does transform as a tensor 

(4.17) 

is a skew symmetric tensor that may be replaced by the This leads to the invariant kinetic Lagrangian 
p-meson field in the spirit of (4.1). go is some coupling 
constant. We have already remarked earlier that the Lpp = HF/lvF/l

V

), (4.18) 

indices m, n are, in contrast to j, not covariant with used by Schwinger3 and Weinberg.5 
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Solution of the Bethe-Salpeter Equation with a Square-Well Potential 

R. F. KEAM 
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The ladder aPI?!oximation B~the-Sal~ter eq~ation. for (i) a bound spin-O boson-boson system of zero 
total mass and (II) a bound spm-! fermIOn-antI fermIOn system of zero total mass is solved for a four­
dimensional square-well potential. 

1. INTRODUCTION 

The only known exact solutions of the ladder­
approximation Bethe-Salpeter equation1. 2 for a bound 
spin-t fermion-antifermion system, expressible in 
terms of rational or commonly occurring higher 
transcendental functions, are for zero total mass and 
with the mass of the exchange particle also zero.3- 5 

Attention is therefore becoming directed to numerical 
approximation methods and interesting results have 
already been obtained.6• 7 So far, field-theoretical 
potentials have been used, and these have a singu­
larity2.8.9 serious enough to modify considerably the 
form of the wavefunctions at the origin of the Euclid­
ean relative-coordinate space in which the problem is 
described after the Wick rotationlO has been performed. 
One consequence is the familiar "Goldstein problem" 
and it appears that in order to overcome it one must in 
some fashion cut off the high momenta.11 •12 It has 
seemed worthwhile, therefore, to investigate a model 
nonsingular potential since, as Mandelstam has 
shown,9 this gives rise to a discrete set of coupling 
constants and problems at the origin of relative-co­
ordinate space are avoided. We choose the four­
dimensional square-well potential as the simplest to 
deal with analytically. As well, however, this choice 
introduces a high momentum cutoff in a very real way; 
we show in Sec. 3 that in place of the single-particle 
exchange k-2 asymptotic momentum dependence, the 
square well gives k-2J2(kA) so that the Jc-2 dependence 
is modulated by an oscillating factor of magnitude 
Jc-l. We perform the analysis for zero total mass since, 

1 H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 (1951). 
2 M. Gell-Mann and F. E. Low, Phys. Rev. 84, 350 (1951). 
8 J. S. GOldstein, Phys. Rev. 91, 1516 (1953). 
'A. Bastai, L. Bertocchi, G. Furlan, and M. Tonin, Nuovo 

Cimento 30, 1532 (1963). 
• W. Kummer, Nuovo Cimento 31,219 (1964). 
8 P. Narayanaswamy and A. Pagnamenta, Nuovo Cimento 53A, 

635 (1968). 
1 C. H. Llewellyn Smith [submitted to Ann. Phys. (N.Y.)]. 
8 A. Bastai, L. Bertocchi, S. Fubini, G. Furlan, and M. Tonin, 

Nuovo Cimento 30, 1512 (1963). 
9 S. Mandelstam, Proc. Roy. Soc. (London) A233, 248 (1955). 

10 G. C. Wick, Phys. Rev. 96, 1124 (1954). 
11 Reference 6, p. 652. 
12 An alternative possibility has been considered by the present 

author (submitted to J. Math. Phys.). 

in this case, exact analytical solutions are found for 
all Dirac-space sectors for all types of coupling and 
for all angular momenta, in both the internal and the 
external regions, and the numerical work is reduced to 
matching the values and gradients of the internal and 
external forms for each variable at the well boundary. 
We arrive at relationships between well width and 
well depth in order that the system described has zero 
total mass. It is hoped that the solutions form the 
starting point for a perturbation treatment of bound 
systems with small but nonvanishing total ~ass E. 

The notation and conventions in the following 
sections are those of a previous paperl3 hereafter 
referred to as I. In Sec. 2, the parity and charge-parity 
properties of the zero-mass solutions in I are derived. 
In Sec. 3 we consider a boson-boson system with a 
square well and compare the results with those for a 
potential due to particle exchange. Sections 4 and 5 
detail properties of the square well for a fermion­
antifermion system and the analytical solutions of the 
corresponding Bethe-Salpeter equation. Finally in 
Sec. 6 we consider certain numerical solutions. 

2. PARITY AND CHARGE CONJUGATION 
PROPERTIES 

We wish to identify the operators 11', e which, 
acting on the wavefunction X(x I , x2), are equivalent, 
respectively, to the Hilbert-space parity operator P 
and charge conjugation operator C acting on the 
state vector IB); i.e., 

~X = (01 T{tp(xl)V:i(xJ}P IB), 

eX = (01 T{tp(xJVi(tp2)}C IB). 
(1) 

Using the well-known commutation properties of 
C, P with tp, Vi, we find, indeed,14 that 

ifx = Y4X(X~, x0, 
eX = CXT(X2 , XI)C-l, 

(2) 

(3) 

where x~ = (-Xl' (XI)4)' x; = (-X2 , (X2)4)' a sub­
script T stands for "transpose," and C is a 4 x 4 

13 R. F. Kearn, J. Math. Phys. 9, 1462 (1968). 
14 Confer J. Harte, Nuovo Cimento 45A, 179 (1966). 
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matrix satisfying 

ct = C-l, CT = -C, 
(4) 

C-lyIlC = -YilT· 

In terms of the wavefunction in the relative co­
ordinate f(x) [cf. Eq. (1.6)] these become 

fff(x, X4) = r,J'(-x, xJ, (5) 

Cf(x, X4) = CiT( -x, -X4)C-l. (6) 

From (6) we can deduce that 

e = (-1)!(.'R.+3)'b, (7) 

where the operators :It, 'b are as defined In I. ff 
commutes with $E, '1J, :It, 'b; but 

(8) 

and there are similar relations with Jt replaced by 
Lt or st· 

In Eq. (1.54), namely 

fl+l- Jm = 1 (j+rm+m-I Jm)fj+rm+m-, (9) 
m+m-

we wrote down the form of a general solution of the 
ladder approximation Wick-rotated Bethe-Salpeter 
equation for a massless bound system of a spin-t 
fermion and spin-t antifermion of equal mass, where 
the suffices in the left member are the quantum num­
bers corresponding respectively to the operators 
(J+)2, (J-)2, J2, J •. 

In the S-V sector (where, say, j+ = j- = j) the 
explicit form off~jm is found by substituting into the 
right member of (9) from Eq. (I.30). 

In the T-A sector, Case A gives the disjoint solu­
tions 

f'£1-; = m~- (jjm+m-I Jm)[2-1(2j + l)-l w(R) 

X {1+(jlmim~ I jm+)Zjm,+m-~~.+ 
m. 

+ 4 (jlmzm; I jm-)Zjm+m'-~;'.-} 
m, 

+ rlal(R) 1 (j + ! tmTm~ I jm+) 
m,+m,-

X (j + llmzm; I jm-) 

X Zi+lm,+m,-iY5Am.+m,- + (j + 1)-la2(R) 

X 1 (j - llmim~ I jm+) 
m,+m,-

X (j - t !mzm; I jm-) 

X ZI-lm,+m,-iYsAm.+m,-], (10) 

TABLE I. Parity and charge parity of solutions 
of the Bethe-Salpeter equation. 

Solution Parity Charge parity 

(-w 
( _1)J 
( _1)J+l 
(-JY 
( _1)J+l 
(_W+I 

( -1)"; 
( _l)2Hl 
( _l)2m 
( -1)21+1 
( -1)21+1 
( -1)21 

(j ¢ 0) 

(J¢ 0) 
(J¢ 0) 

f,£1;;. = 1 (jjm+m-I Jm)2-1(2j + l)-lw(R) 
m+m-

X { 1 (j1mim;1 jm+)Zjm,+m-~~,+ 
m.+ 

- 4 (j1mz m; I jm-)Zjm+ml-~;'-}. (11) 
m, 

Cases Band C similarly give solutions ffj1.lJm and 
f'f't.1 j Jm· To obtain parity eigenfunctions we must take 
the linear combinations 

TA± fTA fTA gjHIJm= iHlJm± HljJm· (12) 

In the P sector there is just the solution 

ffiJm = peR) 1 (jjm+m-I Jm)Zjm+m-!Y5· (13) 
m+m-

The parity and charge parity of these solutions, all 
of which have total angular momentum J, are given in 
Table I. (The suffices j+j-Jm are omitted.) 

3. BOSON-BOSON SYSTEM WITH SQUARE 
WELL 

Written as a differential equation in relative co­
ordinates, the ladder-approximation Wick-rotated 
Bethe-Salpeter equation for a system of two spinless 
bosons of equal mass m bound to zero total mass is 

(0 - m2)2f(x) = -A'1Jf(x), (14) 

where '1J is the potential function and A a ·coupling 
constant. Writing the potential due to exchange of 
spinless quanta of mass fl explicitly, we have A = g2j 
(47T)2 andl5 

-t'1J = (27T)-4L:eik·"'(k2 + fl2)-1 d4k 

= (27T)-2Loo R-1K 2(K2 + fl2)-lJl(KR) dK 

= (flfR)K1(flR) 

== U(fl, R). (15) 

15 The notation used throughout for the various higher tran­
scendental functions is that of Handbook of Mathematical Functions, 
M. Abramowitz and 1. A. Stegun, Eds. (Dover Publications, Inc., 
New York, 1965). 
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Here R is the radial coordinate in configuration space, 1".-0 _-..-_~2~--,,.--~"c--~a!!.---\!.'_--.-__ '~_.--~1O 
and K the corresponding radial coordinate in the 
Euclidean relative-momentum space. 

Separating (14) in four-dimensional spherical-polar 
coordinates (R, tp, 0, 4», we have solutions of the 2 

forml6 

f(x) = g..{R)nnlm( tp, 0, 4», (16) 
where 

{~ + ~ ~ _ n(n + 2) _ m2}2 (R) = -A'U' (R) 
dR2 RdR R2 gn gn , 

(17) 
and n is a nonnegative integer. 

We now define the potential to be a square well of 
depth Wand radius A = aim when 

A'U' = - W, 0::;; R < A, 

A'U' = 0, R>A. 
(18) 

Let us take p = mR as the independent variable 
and write 

d± = ~ ± 2(j + oc) = 1. D± (19) 
a d a' ppm 

~ = 4d;; = d=tdi, (20) 

where j = tn. If we then put K = Wm-4 , Eq. (17) for 
the square well becomes 

(~ - l)2g = Kg, 0::;; P < a, (21a) 

(~ - 1)2g = 0, P > a, (21b) 

where we have dropped the suffix n from gn' Solutions 
of both (21a) and (21 b) may be found by comparison 
with the equation investigated in the Appendix A. 
In the external region (p > a), only solutions ge 
vanishing as p -- 00 are acceptable and we have 

ge = CIK2;(p) + C2P-IK2HI(P) (22) 

for some constants CI , C2 • In the internal region 
(p < a), we must select solutions gi of (21a) which 
remain finite as p -- O. For K ;;::: 0, one such solution 
is 

(23) 

where 'YJ = (1 + Kt)t. Another solution gi2 has a 
form depending on K: 

gi2 = 12i(p), K = 0, 

gi2 = p-I/2HI(IPI p), 0 < K < 1, 

gi2 = p21, 

gi2 = p-IJ2i+l(PP), 

where P = (Kt - l)t. 

K = 1, 

K> 1, 

(24) 

16 For an explicit form of the function Qnlm, see, e.g., C. Schwartz, 
Phys. Rev. 137, B717 (1965), Eq. (13). (Qn1m == Inlm).) 

It 

3 

" 
FIG. I. Curves of zero total mass for two spin-O bosons each of 

mass m interacting through a square-well potential of radius aIm 
and depth Km'. 

For K < 0, 
gil = Re(p-IJ2HI(PP», 

gi2 = Im(p-IJ2HI({3P»· 

Then for all cases 

gi = Cagil + C~il 
for some constants C3 , Col' 

(25) 

(26) 

Since (17) is a fourth-order differential equation, 
we must match the values at p = a of g., gi and of 
their first, second, and third derivatives. Three of 
these relations determine the ratios of CI , C2 , C3 , 

and Col, and the fourth determines a discrete set of 
depths that the well must have for a given width in 
order that the bound state has zero total mass. 

Testing the cases K ;;::: 0 for j = 0 with a computer 
reveals that solutions exist only for K > 1, and the 
zero-total-mass curves for small values of K, a are 
shown in Fig. 1. We have not attempted to test the 
case K < 0.17 

It would be interesting if we could match in some 
fashion the results for the square well with those for 
the theoretical potential of Eq. (15). Certainly there 
should be qualitative agreement. In relative-momen­
tum space it is a matter of comparing: 

A. 
(i) Field theoretical potential --­

K2 + p,2' 
(27) 

(ii) Square-well potential K::~2 J 2 (a:). (28) 

We assume that the least value of K for a given a 
corresponds to the physical case and restrict our 
attention to the curve marked "1" in Fig. 1. Its 
general shape suggests that the quantity h = a2(K - 1) 

11 The remarks at the end of Sec. 6 are applicable here and indicate 
that solutions are likely to be found for K < O. 
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~~---.-----.----,----'r----'----'-----' 

h 

20 

FIG. 2. The quantity h = a2(K - 1) for curve" I" of Fig. 1, plotted 
as a function of K. 

may be slowly varying, and in Fig. 2 we plot h as a 
function of K. Presumably, well depth corresponds to 
coupling strength, and if we choose K = A/2m2, since 
h does not vanish as K --+ 1, we have for A --+ 2m2 that 
a --+ co. This result is physically reasonable since 
A = 2m2 corresponds to the exchange particle mass I-' 
vanishinglO and the field-theoretical potential, there­
fore, having infinite range. We can put the correspond­
ence between the ranges of the two potentials on a 
more definite basis by choosing a = $(m/I-') for some 
constant $. Narayanaswamy and PagnamentalS have 
given computed values of A for varying m/ I-' at zero 
total mass, and it appears that in order to obtain the 
same computed value of A at m/ I-' = 1 we must take 
$2,....., 30; but if we wish to obtain the same computed 
value of A at m/I-' = 2 we must take $2,....., 20. Thus, the 
agreement is more qualitative than quantitative. 
From the definitions of h and a we have 

(29) 

which is to be compared with Eq. (18) of Ref. 6. 

4. FERMION-ANTIFERMION SQUARE-WELL 
POTENTIAL 

The ladder-approximation Wick-rotated Bethe­
Salpeter equation for a spino! fermion-antifermion 
system of total mass E is [Eq. (1.8)]lsa: 

(y' a - l-'aEY4 + ma)f(x) 

X (I'. a + I-'bEY4 + mb) = -A'lJf(x), (30) 

where ma, mb are, respectively, the fermion and 
antifermion masses. 

Absorbing A into 'lJ we put for the general four-

18 See Ref. 6, p. 640, Table I and p. 647, Fig. 1. 
18& Through a typographical error, the left member of this 

equation was given incorrectly in Eq. (1.8). 

dimensional radial potential function [cf. Eq. (1.12)]: 

A'lJ = L V;(R)l\. (31) 
i 

We now define the potential to be a square well of 
depth V, radius aim, and interaction type i when 

ViR) = - V~ij, 0:::;; R < aim, 

Vj(R) = 0, R > aim. 
(32) 

We consider only the equal-mass case ma = mb = m 
and, putting K = V/m2, we define in the interior 
region 

(Xij = - (m2 + A Vj)/m2 

= CijK - 1, 

where the Cij are the coefficients of Table I in I. 

(33) 

In nonrelativistic quantum theory the sign that a 
potential term should have in order that the force 
field be attractive is unambiguous. This is not the case, 
however, for a relativistic theory such as we are 
considering here, specifically because E occurs 
quadratically in the left member of (30), whereas A 
appears linearly in the right member. There is as yet 
no guarantee of the sign of dE/dA and, indeed, for 
two members E1 , E2 of a discrete energy spectrum, no 
guarantee for a given A that dEl IdA and dE2/dA have 
even the same sign. A direct test, therefore, as to 
whether the potential is attractive for a particular 
sign of the potential term is simply to see if a bound 
state does exist for that sign. Consequently in the 
following work we examine for both signs of V (or K) 
whether zero-mass solutions exist. 

Granted this point we note, however, that field 
theoretical interaction Lagrangians corresponding to 
each interaction type i do give a quite definite sign 
for 'lJ. In fact for an exchange field Ai of type i 
(where i = S, V, A, or P) whose quanta have mass 1-', 

the right member of (30) becomes 4dU(I-', R)l\f(x), 
where interaction type i, interaction Lagrangian C, and 
E are as shown in Table II and A = g2/(47T)2 as before. 

The sign of E depends simply on whether i appears 
explicitly in front of the expression for the Hermitian 
C as listed, since in ladder approximation the potential 
comes from the lowest-order contributing term in the 
S-matrix expansion and this contains the square of C. 

TABLE II. Corresponding forms for 
i, 1:, and E. 

I: E 

S rlA81J1 \ 
V igtPYI'A~1J1 -\ 
A rliY5i'I'At1J1 1 
p igipY5AP1J1 -1 
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The tensor interaction has been excluded from the 
above comparisons, since the interaction Lagrangian 
CT =gij}(1",vA~v1jJ, which would be the direct analog of 
those appearing in Table II, is intrinsically different. 
The exchange-field contribution to CT comes only 
from the antisymmetric part of A~v' and this corre­
sponds to the reducible ~Ol + ~lO representation of 
the proper Lorentz group, i.e., a spin-I field. But 
basically a spin-I field is a vector representation, so 
that, in order to describe it by second-rank tensor 
components A~v , the latter necessarily involve 
derivatives of the basic vector field components. In 
other words CT describes a derivative coupling which 
implies a singularity of the potential of even higher 
order at the origin. It is exemplified by the electro­
magnetic field where A~v = F",v = o",Av - ovA"" and 
where F",v' A", have their usual meanings. 

5. FORMAL ANALYTICAL SOLUTIONS 

When E vanishes, Eq. (30) splits into Dirac-space 
S-V, T-A, and P sectors. Angular variables may be 
separated and the equation reduces to sets of coupled 
radial equations which in I are written down explicitly 
for the various possible cases. In what follows, each 
set is solved analytically in the interior and exterior 
regions for the potential (32). 

A. S-V Sector 

Using (19) and (20), Eqs. (1.43) become 

(~ - lXil)S + 2(divl + d~lV2) = 0, 

d;{ diVI + 2(j + 1)(d'=-lv2 + s)} = (2j + 1)lXi2VI' 

d"i{ -d=lv2 + 2j(dlvl + s)} = (2j + 1)lXilV2' 

° ~ P < a, j =;6 0, (34) 

in the interior region and are of the same form in the 
exterior region but with lXil' lXi2 replaced by -I. 

If Vl, V2 are eliminated we find 

{~2 _ (lXil + lXi2 + 4)~ + lXillXi2 }S = 0, (35) 

the solutions of which follow by comparison with the 
equation investigated in the Appendix A. 

Given a solution for s, solutions for VI, V2 are found 
from the equations 

(2j + 1)(d;4 + lXi2)V1 = -(j + l)d;;(~ - lXil - 2)s, 

(2j + 1)(dtd=l)v2 + lXi2 = -jdt(~ - lXil - 2)s, (36) 

which readily follow from (34). Mandelstam's 
analysis9 shows that a solution will be physically 
acceptable only if for some positive E it is O(R<-l) as 
R -+ 0, and a detailed check shows that s, VI, V2 must 
in fact all be bounded for the square-well potential as 
R-+O. 

The various possible real forms of coupled physi­
cally acceptable formal solutions are displayed in 
Table III. 

When the roots of the quadratic equation corre­
sponding to (35) are real and unequal, to any positive 
root 'YJ2 corresponds a solution (a), to any negative 
root _{32 corresponds a solution (b), and to a 
zero root (when lXi2 =;6 0) corresponds a solution (c). 
The two roots give two distinct solutions, and a third 
is given by (d) or (e) according as lXi2 is positive or 
negative. When lXi2 = 0, instead of (c) and (d) or (e), 
we have (f) and (g). 

When the roots of the quadratic equation are real 
and equal, if they are positive we have: (a), (h), and 
(d) or (e); and, if negative: (b), (i), and (d) or (e). 

When the roots are complex, we have from the 
consideration of this case in the Appendix and from 
the reality of the operators in (36) that two real 

TABLE III. Solutions of the coupled equations (34). 

s 

1 
- 121+l(a,) 
p 

1 
- JU+l(a) 
p 

p'l 
o p-lJ21+2(rxt.p) 
o p-'IIl+.C!oc .. lt p) 
(2j + l)p·i {(OCil - 4j)/[8(j + l)]}pli+l 
o 0 

v. 

1( ) ) 1 2 2; + 1 (OCil - 1]2) a;: lu(a,) 

1( } ) 1 - 2 2j + 1 (ail + fJ") 'G J2 A<T) 

(4j/oc,s)p2l-1 
p-lJ.1(oct.p) 

- P-'I.I(loc,.I' p) 
lj(oc" + 2)p'I+l 
p.l-l 

{2} ~ 1) [Hail - 1]2)IIl_l(a1) - 1]" ~ 1.I(a,)] 

-{2}~ I)Wocil + fJ")J~I-M) + 1]'~J'I(a)J 

a l = 1]p (a) 

a = {Jp (b) 

(c) 

a" > 0 (d) 

OCia < 0 (e) 
(f) 
(g) 

(h) 

(i) 
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solutions are obtained from the real and imaginary 
parts of (b) and the third solution is (d) or (e). 

The nature of the roots for the various ranges and 
values of K for each type of interaction is detailed in 
Table IV. The general physically acceptable solution in 
any particular case will then be some linear combina­
tion of the corresponding three formal solutions. 

Solutions for the exterior region may be found by 
putting K = ° in (34) et seq. and selecting forms which 
vanish as p ---+ 00. The three acceptable forms are 
displayed in Eq. (37) where for brevity we have 
omitted the argument p of each modified Bessel 

TABLE IV. The character of the roots of the 
quadratic equation corresponding to (35). 

K Roots 

S interaction 
> 1 + + 
= 1 + 0 «(Xii = (XiS = 0) 
< 1, > 0 + + 
=1 + + (equal) 
<0 complex 

V interaction 
>1- + 
=1- + 0 «(Xii = 0) 
< t, > 0 + + 
=0 + + (equal) 
< 0, >-~ complex 
= -t + + (equal) 
< -~, >-! + + 
= -! + 0 «(Xi. = 0) 
< -! + 

T interaction 
>t + 
=! + 0 «(Xu = 0) 
< t, > 0 + + 
=0 + + (equal) 
< 0, >-t complex 
= -t (equal) 
< -t 

A interaction 
>! + + 
=! + 0 «(Xi2 = 0) 
<!, > 1- + 
-~ + 0 «(Xu = 0) -4 

< t, > 0 + + 
=0 + + (equal) 
<0,>-12 complex 
= -12 
< -12 

(equal) 

P interaction 
>1 + 
=1 + 0 «(Xu = 0) 
< 1, >0 + + 
=0 + + (equal) 
< 0, > -1 + + 
= -1 + 0 «(Xi2 = 0) 
< -1 + 

function: 
(a) (b) (c) 

s = (2j + 1)K2i - p-1K2i+1 p-1K2i+1 p-1K2i+1, 

V1 = (j + 1 )K2i+1 p-1K2i+2 0, (37) 

V2 = jK2i- 1 ° p-1K2i · 

When j = 0, in place of (34) we have 

+ -
dt(dos + 2v1) = OCilS, 

- + do (dtv1 + 2s) = OCi2V1, (38) 

° ~ P < a, 

and the corresponding exterior region equations 
obtained by putting K = 0. We may again derive 
Eq. (35). Formal solutions corresponding to Table 
III (a), (b), (c), (f), (h), and (i) may be derived and 
are in fact identical to the forms found for sand V1 in 
that table when we put j = ° there. Exterior-region 
formal solutions corresponding to (37) are: 

(a) (b) 

s = p-1K1 
V = p-1K2 

B. T-A Sector 

(39) 

From Eq. (1.46), for Case A, j ¥: 0, we find in the 
interior region that w satisfies 

{~2 - (OCiS + OCi4 + 4)~ + OCiSOCi4}W = 0, (40) 

which is very similar to Eq. (35). One can follow the 
argument for the S-V sector from Eq. (35) to Eq. (37); 
but with the replacements s ---+ W, V1 ---+ a1, V2 ---+ a2' 
OCii ---+ OCiS, OCi2 ---+ OCi4' an explicit factor j +:t an explicit 
factor (j + 1), an explicit factor (2j + 1) is unaltered, 
and exponents and Bessel-function orders are un­
altered. There is a single exception-the analog of 
the form for V1 in Table III (f) is 

a = _ OCiS + 4(j + 1) 2i+1 
1 8(j + 1) p . 

The nature of the roots for the various ranges and 
values of K for each type of interaction is shown in 
Table V. 

We defer consideration of Iii and of the j = ° case 
[Eqs. (1.47) and (1.52)] and treat these with the P­
sector solutions below. 

From Eq. (1.46) for Case B we find that in the 
interior region a satisfies 

{.6.~ - (ociS + OCi4 + 4).6.1 + OCiSoci4}a = 0, (41) 

where .6.1 = dt df = do dt· ~1 is also .6. with j 
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TABLE V. The character of the roots of the quadratic equation corresponding to (40). 

/( Roots 

>1 
=1 
< I, > 0 
=0 
<0 

>l 
=1 
<1, >0 
=0 
< 0, >-4 
= -4 
< -4 

S interaction 

+ + 
+ 0 
+ + 
+ + 
complex 

V interaction 

+ 
+ 0 
+ + 
+ + 
complex 

(equal) 

(equal) 

(equal) 

replaced by j + t. The analysis proceeds as for Case 
A, and the forms of solution are displayed in Table 
VI. Each form is the direct analog of the solution 
appearing in Table III which is indexed by the same 
letter [(a), (b), etc.]. The exterior-region solutions are 

(a) (b) (c) 

a = K2i+1 p-1K2i+2 p-lK2i+2, 

t1 = K2i+2 2p-lK2i+3 0, (42) 

t2 = K2i ° 2p-1K2i+1· 

It is not necessary to consider the T-A-sector Case 
C of I separately, because of the symmetry shown in 
that paper to exist between Cases Band C. 

C. P Sector 

From Eq. (1.53) p satisfies 

(d + (XiS)P = 0, ° ~ p < a, (43) 

for which the only solutions bounded as p ---+- Dare 

(XiS> 0, P = (}lJ2i+1(0")' 0" = «X'5)lp, (44a) 

(XiS = 0, P = p2i, (44b) 

(Xi5 < 0, P = 0"-1[2i+1(0"), 0" = (_(Xis)lp. (44c) 

/( Roots 

T or A interaction 
>4 
=4 (equal) 
<4, >0 complex 
=0 + + (equal) 
< 0, > -! + + 
= -! + 0 (CXi3 = 0 for T 

cx., = 0 for A) 
< -! + 

P interaction 
> 1 + 
=1 + 0 (cx.a = 0) 
< I, > 0 + + 
=0 + + (equal) 
< 0, > -1 + + 
= -1 + 0 (cx" = 0) 
< -1 + 

The exterior-region solution is 

P = p-1K2i+1(P)· (45) 

From Eqs. (1.47) and (I.52), the T-A-sector Case A 
equations for Iii and aI, respectively, are 

(d + (Xi3)1ii = 0, j =F 0, (46) 

(d1 + (Xi4)a1 = 0, j = ° (47) 

in the interior region. The solution of each follows 
immediately from (44) upon replacing lXi5 with (Xi3, lXi4 

respectively, and also j by t in the latter case. In the 
exterior region, Iii satisfies (45) and 

(48) 

6. NUMERICAL RESULTS 

We consider first the cases discussed in Sec. 5C of 
this paper. 

The boundary conditions relating internal and 
external solutions are that the radial functions and 
their derivatives are continuous at the well radius 
p = a. Thus for lXi5 positive, from (44) and (45) we 

TABLE VI. Solutions of the T-A Sector, Case B equations. 

a 

p-l/U+I(a1) 
p-lJ.,+1(a) 
pll+1 

o 
o 

(2j + 3)plJ+l 
o 

1//11+1 (a 1) 
pJU +1(a) 

l(cx" - 1/2)a-1/ I Ha(a1) 

!Ccx" + pt)a-1J.H.(a) 
o 

p-1Jz!+a(cxt.P) 
p-l/sHa(lex;sll p) 
_plJ+I 

o 
l(cx •• - 1/1)/II+I(a1) - CX .. G11/II+S(a1) 
Hcx" + pl)JU+I(a) - cx"a-1JU+I(a) 

l(cx" - 1/1)G11/U+l(al) (a) 
-Hcx" + p")a-1JII+l(a) (b) 

8(j + 1)pll/CXiS (c) 
_p-lJu+l(cxtaP) (d) 

p-l/U+1(icx/3Il p) (e) 
H2j + 3)(ex;, + 2)p11+2 (f) 
pll (g) 
l(cx" - 1/1)/II(a1) - 1/"a-1/U+l(a1) (h) 

-Hcx,. + P")J.;(a) - pta-1JU+l(a) (i) 
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TABLE VII. Numerical values of Zl ••• 

s j=O i- t 

a=1 1 2.65 3.92 5.18 6.40 
2 5.64 7.07 8.44 9.78 
3 8.73 10.21 11.64 13.03 
4 11.85 13.35 14.81 16.23 
5 14.97 16.49 17.97 19.42 

a=2 1 2.88 4.07 5.27 6.47 
2 5.79 7.16 8.51 9.82 
3 8.83 10.28 11.68 13.06 
4 11.93 13.40 14.85 16.26 
5 15.04 16.54 18.00 19.44 

have at p = a, putting (J = (otiS)!' 

a K2la) = -(Ja J2l(Ja) (49) 
K2i+l(a) J 2i+l«(Ja) 

Since the left member is positive for all values of a, (J 
must be chosen so that J2i«(Ja)!J2i+l«(Ja) is negative. 
Ifj •.• is the sth positive zero of J.(Z)19: 

jv •• < jV+l.' < jV"+l . 

From this it follows that ZJ2i(Z)/J2i+l(Z) decreases 
from zero to minus infinity as z goes from j2i .• to 
j2i+l ••. Thus given a, there is a solution of (49) for 
some value of (Ja lying between j2i •• and j2i+l •• for each 
s = 1, 2, .... Furthermore, if zi .• is this value, 

(50) 

and since zi .• varies only over the small range j2i •• < 
.zi •• < jli+l •• , we have approximately 

(J ex: 0-1 

for each of the (discrete infinity of) values of (J 
corresponding to a given a. This approximation is 
least good for smallj and s; zo.o varies by about 60% 
over the complete range of a, but for example, Zs.s 
has a 10 % variation and ZO.20 a 2 % variation. Numer­
ical values for some zi •• are shown in Table VII for 
two values of a. 

When otio is negative we have I instead of J functions 
in the right member of (49). But (49) then has no 
solution, since its left and right members are, respec­
tively, positive and negative. A somewhat similar 
result follows when ot,5 = O. Solutions therefore 
exist only for ot'o > O. For S, T, and P interactions 
(i = 1, 3, 5) this implies that the well depth K must 
exceed a certain value Km (1, i, 1, respectively) in order 
that the system can bind to zero mass. For K> Km 

11 See Ref. 15. p. 370, inequality (9.5.2). 

there are infinite series of widths a possible, and from 
(50) 

2 1 1 2 = zi.s (51) a ex: 
Ci 5 K - Km K - Km 

The similarity to results for the boson-boson system 
of Sec. 3 is clear with z~ •• being the analog of h. In 
contrast to h, Zi .• is, however, strictly bounded. For V 
and A interactions, only negative values of Kless 
than -!(= -K~, say) give zero-mass states and in 
place of (51) we have 

2 Z~.. 1 . 1 
a = (--) , ,~, " 

-CiS K - Km K - Km 

(52) 

where K' = -K. Comparing the signs of K with the 
signs of e in Sec. 4, we see that the exchange potentials 
there correspond with square-well potentials that 
produce bound states (of zero mass) for S or V 
interactions, but not A or P interactions. Let us 
consider this more carefully. In place of (43), the 
exchange potential gives rise to the radial-differential 
equation 

(~ - l)g(p) = -4eci5A' L. Kl(1!:... . p)g(p). (53) 
mp m 

For A ~ Ao = (2j + 1)2/(4eci5),neither solution satis­
fies the Mandelstam criterion at the origin. For A < 
Ao, one solution does not satisfy the Mandelstam 
criterion and the other does. However, at least for 
I-' = 0, the latter solution increases at infinity and is 
therefore unacceptable. Hence we have the "Gold­
stein problem." 

If we try to match the field-theoretical potential 
with the square well, it seems natural to associate the 
dividing value Ao with Km or K~. Consequently we 
assume 

or 

(54) 

If we again take a = ~(m!l-') we obtain as the analog 
of (29): 

A = e(2j + 1)2[1 + .!. . 1-'2 • Z2 J. (55) 
4c.. to2 m2 i •• ,., ~ 

Since A must be positive, this result can obtain, as 
mentioned above, only for S or V interactions. 

We see that, even allowing a cutoff procedure by 
matching with a square well, one cannot obtain 
P-sector zero-mass states with A or P interactions 
and, in particular, no 0- state is produced this way. 
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FIG. 3. Curves of zero total mass for a spin-i fermion-anti­
fermion 0+ system with a vector-interaction square-well potential 
of radius aIm and depth EKm2

• 

For w, only S, T, P interactions can produce 
bound states and, of these, only S has the same well­
depth sign as for the exchange potential. 

From (47), for al with j = 0, there is no bound 
state with a T interaction and of the others only S 
and P interactions agree with the exchange potential 
signs. 

As a further example let us consider the numerical 
solutions for j = ° in the S-V sector for each inter­
action type. According to Table I, the bound system 
has J = 0, positive parity, and positive charge 
parity. Using a computer for all regions of K where the 
corresponding quadratic has real roots (see Table IV 
for these regions), we find sets of solutions for zero 
total mass in the following seven cases: 

(i) V interaction K > ! 
(ii) * V interaction K < -i 

(iii) T interaction K > -l 
(iv) T interaction K < -f 
(v) A interaction K ~ -12 

(vi) P interaction K > 1 
(vii) * P interaction K < -1. 

The asterisks mark cases where the well has the same 
sign as the corresponding model field-theoretical 
potential. Graphs of well-width vs well-depth for 
cases (ii) and (vii) are given in Figs. 3 and 4 respec­
tively. The curves are clearly again of the approximate 
form of (51). 

Defining hv = -a2(K + t), hp = -a2(K + 1) for 
(ii) and (vii) we demonstrate the comparatively small 
variation of these quantities in Fig. 5 for the curve of 
smallest a for given K. Also, using analytical forms 
for the functions involved near the origin, we have 

been able to obtain the result that asymptotically as 
a --+ 0, hv --+ 1.7j., hR --+ 8. 

It is clear that for V, T, and P interactions the 
potential is attractive for both signs of K. 

No attempt has been made to carry out numerical 
calculations for regions where the corresponding 
quadratic has complex solutions, but we can perhaps 
gain some idea of what to expect by the following 
considerations. We notice that no zero-mass solutions 
are found for cases where the corresponding quadratic 
has real roots which are either both positive or one 
positive and one zero. On the other hand, zero-mass 
solutions are always found where there are real roots 
at least one of which is negative and where the 
corresponding range of K is infinite. Positive roots 
correspond to monotonic functions and negative 
roots to oscillating functions in the interior of the well. 
For complex arguments the functions are of the type 
ReJn(z), ImJn(z), and asymptotically 

Reln(z) "'" (27Tr)-iersin(J0:1> cos 8, 

Iml n(z) "'" (27Tr)-ierSin <10:1>(0(/10(1) sin 8, 

where 

8 = r cos 0( + t 10(1 - t(n + t)7T. 

Thus for 0( ¥= t7T, both ReJn(z) and ImJn(z) are oscillat­
ing. From this it seems likely that massless bound 
states will be found for the S interaction when K < 0, 
but not for the complex regions for the V or T 
interactions. With the A interaction the region ° > 
K > -12 may give massless states, since it is contig­
uous to the infinite region K ~ -12 which does have 
such states. Neither for the S nor the A interaction, 
however, must we necessarily expect that solutions 
will be found right up to the region boundary at K --+ 0. 

-2 

K 

-3 

FIG. 4. Curves of zero total mass for a spin-i fermion-anti­
fermion 0+ system with a pseudoscalar-interaction square-well 
potential of radius aIm and depth EKm 2• 
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- __________________ ~e~.oo~ 
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FIG. 5. The quantities 4h v' h p for the curves of least a for given 
K from Figs. 3 and 4 respectively, plotted as a function of K. The 
asymptotic values h y ...... ¥(4h v ...... 6.86), hp ...... 8 are indicated. 
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APPENDIX 

Let the quadratic equation 

F(X) == X2 + 2bX + c = ° (AI) 

have real coefficients b, c and suppose its roots are 
-{P, _y2 so that we may write 

X2 + 2bX + c == (X + {32)(X + y2). (A2) 

Consider the general fourth-order differential equation 
in d with real coefficients 

F(d)f(p) = 0. (A3) 

The character of its solutions depends on that of the 
roots of (AI) and we consider the various cases 
separately. 

Case A: c ¥= 0, b2 - c ¥= 0. {32, y2 are nonzero and 
unequal and the solutions of (A3) are those of 

(A4) 

together with those of 

(d + y2)f= O. (AS) 

A complete set is therefore given by 

p-lJ2i+l({3P) , p-l Y2J+1({3p), 

p-lJ2J tl(Yp), p-l Y2i+l(YP) , (A6) 

where {3, yare convenient square roots of the possibly 
complex quantities {32, y2. 

If b2 - c > ° then {32, y2 are real, and if they are 
positive then taking the positive square roots gives the 
set (A6) of solutions in real form. If (say) (32 is negative, 
the solutions of (A3) obtained from (A4) are real if we 
take them to be 

p-lI2i+l(I{31 p), p-lK2i+l(I{31 p). (A7) 

If b2 - c < 0, y = fj and since J.(z) = J.(z), 

Y.(z) = Y.(z), a real complete set of solutions is 

Re(p-lJ2J+l({3p », Im(p-lJ2i+l ({3p », 
Re(p-l Y2i+l({3P» , Im(p-l Y2i+l({3P», (AS) 

and we suppose -t1T < arg ({3) < t1T. 

Case B: c ¥= 0, b2 - C = 0. Equation (A3) becomes 

(A9) 

If fl satisfies (A4) , it satisfies (A9); and it is easily 
shown that [OIO({32)]fl also satisfies (A9). A complete 
real set for (3 positive is, therefore, 

p-lJ2i+l({3P) , p-l Y2i+l({3P), J2i ({3P) , Y2j({3p) 

(AW) 
and, for (32 negative, 

p-lI2i+l(I{31 p), p-lK2i+l(I{31 p), 

12il{31 p), K2;(I{31 p). (All) 

Case C: c = 0, b ¥= 0. Just one root of (AI) van­
ishes and the corresponding solutions are 

(AI2) 

Case D: c = 0, b = 0. The complete set of solutions 
is 

(A 13) 
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Method for the Evaluation of Certain Time-Dependent Thermal Averages 

DAVID W. HOWGATE 
Solid State Physics Branch, Physical Sciences Laboratory, Redstone Arsenal, Alabama 

(Received 7 July 1968) 

A simple method is presented for the evaluation of time-dependent thermal averages relating to the 
Debye-Waller form. 

Recently, TerwieP has presented a method of evalu­
ating averages of the Debye-WaUer form 

(e9) == Tr e-PHe9jTr e-PH, f3 = IjkBT, 

H = I w;(aJa; + i), () = I (Cia; + D;a1), 
i i 

[a;,a;]=~i;' [a;,a i ] =0, etc., (1) 

which, apart from the cyclic property of the trace, 
employs only the relations 

e-PHaiePH = eP(f)a;, 

eA9a;e-A9 = ai - )'D;. 

One calculates (e9) by using the expression 

F()') == (eA9) 

(2a) 

(2b) 

(3) 

and by utilizing the properties of the differential form 

dFjd). = If;. (4) 
i 

TerwieI's approach to the calculation of thermal 
averages-illustrated in relations (2) through (4}­
is not limited solely to the evaluation of expressions 
in the Debye-Waller form involving only a thermal 
factor. For example, his methods can easily be ex­
tended to include an evaluation of K(t), such that 

K(t) = L: dwe-i(f)tK(w) , 

were K(t) is the transform of the radiative spectral­
absorption function K(w) corresponding to the 
absorption of external radiation by a defect or 
impurity electron trapped in a crystalline lattice. In 
fact, it is possible to calculate a variety of thermally 
averaged multiple-time functions by using an ex­
tension of his procedure. 

To see how this can be done, first consider a general 
time-dependent thermal average (A(q,p; {I}», subject 
to the conditions2 

(A(q, p; {t}» = II (A;(q, p; {I}», (5a) 
; 

1 R. H. Terwiel, J. Math. Phys. 8, 926 (1967). 
I Defining ( .•. ), = Tr ePHj .. '/Tr e-PHj, Hj = ooj(ajaj + i), one 

can substitute (A,)j for (A,) in (Sa). Relation (Sa) is applicable to any 
operator function capable of being factored over the index i. 

A;(q, p; {I}) = e9,(a,t.)e9,(a+l,t.+1 ) • •• e9,(J),t.,), 

p ~ q are integers, (5b) 

()i(q, I) = eiHt()i(q)e-iHt, ();(q) = ci(q)ai + d;(q)a!, 

(5c) 

[()i(q), ();(q')] = O. (5d) 

We are particularly interested in the sequence 
(A(I,p; {t}». In the case of the example3 just men­
tioned, K(t) would become (A(I, 2; {1m, with 

ci(I) = -[v;(g) - vi(e)]jw., 

dlI) = [vi(g) - v;(e)]jw;, 

ci(2) = -[viCe) - v;(g)]jw;, 

d;(2) = [viCe) - vi(g)]jWi , 

where v;(g) and viCe) are the distortions in the equilib­
rium position of the ith lattice mode with the trapped 
electron in the ground (g) and excited (e) states, 
respectively. In place of Terwiel's expressions (2b), 
(3), and (4), we use 

e9j(a)aie-9,(a) = at - d;(q), e9j(a)a!e-9j(a) = at + c;(q), 

(6) 
and 

(djdta)(Ai(I, p; {t}» = f~(1, p; {t}). (7) 

With the aid of (I), (5c), and (6), we first write the 
commutator expressions 

[ai(t), e±9j(a,t·)] = ±d;(q)e-illli (t-t')e±9j(Q,t'), (8a) 

[ar(t), e±9,(Q,t·)] = =t=ci(q)eilllj(t-t')e±8j(a,t'l, (8b) 

from which we obtain 
J) 

[ai(t), Ai(q, p; {I})] = I di(x)e-iO>j(t-t")A;(q, p; {t}), 
"=41 

(9a) 
J) 

[at(t), A;(q, p; {t})] = - I ci(x)e;(f)i(t-t::lA;(q, p; {t}), 
"=41 

(9b) 

8 See, e.g., M. Lax, J. Chern. Phys. 20,1752 (1952); J. J. Markham, 
Rev. Mod. Phys. 31, 956 (1959). 
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upon applying (5b). Using (2a), (9a) , and the cyclic 
property of the trace, we then obtain the expression 

(Ail, q; {t})a;(t)A;(q + 1, p; {tn> 

= [Ni± di(x)e-iw/U-t.) 
",=1 

+ (Ni + 1) ",11di(x)e-iw/(t-tZ)]<A;(I, p; {t}», 

Ni = (e{Jw, - 1)-1. (10) 

An equivalent expression is constructed for a:(t) from 
(10) by interchanging Ni and Ni + 1, replacing 
d;(x) by ci(x), and affixing a positive sign to the time­
dependent exponential. Applying the identity 

to A;(I,p; {t}), we differentiate Ai(I,p; {tn with 
respect to ta to obtain 

f~(t, p; {tD = iw;(AlI, q; {t})[di(q)a;(tq) - c;(q)a;(tq) 

- ciq)d;(q)]Ai(q + I, p; {tn> (11) 

with the aid of (8a) and (8b) and (7). Inserting (10) 
along with the equivalent expression for aJ (t) into (11) 
we arrive at a first-order differential equation: 

d 
- (All, p; {t}» 
dtq 

= iW{i.[d;(q)C/X)(Ni + l)eiwi(to-tz ) 

- ci(q)d;(x)Nie-i<OiUo-tx)] 
p 

+ I [di(q)clx)Nieiw,(to-t.) 
"'=a+1 

- ci(q)d;(x)(Ni + l)e-;<o,uo-tx)]}(Ai(1, p; {tD>, 

whose solution using (5d) may be expressed as 

(All, p; {t}» = exp {~ qt q~1Ci(q)di(q')[Nig;(tq, tq') 

+ (N; + l)gt(tq, tq,)]} (12) 

in terms of an ordered function 

= 1, 
= e±taJ,(to'-to), 

If we arbitrarily assign, for example, 

q > q', 

q = q', 

q < q'. 

p. t I IOt(q) = ,,0 == A I (Ciai + Diai ), 
; q=1 i 

then employing (5a) and (12) we get 

(A(t, p; {O}» = F(A) = exp [lA2 t C;D; coth lflwi} 

in agreement with Terwiel. An alternate form for 
(Ai(l, p; {tn> may be obtained from (12) by defining 
a constant 

and a time-dependent function 

G/q, q'; tq - tq') 
= (e8/(Q,ta)e8M,tq')/Mi(q)M/q') 

= exp {ci(q)di(q')[NieiW/<to-to') + (Ni + l)e-iaJ,(to-tq )]). 

(13b) 

In terms of (13a) and (13b), expression (12) becomes 

(All, p; {tD> = ft [M;(q)"!!1Gi(q, x; tq - t",)} 
(14) 

If expressions for averages involving products of 
A, a, and at are desired (such as one encounters in 
electron-lattice theory upon introducing a canonical 
transformation to displace the phonon oscillators4), 

we can define 

such that, after differentiating with respect to Aq and, 
using (11), we can construct the relations 

O(a.· qAt )e6t (Q,to) 
" , q' q 

== _ 1:.[ 1 ~ __ 1_ ~ + d.(q)]e6t(q,t.) 
2 iwic;(q) dtq ctCq) dAq • 

= e6t (q,t o)a;(ta) , (16a) 

O(a!' qAt )e6t (q,to) 
" , q' q 

== 1:.[ 1 ~ + _1_~ + c;(q)]e6.(q,t) 
2 iwid;(q) dta d;(q) dAq 

= e8/(a,t o)al(tq) . (16b) 

For example, consider the average 

(e6j (1, tl) a;( t1)e
8j(2,fo) a7( t2». 

Applying (I6a) and (I6b), we conclude that 

(e6t(1,tl)a;(t1)e6,(2,ta) aJ (t2» 

= O(a;; I, .1.1, t1)O(a7; 2, .1.2, t2)(Ai(l, 2; {t m, 
and upon inserting (14) we obtain 

(e6j(1,tl)ait1)e6i(2,ta) aJ (t 2» 
= O(ai ; 1, .1.1, t1)O(ait ; 2, .1.2 , t2)M;(1)M;(2) 

X Gi(1, 2; t1 - t2), 

, E, O. Kane, Phys. Rev. 119,40 (1960). 
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which can be evaluated by using (13a) and (13b). A 
large variety of thermal averages can be evaluated in 
a similar fashion by using combinations of (16a), 
(16b), and (8a), (8b) in conjunction with (5a), (14), 
(13a), and (13b). 
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A unitary irreducible class of representations of the conformal group is constructed and reduced with 
respect to the Poincare group to see which unitary irreducible representations of the Poincare group it 
contains. In particular, it is shown that this class of representations of the conformal group does not con­
tain the continuous-spin representations of the Poincare group. It is concluded that the representations of 
the conformal group cannot be used to eliminate the continuous-spin representations. 

I. INTRODUCTION 

In the past several years there has been a renewed 
interest in the conformal group, not only because of 
its relationship to Maxwell's equations! and the 
corresponding quantum-mechanical mass-zero wave 
equations,2 but also because of its possible use with 
non-mass-zero particles.3 The fact that the Poincare 
group is a subgroup of the conformal group has 
raised the question of how representations of the 
Poincare group are contained in representations of the 
conformal group; in general, one has tried to answer 
this question by using Lie algebra techniques.4 In this 
work, purely group-theoretical techniques are used, 
relying heavily on Mackey's induced representation 
theory.6 It is well known that all of the unitary 
irreducible representations of the Poincare group can 
be written as induced representations6 ; it is not as 

1 T. Fulton, F. Rohrlich, and L. Witten, Rev. Mod. Phys. 34, 
442 (1962), and references cited therein. 

2 L. Gross, J. Math. Phys. 5, 687 (1964); J. Wess, Nuovo Cimento 
18, 1086 (1960). 

3 H. A. Kastrup, Phys. Rev. 150, 1183 (1966); references to 
Kastrup's earlier work on the conformal group are given in this 
reference. 

4 Y. Murai, Progr. Theoret. Phys. (Kyoto) 9, 147 (1953) and 11, 
441 (1954); A. Kihlberg, V. F. Muller, and F. Halbwachs, Commun. 
Math. Phys. 3, 194 (1966); M. L. Graev, Dokl. Akad. Nauk SSSR 
98,517 (1954); A. Esteve and P. G. Sona, Nuovo Cimento 32, 473 
(1964); L. H. Thomas, Ann. Math. 42, 113 (1941); J. Fischer and 
R. Raczka, Commun. Math. Phys. 3,233 (1966); 4, 8 (1967). 

5 G. W. Mackey, The Theory of Group Representations, 
(Department of Mathematics, The University of Chicago, Chicago, 
Ill., 1955); Am. J. Math. 73, 576 (1951). 

• E. P. Wigner, Ann. Math. 40, 149 (1939); P. Moussa and R. 
Stora, Lectures in Theoretical Physics (University of Colorado Press, 
Boulder, Colorado, 1964). Vol. VIla. 

well known that large classes of unitary irreducible 
representations of semisimple Lie groups (including, in 
particular, the conformal group) can also be written 
as induced representations. 

The relationship of representations of the Poincare 
group to those of the conformal group also leads to the 
following question: By an appropriate choice of repre­
sentations of the conformal group, is it possible to 
eliminate the continuous-spin mass-zero representa­
tions of the Poincare group? In his classic analysis of 
the Poincare group Wigner6 showed that for the 
mass-zero representations, two types of spin repre­
sentations arise: those corresponding to a discrete spin 
which are associated with such particles as the photon 
and neutrino, and those corresponding to a continuous 
spin which seem to have no counterpart in nature, 
because, perhaps, they would have peculiar physical 
properties.7 

Now, whenever a representation of a group is 
decomposed into the representations of a subgroup, 
not all of the representations of the subgroup appear. 
The question to be raised here is whether or not the 
continuous-spin representations are contained in 
representations of the conformal group, and it is, in 
fact, shown in Sec. IV that not only the continuous­
spin, but also the discrete-spin representations do not 
appear in a class of irreducible representations of the 
conformal group. 

In order to show this result it is first necessary, in 
7 E. P. Wigner, Theoretical Physics (IAEA, Vienna, 1963), p. 70. 
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Sec. II, to analyze the conformal group, while in 
Sec. III those elements of Mackey's theory which are 
needed are presented. Finally, in Sec. IV one class of 
unitary irreducible representations of the conformal 
group, the principal nondegenerate series, is analyzed. 

II. FINITE-DIMENSIONAL (NONUNITARY) 
REPRESENTATIONS OF THE CONFORMAL 

AND POINCARE GROUPS 

The conformal group SOC 4, 2) is usually defined8 

as the set of 6 x 6 matrices leaving invariant the 
form 

1 
1 

1 
1 

-1 
-1 

or, what is equivalent, 

-1 
1 

1 
-1 

(four plus ones, two minus ones). The conformal 
group is a 15-parameter semisimple Lie group which 
contains the 10-parameter Poincare group. 

where T means transpose and I j is the j-dimensional 
identity matrix. It is readily checked that Eq. (4) is a 
representation of the Poincare group and that, fur­
ther, it leaves invariant the form 

-1 

1 
1 

-1 

It is shown in Sec. III that it is necessary to know 
the Iwasawa decomposition9 for the conformal group 
in order to generate the requisite unitary irreducible 

8 Y. Murai, Progr. Theoret. Phys. (Kyoto) 11, 443 (1954). 
• R. Hermann, Lie Groups for Physicists (W. A. Benjamin, Inc., 

New York, 1966); A. Kihlberg, V. F. Muller, and F. Halbwachs, 
Commun. Math. Phys. 3,194 (1966). 

To show that the Poincare group, defined as 

X'I' = L~XV + T", fl, v = 0, 1, 2, 3, (1) 

where L~ is a Lorentz transformation and TI' a 
translation, is indeed a subgroup of the conformal 
group, Murai8 introduces a 6-dimensional vector 'YjA, 
A = 0, I, 2, 3, 5, 6, such that, under a linear trans­
formation of 'YjA, the form ('Yj1)2 + ('Yj2)2 + ('Yj3)2 -
('Yj0)2 + ('Yj5)2 _ ('Yj6)2 is left invariant. Murai sets 

(
'Yj6 + 'Yj5)-1 

Xl' = 'Yjl' .J2 ' 
where 

and shows that this leads to the following set of 
transformations [Eqs. (3) and (4) of Ref. 8]: 

'Yj'1' = L~?]v + 2-!TI'(?]5 + ?]6), 

r/5 =?]5 - 2-!L~TI''YjA. - tT"Ti?]5 + r/), (3) 

.?],6 =?]6 + 2-!L~TI''f}A. + ITI'Ti'f}5 + 'f}6). 

These transformations are all linear and can be 
replaced by a matrix. Thus, a 6-dimensional non­
unitary matrix representation of the Poincare group 
IS 

(4) 

representations. The Iwasawa decomposition is written 
as ANKm , where A is a noncompact Abelian sub­
group, N is a nilpotent subgroup, and Km is the 
maximal compact subgroup. A can be written aslO 

( cosh oc sinh oc) 
sinh oc cosh oc 

0 0 

0 12 
0 (5) 

0 0 (COSh P sinh p) 
sinh p cosh p 

where IX and p are real parameters. The maximal com­
pact subgroup of the conformal group is SO(4) @ 

SO(2) [where SO(n) is the orthogonal group in n 
dimensions with determinant one]; it is sufficient to 
know that four of the six parameters of N are the 

10 W. H. Klink, J. Math. Phys. 9, 1669 (1968). 
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(4) 

In Sec. IV it proves convenient to have another 
decomposition for the conformal group besides the 
Iwasawa decomposition. This decomposition corre­
sponds to the one usually given for the Lie algebra3 

of the conformal group, in which there are, besides 
the six-parameter Lorentz transformations and the 
four-parameter translations of Eq. (4), another four­
parameter translation called C and a scalar trans­
formation S. These transformations have the matrix 
representation 

(6) 

The decompositions of the conformal group given 

thus far have been matrix decompositions. One final 
way of writing the conformal group, which is essential 
in the following analysis, is as a transformation group, 
written symbolically as 

X'il = jIl(XV, g); (7) 

fll is a nonlinear function carrying the point XV into 
X'il under the action of a group element g. 

To get the form ofP, we invert Eq. (2) to find rt, 
'Y}0, 'Y}6 as a function of XIl, gllvXIlXV = X2. Thus, 

'Y}1l = (4j~2)[XIl'Y}6j(2 + X 2)], 

'Y}0 = [(2 - X2)j(2 + X2)]'Y}6. (8) 

Now, the elements of the conformal group given in 
Eqs. (4) and (6) carry the 6-dimensional vector 
'Y}A = ('Y}Il, 'Y}5, 'Y}6) linearly into the vector 'Y}' A = 
('Y}'Il, 'Y}'O, 'Y}'6). Denoting any of these elements by the 
matrix Ofj, we have 

'Y}'S = 0; 0; 0; 'Y}0. (9) 
(

'Y}IIl) (Oil Oil Oil) ('Y}Il) 

'Y}'6 O~ 0: 0: 'Y}6 

Replacing the 'Y} and 'Y}' variables by X and X' variables 
of Eq. (8) gives 

(10) 

Finally, after some tedious algebra, the transformation from Xil to X'il can be written as 

'll O~Xv + l(2)t( -0: + 0~)(tX2) + t(2)1(0: + 0:) 
X = 2-t( Oe + O~)Xv + t( - O~ - 0: + 0: + 0:)(!X2) + l( O~-+---"O"'-:-+-O-: -+-0-:) . 

(11) 

Letting Xx = (±og ± 0: + 0: + 0:) gives 

X'il _ 2K:;:10~XV + 21K:;:1( -0: + 0~)tX2 + 21K:;:1(0: + O~) 
- 2tK:;:1(Oe + O~)XV + K_K:;:ltX2 + 1 ' 

(12) 

and this is chosen as the canonical form of the transformationf ll• 

As a check on the form of fll, when Ofj is restricted to elements of the Poincare group, Eq. (12) must re­
duce to Eq. (1). To see that this indeed happens, set O~ = L~, 0: = O~ = 2-t p, -0: = O~ = 2-tTv • 

and K± = ±(l - !T2) ± !T2 - !T2 + !T2 so that K+ = 2, K_ = O. Then substituting into Eq. (12) gives 

X
'll 

_ 2(2)-lL~XV + t(2)t( _2-1TIl + 2-1TIl)(tX~ + t(2)1(2-t TIl + 2-1TIl) 

- l(2)1( -2-tT,. + 2-1Tv)XV + 1 

in agreement with Eq. (1). 
To get the form of fll corresponding to the scalar 

element in Eq. (6), set O~ = <5~, 0: = O~ = 0, 0: = 

(13) 

o~ = 0, Kr = 2(cosh p + sinh p) = 2eP, and IC = O. 
Then, 

(14) 
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which is the usual form of the dilation transformation 
as given, for example, in Murai.8 

Finally, there is the element C of Eq. (6); for this 
element Oil = (jll -Oil = Oil = 2-1CIl 0 5 = 06 = v v' 5 6 'v v 
2-1Cy , K+ = 2, and K_ = CIlCIl = C2, so that 

X'il = Xil + 1(2)1(2(2)-lCIl)(IX2) 

CyXy + IC2(IX2) + 1 

_ Xil + CIl(IX2) 

- CyXy + IC2(!X2) + 1 . 
(15) 

The set of transformations (15) are called special 

conformal transformations ,11 and it is not hard to 
check that combining the transformations (15) with 
those ofthe Lorentz transformations gives a nonlinear­
transformation group representation of the Poincare 
group, as is already easily ascertained by looking at 
the commutation relations of the Lie algebra corre­
sponding to the group elements C and L~.3 

To get all the elements in the canonical form (12), it 
is merely necessary to combine (13) and (14) to get 

X'il = e-PL~XY + Til, 

which, with (15), gives 

(16) 

X'il = (e-PL~ + TIlCy)r + (e-PL~C + lTIlC2)(IX2) + Til 

CyXy + IC2(!X~ + 1 
(17) 

as the form of the conformal group which will be used 
throughout this paper. 

Ill. THE DECOMPOSITION OF INDUCED 
REPRESENTATIONS 

The classes of unitary irreducible representations 
being considered in this paper are all induced repre­
sentations. It has been shown6 that all unitary irre­
ducible representations of the Poincare group can be 
written as induced representations, while large classes 
of unitary irreducible representations of the conformal 
group can be written as induced representations.I2 

Therefore, this section deals with the notion of 
induced representations and how it is possible to 
decompose a reducible induced representation into a 
direct integral of irreducible induced representations. 
All of the ideas sketched here can be found in Mackey's 
lecture notes. IS 

Let G be a given noncom pact group (in this paper, 
G is the conformal group) and HI a subgroup of G 
(HI is given in Sec. IV and varies with the classes 
of representations of G being considered.) Let Jel 

be an irreducible representation of HI acting on the 
vector space 'U'(JeI). Consider functions f which map 
elements g of G14 into 'U'(JeI ): 

g ~ 'U'(JeI), f(g) E 'U'(JeI), (18) 

such thatfsatisfies the conditionf(h~) = JeI(hJf(g). 

11 H. A. Kastrup, Phys. Rev. 150, 1183 (1966); J. Rosen, "On 
Conformal Groups and Transformations of Trajectories under the 
Space-time Conformal Group," Brown University preprint, 
NYO-2262TA-IS1, 1966. 

11 E. M. Stein, High Energy Physics and Elementary Particles 
(IAEA, Vienna, 1965); see also M. L. Graev, Ref. 4. 

18 G. W. Mackey, Ref. S, pp. 13Sff. 
16 Lower-case letters denote individual elements of a group while 

capital letters denote sets of elements. Script letters denote either 
representations of the groups or the spaces on which these repre­
sentations operate. 

This set offunctions forms a new vector space clJ(JeI ): 

'U'(JeI ) = {flf(g) E 'U'(JeI ), f(h~) = JeI(hJf(g) 

for all hI E HI, g E G}-. (19) 

The representation UJe1(g')f(g) = p(g', g)f(gg') on 
the vector space '1J(JeI ) is called the induced repre­
sentation of G. The function p(g', g) is chosen in such 
a way as to make UJel(g') a unitary representation. 
However, in order to make UJel(g') a unitary 

A 

representation on 'U'(JeI ), it is first necessary to make 

'1J(JeI ) into a Hilbert space. 

ci1(Je1) is readily made into a Hilbert space for the 
class of representations being considered in this paper, 
namely, the principal nondegenerate series of repre­
sentations. For this class of representations, an inner 
product is defined as 

(f(g),f'(g» = r f*(g)f'(g) dp., (20) 
JO!Hl 

where • means complex conjugation and dp. is the 
measure associated with G/HI , which is inherited 
fron,. the Haar measure of G.I5 

After HI has been chosen so as to induce a unitary 
irreducible representation UJel( G) of G, we are inter­
ested in seeing how UJel(G) decomposes into unitary 
irreducible representations of a subgroup H2 of G (in 
this paper H2 is the Poincare group). 

Mackey has shownis how to decompose UJel(HJ 
into direct integrals over double cosets 

G = U H~nH2' 
n 

where {gn} are elements of G not in HI or H2 so that 

UJe1(H2)""'" f dp.(gn)U'it»(H2); (21) 

16 See Ref. 13, p. 119, for the proper definition of the measure d/~ 
and the function p(g', g). 
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here d,,(gD) is the double coset measure, '" means 
"is equivalent to," and aD is the representation 
Je1(gDJDgI}) of the group JD = gj}H1gD n H2. In 
general, U'JD(H2) is not an irreducible representation of 
H 2 , so that it is necessary to further decompose 
U'JD(H2) into irreducible induced representations of 

H 2 • 

The calculation of J D is fairly difficult with the 
definition of JD given above. For that reason, we 
actually compute J D in the following way. Combine 
H1gD with J D so that 

H~nlD = H1gDgI/H1gD n H1gDH2, 

which gives H~nlD = H1gD n H1gDH2. Now, in 
general, H1gdz2' h2 E H2 sends gD into a new double 
coset H1gD,. If D' :;6 D, then H1gD n H1gD, is empty, 
so that it is necessary to find those h2 such that 
H1gdz2 = H1gD. The set of all h2 leaving the double 
coset gD invariant is precisely J D 16; that is, 

JD = {h21 h2 E H2, H1gDh2 = H1gD}. (22) 

It is sufficient to actually calculate gDh2 = h1gD. 
Thus, the procedure in Sec. IV is to find HI' decom­
pose G into right co sets ge with respect to HI' such 
that 

(23) 

and then compute geh2 = h1ge,. The double cosets are 
a subset of the right cosets and, further, those double 
co sets which are left invariant under the action of h2 
generate the subgroup J D • 

Finally, it is necessary to decompose U'JD(H2) of (21) 
into irreducible representations of H 2 : Since we are 
concerned with whether the continuous-spin repre­
sentations of the Poincare group are actually con­
tained in lj'JD(H2), it 's sufficient to use the Frobenius 
reciprocity theorem,17 which says that if aD is an 
irreducible representation of J D, then UM.,8(H2) is 
contained as many times in U'JD(H2) as UM.,8(JD) 
contains aD' Here M and s are the unitary irreducible 
representation labels of the Poincare group. 

IV. ANALYSIS OF THE PRINCIPAL NONDE­
GENERATE SERIES OF REPRESENTATIONS 

OF THE CONFORMAL GROUP 

For the principal nondegenerate series of repre­
sentations of the conformal group, HI = ANC(A),18 
where 

C(A) = {k IkE K m , ak = ka for all a E A}. (24) 

18 This result is carried out in the appendix using homogeneous 
spaces. See I, M. Gel'fand and M. A. Naimark, Unitiire Darstel­
lungen der Klassischen Gruppen (Akademie-Verlag, Berlin, 1957), 

17 See Ref. 13, p. 129. 
18 See Ref. 12 and references cited therein. 

The form of A is given in Eq. (5); in general, ex is not 
equal to p, so that those elements of Km which com­
mute with A can be written as 

(25) 

° :) ( cos (J sin (J ) 

- sin (J cos (J 

° 12 

Four of the six elements of N are the translations of 
the Poincare group, Eq. (4); the other two elements 
are the nilpotent elements of the Lorentz group. To 
write these elements explicitly, it is convenient to con­
sider the covering group SL(2, c) of the Lorentz 
group,19 Then the IX parameter in A [Eq. (5)] and the 
(J parameter of C(A) can be written together as 
(~1 all!.. 1) , 1X1 complex, with cosh ex = HIIX112 + lexll-2) 
and arg 1X1 = t(J. Further, the two remaining nilpotent 
elements of N can be written in SL(2, c) as (~ Pl{al ) , 

PI complex. Combining these four elements gives 

(26) 

Call Ll those Lorentz transformations corresponding 
to the elements II; also label all elements of HI with 
the subscript l. Then it is possible to write HI as a 
transformation group, so that 

H 1 :X'1' = e-P'LivX" + T'{. (27) 

HI is a 9-parameter group, corresponding to the four 
elements T,{, the four elements L1 as determined by 
II of Eq. (26), and the scalar r PI • 

Once HI is chosen, a convenient choice of right­
coset labels is 

{ }.X'I' _ L~vXv + CI'(tX2) (28) 
ge' - CvXv + tC2(tX2) + 1 ' 

where Le is the Lorentz transformation corresponding 
to the covering group element 

_ (1 0) 
Le = c 1 ' c complex. (29) 

The decomposition of SL(2, c) into II and Ie corre­
sponds to the decomposition given in Ref. 19 and is, 
in fact, used to induce a class of representations of the 
group SL(2, c). 

It can now be shown that in combining HI, Eq. 
(27), with {ge}, Eq. (28) uniquely covers every element 

. 19 M. A. Naimark, Linear Representations of the Lorentz Group 
(Pergamon Press, Inc., New York. 1964), p. 120. 
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of the conformal group, such that 

or 

g = hige :X"1l = fll(X"", g) = e-P1Lt,X" + T~, 
L' X a + C'(.l X2) X" _ ca 2 

- C{JX{J + !C2(!X2) + 1 ' 

X"1l = e-PILf,[L~aX" + C(!X2)] + T~ 
CaX" + !C\!X

2
) + 1 ' 

(30) 

(31) 

Comparing this with the canonical form of the con­
formal group (17), we see that 

Before calculating the double co sets gn, it is neces­
sary to know how h2 E H2 sends a right-coset element 
into another coset element; thus, we must calculate 
gch2 = hlgc' . But Eqs. (32) and (33) show how to take 
any element of the conformal group and see what 
right coset it is in. Thus, it is only necessary to calcu­
late gch2 = g. 

so that 

Tf = TIL, 

e-PILt,L~,. + T'{C,. = e-P L~ + PCa, (32) 

e-P L~ = e-PILf,L~,. + T'{Ca - TIlCa 

= e-PILf,L~a' 
PI = P, 

Lf,L;a = L~. 

(33) 

But this last expression corresponds precisely to the 
decomposition of SL(2, c) = LILe of Eqs. (26) and 
(29). Thus, Eqs. (32) and (33) uniquely specify any 
group element of the conformal group. 

Now, Eq. (1) is the transformation group for H 2 , 

the Poincare group. gc is given by Eq. (28), so that we 
have 

_ h 'X"" _ L~,XfV + CIl(!X'2) 
g - gc 2' - C,X" + !C2(!X'~ + 1 ' 

X" = L;axa + T;, (34) 

where the L;,., T2 are the 10 parameters of H2. Then, 

X"1l = L~,L~axa + L~,T; + !CIl(L~{JX{J + T~)2 
C,(L;axa + r) + !C2[t(L~{JX{J + T~)2] + 1 

(u b{J + C{JT. )L' X a + CIl(l.X2) + [LIl T' + CIl(l.T2)] = c{J, 2, 2a 2 c, 2 2 2 

[C, + (tC2)T2)L;aX" + tC2(tX2) + D(CIl, T~) 
(35) 

where D(CIl, T~) = CIlT~ + tC2(tTi) + 1. 
To get Eq. (35) in canonical form, it is necessary to divide the numerator and denominator by D(CIl, T;). 

Thus, 

leu b{J + c{JT. )L' xa + l CIl
X2 + l[u r + CIl Ti] 

X"1l = D c{J, 2, 2a D 2 D c, 2 2 
(36) 

l (C + C
2 

T. ) V X a + l C
2 

X2 + 1 
D ' 2 2, 2a D 2 2 

Comparing Eq. (36) with Eq. (17), we see that 

- C, + - T2 L~" 1 ( C
2

) 

D 2' 

corresponds to C,., 

l[u T' + CIl TiJ D e, 2 2 

corresponds to T", and rPL~ + T"C, corresponds to 

1. [L~{Jb~ + C{JT2 ]L~,. 
D " 

Therefore, using Eqs. (32) and (33), we get that the 
equation geh2 = hlge, can be written as 

C ....!::..- C' = 1 [c C
2 

T. JL' (37) 
a "D( CIl, T~) ,+ 2 2, 2" 

for the transformation of C" into C~. The trans­
formation of Lc into Le' under the action of H2 is also 
easily obtained, but is quite complicated and, further­
more, is not needed in the rest of the analysis. It is 
sufficient to note that, if T2v is zero, then 

(38) 



                                                                                                                                    

612 WILLIAM H. KLINK 

But Eq. (38) can be written in the covering group 
representation as 

La 
Le ~ Le,; LeL2 = LlLe, . (39) 

In matrix notation, this becomes 

( 1 0)(ot2 P2) = (ot
l ~1)(1, 0), (40) 

C 1 Y2 152 0 otl C 1 

so that 

Therefore, under the action of L 2 , Cot2 + Y2 = C' ot;:l, 
cP. + t5s = ot;:l so that 

La , Cots + Y2 
C ~ C = --''--'-~ 

CP2 + 152 

(42) 

Now, before choosing the double cosets, let us see 
if any of the right cosets are left invariant under the 
action of T~. With L~" = t5~, Eq. (37) shows that, in 
order for C" to equal C,,' it is necessary that 

I/[D(C", Tm = 1 and (tC2)T2, = O. 

But calculating C~C", = C'2 in Eq. (37) gives 

C,2 = C2/[D(C", T~)], (43) 

so that setting C2 equal to zero means C'2 also is zero. 
Thus, if CZ = 0, there is no transformation h2 which 
carries C,. to C',. such that C'" has a length different 
from zero. Therefore, the equation (tCZ)Tz. = 0 can 
be satisfied only if T 2, = 0, so that T 2, = 0 is the only 
translation vector which leaves C,. invariant and, thus, 
there are no elements of Tz, in the subgroupJD [Eq. 
(22)]. 

The same result does not hold for L 2 , however. If 
T2, is set equal to zero, D(C", T~) = 1 and Eq. (37) 
shows that C; = Cl'L;". If C" is chosen as 

Cl' = (1,0,0,0), (44) 

then the rotation subgroup SO(3) of L2 leaves C" 
invariant. 

The question, then, is whether the rotation sub­
group of L2 also leaves Lc invariant. Now, the covering 
group of SO(3) is SU(2),19 so that we must check 
whether SU(2) = c;:. ~:.), lot212 + IPzlz = 1 leaves 
C of Eq. (42) invariant: 

BU(Z) , Cotz - P: 
C~C = . (45) 

CP2 + ot: 

Clearly, . only the identity element ot2 = 1, P~ = 0 
leaves C invariant. However, if C = 0, Eq. (45) becomes 

O BU(2), p./ • 
C = ~ C = - 2 otz, (46) 

so that, if P2 = 0, C = 0 is left invariant. But P. = 0 
corresponds to the subgroup SO(2) of SO(3), so we 
have just found that the subgroup SO(2) of L2 leaves 
the cosets Cl' = (1, 0, 0, 0) and C = 0 invariant. 

We thus choose as our double coset gD precisely 
this element20 

gD:Lc = (~ ~), Cy = (1,0,0,0). (47) 

It only remains to be seen if g#2 carries gD into 
every right coset g c" Equation (42) shows that if 
C = .0, c' = yz/t5s , so that c' can take on any complex 
value, since Y2 is arbitrary. Further, the pure Lorentz 
transformations carry Cy = (1, 0, 0, 0) into an arbi­
trary C~ such that C'2 = 1. To get an arbitrary length 
for C~, note that Eq. (43) shows that, even if C2 = 1, 
C's = I/[D(C", T~)] and, since T~ is arbitrary, it is 
possible to make C'2 any length desired. 

Thus, it has been shown that, with gD given in Eq. 
(47), the subgroup JD is SO(2). We now use this 
fact to decompose UJel(Hz). In order to decompose 
UJe1(Hz) , it is necessary to give the representation 
Jel of HI = ANC(A). Since A and C(A) form an 
Abelian subgroup and N is nilpotent, Je1 is 

hI _ Je1 = lot1li "
l (,::)m Iplli"a, (48) 

where otl is defined in Eq. (26) and PI corresponds to 
the scalar element of Eq. (27). Thus, the principal 
nondegenerate series of representations of the con­
formal group require three labels: two continuous 
ones, 0'1 and 0'2; and one, m, an integer or half­
integer. From Eq. (48) and (21), it follows that 

(49) 

which is an irreducible representation of J D = SO(2). 
Thus, since there is only one double coset, the 

Mackey subgroup theorem, Eq. (21), says that 

UJe1(H2) == U"lmcr·(Hz) ~ U'6D(Hz) == Um(H2)' (50) 

We wish to see whether any of the mass-zero 
representations of the Poincare group occur in the 
reducible representation um(H2) , induced by the 
subgroup J D = SO(2). Now Rideau2l has carried out 
the decomposition of the regular representation of 
the Poincare group and finds that the mass-zero 
representations do not occur in this decomposition. 
But the regular representation can be written as 
an induced representati~n, induced by the identity 

10 There are other double cosets, but they are not relevant in our 
analysis. These double cosets have been tabulated by E. Thieleker 
(private communication). 

81 G. Rideau, Commun. Math. Phys. 3, 218 (1966). 
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subgroup of the Poincare group. Further, by using 
Mackey's notion of "inducing by stages," ss we can 
write the regular representation of the Poincare 
group equivalently as being induced by the regular 
representation of SO(2). Now by the Frobenius 
reciprocity theorem,17 each representation of SO(2), 
labeled by m = 0, ± 1, ±2,"', occurs once in 
the regular representation of SO(2). Therefore, since 
the mass-zero representations do not occur in the 
regular representation of the Poincare group, they 
do not occur in any of the representations Um(H2) 
induced by the subgroup SO(2). 

V. CONCLUSION 

At first sight, it seems rather puzzling that the 
conformal group, the group leaving the sourceless 
Maxwell equations invariant, should not single out 
the mass-zero representations of the Poincare group. 
Certainly in the case of the principal nondegenerate 
series the mass-zero representations do not even 
appear. 

What seems to be happening is that different classes 
of representations of the conformal group single out 
either mass-zero or non-mass-zero representations of 
the Poincare group. Thus, considering those five 
elements of the conformal group not appearing in the 
Poincare group, namely the dilations [Eq. (14)] and 
the four vector accelerations [Eq. (15)], it is clear that 
these five elements treat the mass-zero and non-mass­
zero representations very differently. Since mass-zero 
systems travel at the speed of light, the acceleration 
operators obviously transform them differently from 
non-mass-zero systems. Also, the dilation operator 
can change the mass scale for a non-mass-zero 
system, whereas it cannot for a mass-zero system. 

Further, it is to be noted that the inducing sub­
group of the mass-zero representation, consisting of 
the translations Til [Eq. (1)], SO(2) [Eq. (25)], and the 
nilpotent element PI of Eq. (26)-all are contained in 
Nand C(A) [see Eq. (27)]. This suggests that the 
representations of the subgroup inducing the mass­
zero representations of the Poincare group also 
generate a class of representations of the conformal 

II See Ref. 13, p. 121. 

group. This class of representations contains only 
mass-zero representations of the Poincare group and 
no non-mass-zero representations.s3 

The statements of the last two paragraphs have not 
been proven; nevertheless, it seems safe to conclude 
that it is impossible to split the continuous-spin 
representations offfrom the other "physical" Poincare 
group representations (including the finite-spin mass­
zero representations) by choosing appropriate repre­
sentations of the conformal group. 
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APPENDIX A 

The results of Eq. (22) can be shown most clearly 
by using the notion of homogeneous spaces.9 Con­
sider a group G, and a subgroup HI' and call .At, the 
homogeneous space G/HI • Then a point m can be 
identified with a right coset Hig. The stabilizer point 
mo of .At, corresponds to the identity coset HI' 

Now consider the action of elements g of G on 
points m of .At,:mg = m' E.At,. In particular, mOHI = 
mo. To show that J D consists of those elements of Hs 
which leave H1gD invariant, define mD = mogD; then, 

mDti/HlgD = moH1gD 
= mogD 

(51) 

so that gI/H~D leaves mD invariant. Therefore, the 
intersection of gi/H~D with Hs (which defines J D) 
acting on m D gives 

mD[g"i/HlgD (\ Hs] = mD (\ mDHs, (52) 

and in order for this not to be empty, mrJts must 
equal mD for some hs E H2 • The set of these hs E H" 
then gives J D' 

II Note Added in Proof: A class of representations of the conformal 
group containing only mass-zero representations of the Poincare 
group is given by G. Mack and I. Todorov, "Irreducibility of the 
Ladder Representations of U(2, 2) when restricted to its Poincare 
Subgroup" IAEA Preprint IC-68-86, Trieste, Italy, 1968. 
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Powers of the D Functions 
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W~ile ~owers of d!stributions .in gener~1 .do not.:xist,. [D+t and [D_ln are the exceptions among all D 
functIOns, th~y do e~lst and are given explicitly .. A modified power [Drln based on the representation of 
Dr ~s analytic functlOnals can be defined. It eXists for all homogeneous Dr, i.e., for D ± , D, and D1 • The 
re~~tlOn of [D±ln to [D±ln is given, an~ explicit expressions are found in x space and in p space. The 
Kallen-Lehmann-Umezawa-Kamefuchl representation of these distributions is derived. The extent to 
which these considerations are applicable to the ~r(x, m), m > 0, is discussed. 

1. INTRODUCTION 

It is well known that the ordinary product of two 
distributions at the same argument is, in general, 
not defined. The convolution product exists, but only 
under rather limiting conditions. The great physical 
importance of these distributions, usually called 
"Green's functions" in field theory, requires one to 
pay special attention to the few exceptional cases 
where the ordinary product involving these functions is 
defined. In particular, the distributions [~±]n(x, m) 
are known to existl for all positive integers n. In the 
present paper we consider, among other distributions, 
the m = 0 case of the above, i.e., [D±]n(x). 

However, the fact that these distributions can be 
expressed as limits of analytic functionals2 permits one 
to define the power of such a distribution as the limit 
of the power of that analytic functional. We then have 
to distinguish between the power so defined (modified 
power) and the usual definition of power (direct 
power); this is done in Sec. 2. The modified power 
exists for a larger class of distributions than the direct 
power. It is so defined that it is equal to the direct 
power in those cases where both exist. 

While we are directing our attention here to modi­
fied powers of the distributions Dr(x), i.e., to x space, 
it is important to recall that modified powers of 
distributions in p space have been defined earlier.2 
The similarity in form of the distributions Dr(x) and 
Dr(P), as is evident from the appendix of the work by 
Rohrlich and Strocchi,3 permits one to relate the two. 
Such relations exist both in x space and in p space 
(Sec. 3). Finally, the spectral representations of the 
various powers are given in Sec. 4. The last section 
generalizes these considerations to the ~r(x, m) with 
m>O. 

1 Walter E. Thirring, Principles of Quamum Electrodynamics 
(Academic Press Inc., New York, 1958), Appendix II. 

• V. George and F. Rohrlich, J. Math. Phys. 8, 1748 (1967). 
8 F. Rohrlich and F. Strocchi, Phys. Rev. 139, B476 (1965). 

2. DIRECT AND MODIFIED POWERS 

The usual definition of Dr(x) in terms of its Fourier­
integral representation is given in Ref. 4, whose 
notation we follow. An alternative but completely 
equivalent definition is given in Ref. 3, namely, 

fJrDr(x) = (47T2ix2)-Ilor" (2.1) 

Here Cr is a contour in the complex XO plane, given in 
Ref. 3, and fJr = 1 for Cr = C±, C, CA , CR , CIA' 
CIR ' fJp = 2, and fJI = i/2. Equation (2.1) expresses 
symbolically the fact that Dr(x) is obtained as the 
limit of an analytic functional as the complex contour 
Cr approaches the real axis. For details the reader is 
referred to Ref. 2. 

Concentrating first on D±(x) , we see that one can 
define a "modified power" of D±(x) by 

[D±]n(x) == [=r(47T2 ix2)-I]nl'fo±' (2.2) 

The choice of phase factor is a matter of convenience. 
This power is clearly to be distinguished from 

[D±r(x) == [=r(47T2 ix2)-II'fo:l:r, (2.3) 

which we call "direct power." There is, of course, no 
reason why (2.2) and (2.3), provided they exist, should 
be equal. 

Before discussing the existence of these expressions 
we recall that Dr, the p-space representation of the 
D functions, is given by4 

Dr(P) = (27T)-2p-2I lJr' (2.4) 

The modified power of Dr was studied in Ref. 2. 
More specifically, the distribution D¥(p) was defined 
there by 

D;(p) == (27T)-2(p-2t+l lcr' (2.5) 

and this is related to the modified power by 

[Dr]n(P) = [1/(47T2)n-IJj);-I(p). (2.6) 

4 J. M. Jauch and F. Rohrlich, Theory oj Photons and Electrons 
(Addison-Wesley Pub!. Co., Reading, Mass., 1959; second, corrected, 
printing), Appendix I. 

614 



                                                                                                                                    

POWERS OF THE D FUNCTIONS 615 

There is a one-to-one relation between the contours 
Cr and Cr (if both refer to the same complex plane): 

TC+ I_ = CAIR , C = C, TCAIR = C_ I+' 

-C1 = Cp , ±CU/1R = CIRIlA, Cl' = Cl' (2.7) 

Now the existence of (2.5) has been discussed2 and it 
was found that Dr exists only for those contours Cr 
which are not pinched in the limit in which the poles 
coalesce. This means that (2.5) does not exist for 

D~R' D~A' D~ , D'± , and n > o. 
This information also answers the questions con­

cerning the existence of the modified powers of Dr(x). 
Using (2.7), we see that the modified powers of all the 
homogeneous Dr(x) do exist and those for the 
inhomogeneous Dr(x) ([DlA]n, [DlR]n, [D P]n, [DA]n, 
[DR]n) do not exist. "Homogeneous" and "inhomo­
geneous" refer here to the differential equations which 
the Dr satisfy. 

The existing modified powers thus (for n ~ 1) are 

[D±]n(x) 

= (T 4~2J(27T)2DA/Mx) 

= (T _1 )n[R(l)n T i7T €(xO)t5(n-l)(x2)], 
47T2i x 2 (n - 1)! 

(2.8) 

[D]n(x) == (4~2i :2f 10 = (4~2J(27T)2Dn-\X) 
= (_I_)n 27Ti €(xO)t5(n-l)(x2), (2.9) 

47T2; (n - I)! 

( 
1 1 )n I ( 1 )n( )2 -n-l( ) 

[Ddn(x) == 27T2 X2 -0
1

= 27T2 27T Dp X 

= C~2fRc2r (2.10) 

The explicit expressions are taken from Ref. 2. One 
easily verifies the following interrelations between the 
modified powers for n ~ 1: 

[D+]2n + [D-]2n = 2(-!)n[Dl]2n' 

[D+]2n-l + [D-]2n-l = [D]2n-l, 

[D+]2n - [D-]2n = -[Dhn' 
[D+]2n-l - [D-]2n-l = i( -!)n-l[Dt12n_l' 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

We now turn to the question of existence of direct 
powers. The direct powers of D±(x) were considered 
by Klaiber.5 His result (in our notation) is 

( l)n 1 
[D±r(x) = T -2' lim 2 ° . 2 n' (2.15) 

47T I <->+0 [x - (x T IE) ] 

Comparison with (2.2) shows that the direct and 

5 B. Klaiber, Nuovo Cimento 36, 165 (1965). 

modified powers are equal: 

[D±]n(x) = [D±]n(x). (2.16) 

I t follows that the modified powers of D and Dl 
[Eqs. (2.9) and (2.10)] can be expressed in terms of the 
direct powers of D+ and D_ via (2.11) to (2.14). 

The direct powers of D and D 1 , however, do not 
exist. This follows from the fact that the cross terms 
[D+Y[D_]I, which occur in [D]n = [D+ + D_]n and 
[iDl]n = [D+ - D_]n, are undefined for all k, I ~ 1. 

It is obvious that the existence of the direct powers 
of D+ and D_ permits the existence of analytic 
functionals of D+ and D_. Furthermore, "modified 
analytic functionals" of all homogeneous D functions 
exist as series of modified powers. 

3. FOURIER TRANSFORM 

In (2.6) we had the modified power [Dr]n of Dr. 
This distribution must be carefully distinguished from 
the Fourier transform of the modified power of Dr, 
i.e., [Dr]~ . We have6 

[D±]; (p) = ~ Je-iP"'[D±]n(X) d4x 
(27T) 

= (T _1_)nJe-iP"'Dn-1(X) d4x 
417 2; AIR 

= (T 4~2J(27T)2 DA/M - p) 

( 
1 )n-l2 = T T -2' -:- O(±pO)D;-l(_p), 

47T I I 

n > 1. (3.1) 
From Ref. 2 we learn that 

O( _x2)(/x21/4)n-l 
Dn (x) - n > 1 (3 2) 

p - 167T(n -1)!n!' -' . 
Thus, 

D - _ ( _1_)n-l O(±pO)O( - p2)(lp21/4t-2 

[ ±]n(P) - T T 47T2; 87T;(n _ 2)! tn -1)! 

=TT-- , ( 
1 )n-lO(±l)O(_p2)lp2In-2 

167T2; 27T;(n - 2)! (n - 1)! 
n> 1. (3.3) 

The distributions [D+]: and [D_]: thus have no 
common support for any m, n ~ 1. Similarly, one 
finds 

[D]: (p) = (47T2i)-n(27T)2 Dn-\ - p) 

( 
1 )n-l €(p0)O( _ p2) Ip21n- 2 

- - -- n>l, 
- 167T2; 27Ti(n - 2)! (n - I)!' 

(3.4) 

= [D_]: (p) - (- )n[D+]: (p), n ~ 1, (3.5) 

6 The first of Eqs. (4.11), Ref. 2, is used here. A misprint distorted 
this equation which should read A~ •. ix) = ±O(±xO)A"(x) = 
20(±xO)Ap(x). 
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in agreement with (2.12) and (2.13). Finally, 

( 
1 )n-l 

[Dl ]: (p) = 21T2 2 Dj,-l( - p) 

( 
1 )n-l O( _ p2) Ip2

1n- 2 

= 81T2 21T(n - 2)! (n - 1)! 
(3.6) 

= !(2it([D_]: (p) + (_)n[D+]: (p», 

n ~ 1. (3.7) 

The direct powers of D± are related to the modified 
powers in p space the same way as in x space, (2.16): 

(3.8) 

While no other Dr functions have direct powers, as 
mentioned before, there are Dr functions which do. 
Writing (2.8) with argument p and setting n = 1, we 
obtain, by taking the direct power, 

[DA/pr(p) = (=Fi)n[D±r(p) 

= (=Fi)n(=F41T2i)-n(21T)2DA/}(P) 

= [DA/R]n(P). (3.9) 

In the last equality, we used (2.6). 

4. THE KLUK REPRESENTATION OF [Dr]n 

The result (3.3) leads to the Kiillen-Lehmann­
Umezawa-Kamefuchi (KLUK) representation of 
[D±]n(x). The Fourier transform of (3.3) gives 

[D±r(x) = ~ Jei1""[D±]1i(P) d4p 
(21T) 

( 
1 )n-l 1 ±i 

= =F 161T2i (n - 2)! (n - I)! (21T)3 

x J eiP"'O(±pO)b(l + K2)K2n- 4 d4p dK2 

( 
1 )n-l 1 

= =F 161T2j (n - 2)! (n - I)! 

[

00 
2 2n-4 2 X A±(x, K )K dK , 

.0 

(4.1) 

which agrees with Ref. 5. Similarly, 

(4.2) 

( 
1 )n-l 1 

[Dl]n(X) = 81T2 (n - 2)! (n - 1)! 

x looAl(X, K2)K2n- 4 dK2. (4.3) 

From (4.1) and (3.9) it follows that for the direct 
power of D AIR we get 

( 
1 )n-l 1 

[DA/Rr(p) = =Fi 161T2 (n _ 2)! (n - 1)! 

x 1 00 A±(p, K2)K2n-4 dK2. 

5. THE POWERS OF Llr(x, m) 

(4.4) 

Since the Ar(x, m), m > 0, cannot be written as 
analytic functionals similar to (2.1), modified powers 
cannot be defined in the same way. The direct powers 
of A±(x, m) are known to exist. Their KLUK repre­
sentation follows from Thirring's resultl : 

A±(x, a)A±(x, b) = ±il
oo

dp2(a, b, K2)A±(x, K), 

2 dK2 [(K2 - a2 - b2)2 - (2ab)2]! 
dp2(a, b, K ) = 161T2 1(2 

X 0[K2 - (a + b)2]. (5.1) 
One has 

[A±r(x, m) = (±i)n-lloodPn(m, K2)A±(x, K), (5.2) 

where dpn(m, K2) is determined by iteration from 
dp2(m, K2) = dp2(m, m, K2) and 

dPn(mK,2) = f dp2(m, K, K,2) dpn_l(m, K~. (5.3) 

No direct powers of other Ar(x, m) exist as in the 
m = 0 case. In p space, 

Lir(p, m) = (2~)2 p2 ~ m21~r' (5.3') 

so that modified powers can be defined. As in (2.6), 
we have 

_ (t 1 )nl 
[Ar]n(P, m) = (21T)2 p2 + m2 Or 

( 
1 )n-l = - Lir-l(p, m). 

41T2 

The latter are the distributions given in Ref. 2. 

(5.4) 
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Curvature Collineations: A Fundamental Symmetry Property of the 
Space-Times of General Relativity Defined by the Vanishing Lie 

Derivative of the Riemann Curvature Tensor 

GERAW H. KATZIN,· JACK LEVINE,· AND WILLIAM R. DAVIS 
Departments of Physics and Mathematics, North Carolina State University, Raleigh, North Carolina 

(Received 18 March 1968) 

A Riemannian space V" is said to admit a particular symmetry which we call a "curvature collinea­
tion" (CC) if there exists a vector ~i for which £~Rhm = 0, where Rlkm is the Riemann curvature tensor 
and £~ denotes the Lie derivative. The investigation of this symmetry property of space-time is strongly 
motivated by the all-important role of the Riemannian curvature tensor in the theory of general relativity. 
For space-times with zero Ricci tensor, it follows that the more familiar symmetries such as projective 
and conformal collineations (including affine collineations, motions, conformal and homothetic motions) 
are subcases ofCC. In a V, with vanishing scalar curvature R, a covariant conservation law generator 
is obtained as a consequence of the existence of a CC. This generator is shown to be directly related to a 
generator obtained by means of a direct construction by Sachs for null electromagnetic radiation fields. 
For pure null-gravitational space-times (implying vanishing Ricci tensor) which admit CC,a similar 
covariant conservation law generator is shown to exist. In addition it is found that such space-times admit 
the more general generator (recently mentioned by Komar for the case of Killing vectors) of the form 
tv -g T/ik'"~i~;~k);," = 0, involving the Bel-Robinson tensor Tiitm. Also it is found that the identity 
of Komar, [V _g(~';1 - ~';')];i;1 = 0, which serves as a covariant generator of field conservation laws 
in the theory of general relativity appears in a natural manner as an essentially trivial necessary condition 
for the existence of a CC in space-time. In addition it is shown that for a particular class of CC,£~K is 
proportional to K, where K is the Riemannian curvature defined at a point in terms of two vectors, one of 
which is the CC vector. It is also shown that a space-time which admits certain types of CC also admits 
cubic first integrals for mass particles with geodesic trajectories. Finally, a class of null electromagnetic 
space-times is analyzed in detail to obtain the explicit CC vectors which they admit. 

1. INTRODUCTION 

In accord with the early observations of Nother,l 
the existence of certain geometric symmetry properties 
described by continuous groups of motions or collinea­
tions lead to conservation laws in the form of first 
integrals (i.e., constants of the motion) of a dynamical 
system. Indeed, the fundamental importance of groups 
of motions (Killing vectors) in space-time and their 
relation to the conservation laws of energy, linear 
momentum, and angular momentum for particles 
and fields is well known.2 The relation between the 
existence of affine or projective collineations in the 
Riemannian space-times of general relativity and 
the existence of concomitant particle and field conserva­
tion laws was developed in several recent papers.3 

In this paper we are concerned with a symmetry 
property of space-time which we call a "curvature 
collineation" (cq. A Riemannian space-time Vn is 
said to admit a CC if there exists an infinitesimal 
transformation Xi = Xi + €~i(X) for which £R;km = 

• supported by National Science Foundation Grant No. GP 6876. 
1 E. Nother, Nachr. Akad. Wiss. Gottingen.1I Math. Physik lG., 

Vol. 235 (1918). 
• For a 'discussion of the relation between groups of motions 

admitted by space-time and conservation laws of particle mechanics 
see, for example, W. R. Davis and G. H. Katzin, Am. J. Phys. 30, 
750 (1962). 

a W. R. Davis and M. K. Moss, Nuovo Cimento 38, 1558 (1965); 
G. H. Katzin and J. Levine, J. Math. Phys. 9, 8 (1968). 

0, where € is a positive infinitesimal, £ denotes the Lie 
derivative with respect to the vector ~i, and R;km is the 
Riemannian curvature tensor. Clearly, the investiga­
tion of this symmetry property is strongly motivated 
by the all-important role of the Riemann curvature 
tensor in the general theory of relativity. 

Our preliminary investigations have led to several 
results of physical and geometrical interest. We have 
shown that the existence of a certain type of CC leads 
directly to the existence of a cubic first integral of a 
mass particle with geodesic trajectory. In addition 
we have found that if a V4 with nonvanishing Ricci 
tensor Ri ; and with vanishing scalar curvature R 
admits a CC then a field conservation law results. 
This conservation law is directly related to a conserva­
tion law obtained by Sachs' for null electromagnetic 
radiation fields. Also, it is shown that our result can 
be extended to pure null gravitation radiation fields 
which were also treated by Sachs. 

Furthermore, it turns out that the identity of 
Komar,5 which serves as a covariant generator of 
field conservation laws in the theory of general 
relativity, appears in a natural manner as an essen­
tially trivial necessary condition for the existence of a 
CC in a Vn . 

'R. K. Sachs, Z. Phys. 157,462 (1960). 
• A. Komar, Phys. Rev. 113, 934 (1959). 
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For those space-times with Rij = ° it is found that, 
when they are admitted, projective collineations 
(including affine collineations and motions as sub­
cases) and conformal collineations (including con­
formal and homothctic motions as subcases) are 
subcases of CC. Thus, it appears that the CC is the 
fundamental symmetry property of space-time to 
consider in the study of conservation laws pertaining 
to gravitational radiation. 

Indeed, quite aside from the question of new 
conservation laws, it follows that studies of CC could 
provide an important invariant classification of 
Riemannian space-times which would include and 
extend far beyond the familiar classification that has 
been given by Petrov6 on the basis of groups of 
motions. 

A general picturesque geometric interpretation of a 
CC is difficult to obtain. However it will be shown that 
the deformation of the Riemannian curvature K 
defined by £K takes a particularly simple form if the 
Lie derivative is formed with respect to a particular 
type of CC vector. In addition, we give a diagram 
(Fig. 1) which shows the relationship between CC 
and other more familiar symmetry properties of 
space-time. 

In this paper we give several theorems concerning 
CC in Einstein spaces. Finally, a particular class of 
null electromagnetic space-times is analyzed in 
detail to obtain the explicit CC vectors which they 
admit. In a subsequent paper, we shall treat CC in 
conformally flat spaces, including a treatment of the 
group structure of the CC. 

Throughout this paper we need to refer to the 
equations describing motions, affine collineations, 
projective collineations, homothetic motions, con­
formal motions, and conformal coIIineations. We, 
therefore, now give a summary of these well-known 
space-time symmetries. For most of these symmetries 
we find it convenient to express the necessary and 
sufficient conditions in several alternative forms. It is 
to be understood that the symbol £ denotes Lie 
differentiation with respect to a vector ~i (sometimes 
written £~ to stress the vector dependence). 

Motion7 (M): A V.,. is said to admit a M provided 
there exists a (Killing) vector ~i such thatS 

hi; == £gii = ~i;i + ~i;i = 0. (1.1) 

• See, for example, A. Z. Petrov, "Invariant Classification of 
Gravitational Fields," in Recent Developments in General Relativity 
(The Macmillan Co., New York, 1962), pp. 371-378. 

7 L. P. Eisenhart, Riemannian Geometry (Princeton University 
Press, Princeton, N.J., 1926). 

8 Indices take on values 1,2, ... ,n and the Einstein summation 
convention is used. Covariant differentiation is indicated by a 
semicolon (;) and partial differentiation by a comma (,). 

Affine Collineation9 (AC): A V .. is said to admit an 
AC provided there exists a vector ~i such that 

£{~} == ~~ii + ~mR~mi 

== tgk\h li ;; + hli;i - hi;;z) = 0, (1.2) 

where e'j} is the Christoffel symbol of the second kind 
and where the Riemannian curvature tensor10 

R:ik == LkL -L~t + {~}{~A - {~}{~k}' 
Alternatively, the necessary and sufficient condition 
(1.2) for an AC may be expressed in the form 

(1.3) 

Obviously every M is an AC. We use the terminology 
proper AC (Prop AC) to denote those AC which are 
not M. 

Projective Collineationsll (PC): A V .. is said to 
admit a PC provided there exists a vector ~i such that 

£n~k = 0, 

where the projective connection 

n~k == L~} - n ~ 1 (b;{h:} + b;{~}). 
Alternatively, we may express (1.4) in the form 

where 

cP;; = (n + 1)-1~~;. 
It follows from (1.5) that for a PC we have 

(1.4) 

(1.5) 

(1.6) 

hij;k = 2giAk + gikCP;i + gjkCP;i' (1.7) 

In addition we find that for every PC we have 

£W~kl = 0, (1.8) 

• K. Yano, The Theory of Lie Derivatives and its Applications 
(North-Holland Pub!. Co., Amsterdam, 1957). 

10 The definition of R}k' used in this paper is given by Eisenhart 
(see Ref. 7) and differs in sign from the definition used by Yano (see 
Ref. 9). Throughout this paper we have adjusted equations obtained 
from Ref. 9 to be consistent with Eisenhart's definition of the 
curvature tensor. 

11 See Ref. 9 and J. A.-Schouten [Ricci-Calculus (Springer-Yerlag, 
Berlin, 1954), 2nd ed.} for a thorough discussion of PC. Also, 
G. H. Katzin and Jack Levine [Tensor, New Series 19, 162 (1968)1 
give an alternative derivation of the necessary and sufficient condi­
tions for PC in terms of the Lie derivative of the parameter-independ­
ent form of the path equation. 



                                                                                                                                    

CURVATURE COLLINEATIONS 

/ . W PC -Wel.jl Projective Collineation -"'lVll",FO. 

2. PC - Projective Collineation -J{J,,}=8;¢i" + O~¢;}. 

3. S P C - Special Projective Collineation -£fl~}=O;¢i"+ b~¢ij , ¢;}" =0. 

4 . PC - Ricci Collineation -J Rij.= o. 
5. CC - Curvature Coli ineation -J pll"" =0. 

6. SCC - Special Curvature Collineation - (J'{f"Dill=O. 

7 . A C - Affine COllineation -£fj~}=o. 

8. HM - Homotfietic Motion-Jglj=26glj ,6=const. 

9. M - Motion -/9;j=0. 

/0. SConfC - Special Conformal Collineation-JL~}=&; 6i,,+ O~6jj-9i"g;~. ,6;}t=0. 

II . S Conf M - Special Conformal Motion - Iglj = 26g11 ,6;j1c =0. 

12. W Conf C - Wel.jl Conformal Col/meat/on -lC'}Itf,=o. 
/3. Conf C - Conformal CO{{ineation-Jf:J =8~ <1;.+ 8~ <1;1 _gJl,gi~lI. 

/4. Cont M - Conformal Motlon-J9ij =2691}. 

FIG. 1. Relation between space-time symmetries. 
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where the Weyl projective curvature tensor is given by 

W:ik = R:ik - (n - lr\dZRii - d~Rik)' (1.9) 

By inspection, every AC is a PC (i.e., a PC with CP;k = 
0). We use the terminology proper PC (Prop PC) to 
denote those PC which are not AC. 

Conformal Motion9 (ConfM): A Vn is said to admit 
a Conf M provided there exists a vector ~i such that 

(1.10) 

Equivalently we have 

hi; = 2ag;i' (1.11) 

where a is a scalar expressible in the form 

(1.12) 

It follows that every Conf M must satisfy 

It can also be shown that every Conf M satisfies 
£K;k = 0, where the conformal connection K;k is 
formed with the relative tensor (g-l/ngi;) in the same 
manner that the Christoffel symbol ek} is constructed 
with the metric tensor gi;' Alternatively, K;k may be 
expressed in the form 

; {i} l(~i{m} ~i{m} im{h}) Kik == jk - ~ Vi mk + vk mj - gikg hm . 

We use the notation Proper Conf M (Prop Conf M) 
for those Conf M with a ~ con st. 

Homothetic Motions9 (HM): A Vn is said to admit an 
HM if there exists a vector ~i such that (1.11) holds 
with a a nonzero constant. 

Conformal Collineations12 (Conf C): A Vn is said 
to admit a Conf C if there exists a vector ~i for which 
(1.13) holds. It follows that every Conf M is a Conf C, 
but not necessarily conversely. It can be shown that the 
necessary and sufficient condition (1.13) for a Conf C 
may be expressed in the equivalent form 

h, "k = 2a'kg .. , 
t.). '13 

(1.14) 

and that every Conf C (see Ref. 9, p. 160) must satisfy 

(1.15) 

where the conformal curvature tensor Chk is defined 
" 

12 Y. Tashiro, Math. J. Okayamo Univ. 10, 75 (1960). 

by7 

C:ik == R:ik + (n - 2)-1(d~Rik - dZR;i + g;kR~ - giJRZ) 

+ R[(n - t)(n - 2)r1(dZg;; - d~gik)' (1.16) 

[Consistent with the notation of Eisenhart (see Ref. 
10) we define the Ricci tensor by Ri; == R~;h' and the 
scalar curvature by R == R;.J 

As a means of succinctly summarizing the relations 
between the well-known symmetries discussed above, 
and several additional symmetries which are con­
sidered in this paper, we have constructed a block 
diagram (Fig. 1). The diagram should be read in the 
following sense: When it exists, (i.e., is admitted by 
the Vn) the symmetry described in any given block is 
automatically a sub case of the symmetries described 
in those adjacent blocks indicated by the arrows 
leading from the given block. Thus for example, if 
an HM is admitted by the Vn , then the transformation 
which defines the HM also satisfies the requirements 
for being a Conf M and AC and so on through the 
diagram. Note that the dashed arrows should only be 
considered when the Ricci tensor vanishes. The 
several blocks containing symmetries which were not 
discussed earlier will be ~xplained at appropriate 
places in the text. 

We remark in passing that there are several interest­
ing possibilities for expanding this diagram in the 
sense of defining additional new symmetries. Here, 
however, we have limited the diagram to include only 
those symmetries which we discuss because of their 
relation to CC. 

2. NECESSARY AND SUFFICIENT CONDITIONS 
FOR CURVATURE COLLINEATIONS 

The infinitesimal transformation 

(2.1) 

where dt is a positive infinitesimal, defines a curvature 
collineation (CC) provided the Riemannian space Vn 
(of general signature) admits a vector field ~i(X) such 
that 

£1iR~hi = O. (2.2) 

In general, the solution to (2.2) consists of a set of 
r vectors ~l~) IX = 1, ... , r which define an r-param­
eter invariance group.9 However, in this paper we 
shall not investigate the group properties of CC per se. 

Next we present several useful forms for the Lie 
derivative of the curvature tensor. Formally, we have 
(see Ref. 9): 

£R~"i == R~hi.m~m + R~hi~:': + R~mi~:;: 
+ R~hm~.7- R;~("m. (2.3) 
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By use of the definition of covariant differentiation, 
we obtain 

If we employ the Bianchi and Ricci identities (see 
Ref. 7) and use (1.2), we find (2.4) can be expressed 
in the forms 

(2.5) 

and 

- (hhm;; + hm;;h - h/li;m);i]' (2.6) 

By substitution of £R:hi as given by (2.6) into (2.2) 
we obtain (after multiplying by gk! to lower the 
index k): 

Theorem 2.1: A necessary and sufficient condition 
for a Riemannian space V., to admit a ee is that 
there exist a transformation of the form (2.1) such 
that the vector ~i satisfies 

(h im:j + hmi;i - hij;m);" 

- (hhm;; + hmj;h - hhj;m);i = 0, (2.7) 

where 

We may express (2.7) in an equivalent but simpler 
form by returning to (2.2) and substituting (2.5) into 
(2.2) and then using the first expression for £{j~} 

given by (1.2) along with the Ricci identity to obtain 

(~i;mj + ~ m;ji - ~i;jm);h 

- a,,;mi + ~m;;h - ~h;im);i = O. (2.8) 

Although (2.8) is a simpler equation than (2.7), we 
find (2.7) to be more useful for most of our considera­
tions. 

From (2.2) we observe by contracting on the indices 
k and i that every ee vector ~i satisfies 

(2.9) 

In general, if a Vn admits a vector ~i such that (2.9) 
holds we say that the Vn admits a "Ricci collineation" 
(RC). Thus, 

Theorem 2.2: In a Vn every ee is an Re. 

In (2.7) if we interchange the indices j and m and 
add the resulting equation to (2.7) we obtain 

Theorem 2.3: A necessary condition for a trans­
formation of the form (2.1) to define a ee is that 

(2.10) 

It is of interest to note that (2.10) could also be 
obtained by starting with 

(2.11) 

By taking the Lie derivative of (2.11) it follows that, 
if (2.2) holds, we obtain 

(2.12) 

which by means of the Ricci identity reduces to (2.10). 
The necessary condition (2.10) for a ee leads 

directly to an identity that has been of special interest 
in the formulation of the field conservation laws of 
general relativity. In particular, if the condition (2.10) 
is multiplied by g!gihgllli, where 9 == IDet gi;l , one 
obtains 

This is the covariant identity first discussed in the 
literature by Komar5 and given further interpretation 
by Komar13 and others14 in terms of its role as a 
conservation law generator when the space-time 
admits symmetry properties. Since this tensor expres­
sion is obviously a vanishing identiti5 for all ~i, it 
follows that this necessary condition for a ee places 
no restriction on ~i. Nonetheless, this result empha­
sizes, as expected, that ee are necessarily symmetry 
properties of space-time that are embraced by the 
group of general curvilinear coordinate transforma­
tions in space-time.16 In this paper, no attempt is 
made to explicitly formulate or interpret the field 
conservation laws that would follow from (2.13) for 

13 A. Komar, Phys. Rev. 127, 1411 (1962). 
14 w. R. Davis and M. K. Moss, Nuovo Cimento 27, 1492 (1963); 

38, 1531, 1558 (1965). 
15 For a derivation of this conservation law generator that is 

connect~d with the. t~ansformation properties of the Lagrangian 
underlymg .the variatIOnal formulatIOn of general relativity, see 
W. R. DavIs and M. K. Moss, J. Math. Phys. 7,975 (1966). Of 
cour~e, it. is to be recognized that this evident identity can be 
obtamed m a number of ways not obviously involving its direct 
construction with the help of the Ricci identities. 

16 In so far as M can be regarded as "rigid" displacements in 
space-time, it is clear that CC can be regarded as nonrigid deforma­
tions that leave the components of the Riemannian curvature tensor 
invariant in detailed functional form. 
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space-times that admit CC. However, it is of some 
interest to note that, for pure fields of gravitational 
radiation, (2.13) would not, in general, lead to 
trivial results for "proper" CC as do their counter­
parts corresponding to M (Killing vectors).17 We 
discuss CC in Vn with Rij = 0 in Sec. 4 and CC for 
null metrics in Sec. 7. 

3. RELATIONS BETWEEN CC AND OTHER 
SYMMETRIES 

From the definition (1.1) of a M in a Vn it is 
immediate that we may state 

Theorem 3.1: In a Vn every M is a CC. 

Similarly, from the definition (I.2) of an AC it 
follows that we may state 

Theorem 3.2: In a Vn every AC is a Cc. 

Also it follows immediately from the definition of 
HM that hii from (1.11) satisfies (1.3) and, hence, as a 
consequence of Theorem 3.2 we state 

Theorem 3.3: In a Vn every HM is a CC. 

From Yano (Ref. 9, p. 167) it is known that, if a 
transformation is both a Conf M and a PC, then it is an 
HM. Hence, we have the following as a consequence 
of Theorem 3.3. 

Theorem 3.4: In a Vn if a transformation is both a 
Conf M and a PC then it is a CC. 

Next, let us consider under what conditions a PC 
is a Cc. We therefore require that £{M be given by 
(1.5) and substitute for £{M in (2.5). If we then 
demand that £R~ilL = 0, we obtain 

(3.1) 

We set k = i and sum in (3.1) to obtain 4>;ilL = O. 
We call a projective colIineation with 4>;ilL = 0 a 
special projective collineation (SPC). It follows 
immediately by a covariant differentiation of (1.5) 
that an SPC satisfies 

(£{Mh = O. (3.2) 

17 Komar (Ref. 13) first pointed out that (~i;; - ~;;i);; vanishes 
for motion ~; if RiJ = 0 everywhere. 

In general, if a Vn admits a vector ;i such that (3.2) 
holds, we say that the Vn admits a special curvature 
collineation (SCC). Thus, every SPC is a SCC. We 
summarize the above by stating 

Theorem 3.5: The necessary and sufficient condition 
for a PC to be a CC is for 

(3.3) 

where 4>;ilL = (n + 1)-I;fii"; that is, the PC must be 
an SPC. 

Corollary 3.1: If a Vn admits a SPC then it admits a 
parallel field of vectors 4>i == (n + 1)-I;~ii' where ;i 
defines the SPC. 

We next turn our attention to the conditions for a 
Conf C to be a CC. We thus assume the Vn admits a 
Conf C, that is, (1.14) holds. We now use (1.13) to 
evaluate £{i~} in (2.5) and require that £R~ilL = O. We 
immediately obtain 

We set k = i and sum in (3.4) to obtain 

(n - 2)(1;i" + ghjgim(1;mi = O. 

In (3.5) we multiply by gi" and sum to obtain 

gjh(1;ih = O. 

(3.4) 

(3.5) 

(3.6) 

It follows from (3.5) and (3.6) that (1;ii = O. We call a 
conformal colIineation with (1;ii = 0 a special con­
formal collineation (S Conf C).IS It follows immedi­
ately by covariant differentiation of (1.13) that an 
S Conf C satisfies (3.2). Thus every S Conf C is a 
SCc. We now summarize the above by stating 

Theorem 3.6: The necessary and sufficient condition 
for a Conf C to be a CC is for 

(3.7) 

where (1;i" = n-I;~ii"; that is, the Conf C must be a 
S ConfC. 

Corollary 3.2: If a Vn admits a S Conf C, then it 
admits a parallel field of vectors (1j == n-I;~ij' where 
;i defines the S Conf C. 

We define special conformal motion (S Conf M) 
as a Conf M with (1;ii = O. Hence, we have 

18 It follows from (1.11) and (1.13) that a special conformal 
motion (S Conf M) i.e., a conformal motion with a;iJ = 0, is'an 
S Confe. 
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Theorem 3.7: Every S Conf M is a S Conf C. 

By consideration of the deformation £~K of the 
Riemannian curvature K under an S Conf M, we are 
able to gain a little more insight into this particular 
symmetry. We recall the Riemannian curvature 
associated with an elementary two-space is the invar­
iant19 

(3.8) 

where 'YJ' and pi are orthogonal unit vectors, and 
€('YJ) and €(p) their indicators. We thus assume the Vn 
admits an S Conf M with respect to the vector ~i and 
then define the unit vector 'YJi by 

(3.9) 

where # is a scalar. In addition, we take the unit 
vector l to be the tangent to a curve such that pi == 
dxijds, where ds is the differential path parameter. 

The deformation in K with respect to ~i takes the 
form 

£K = €('YJ)€(p)[(£Rfik)gampVl''YJ m 

+ Rfji£gam)pi'YJip"'YJm + 2Rfjkgam£(pi)'YJipk'YJm 

+ 2Rfikgampi£('YJi)p"'YJm]. (3.10) 

From Yano (Ref. 9, p. 89), we have 

£pi == £(dXi) = _pi (£ds) . 
ds ds 

(3.11) 

Next we formulate £'YJ i and find by use of (3.9) that 

(3.12) 

Our assumption that ~i defines an S conf M assures us 
that £~R~ik = 0 and £~gii = 2ugii · Hence, with this 
assumption and use of (3.11) and (3.12) we obtain 

£K = 2[a - (£ds)jds - #;I'YJ!]K. 

From the fundamental form of the Vn , 

ds2 = gii dXi dxi , 
we obtain 

2ds(£ds) = (£gij) dXi dx i , 

which, for a ConfM (see 1.11), reduces to 

2ds(£ds) = 2agii dXi dxi = 2ads2• 

Thus in (3.13) we use (£ds)jds = a to obtain 

£K = -2#;I'YJ!K = -2[(£#)j#]K. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

From the definition of #2 [See Eq. (3.9)], we have 

(3.18) 

19 J. L. Synge and A. Schild, Tensor Calculus (University of 
Toronto Press, Toronto, 1949), p. 95; also Ref. 7, p. 79. 

Therefore, from (3.18) we obtain (using the definition 
of 'YJi): 

2#;z'YJ 1 = 2~i;I'YJI'YJj = (~i;l + ~IJl)I'YJj 
= (£giZ)'YJ!'YJ i = 2a. (3.19) 

Thus (3.17) becomes 

£K = -2aK = _ £(ds
2
)K 

ds2 
(3.20) 

and we find that the deformation in Riemannian 
curvature takes a particularly simple form. 

Assuming K > 0 in (3.20) we find that, if distances 
are stretched by the deformation, then the Riemannian 
curvature decreases. 

4. CC IN SPECIAL RIEMANNIAN SPACES 

A. Vn with Vanishing Ricci Tensor 

Let us now consider those Vn for which 

Rii = O. (4.1) 

We denote such spaces by V~. From the definition of 
the Weyl projective curvature tensor Wi~k' [see Eq. 
(1.9)] we find, for a V~, that 

(4.2) 

As mentioned in Sec. 1, it can be shown (Ref. 9, 
p. 134) if a Vn admits a PC then the vector ~i defining 
the PC must satisfy £? Wtk = O. Hence, we may state 

Theorem 4.1: In a V~ (i.e., a Vn with Rii = 0) 
every PC is a Cc. 

It follows immediately from Theorem 4.1, Theorem 
3.5, and Corollary 3.1 that we may state 

Corollary 4.1: If a V~ admits a PC, then the PC 
must be an Spc. 

Corollary 4.2: If a V~ admits a PC, then it also 
admits a field of parallel vectors. 

Next we consider the conformal curvature tensor 
C~k [see Eq. (1.16)] and observe that in a V~: 

(4.3) 

As mentioned in Sec. 1, if a Vn admits a Conf C, 
then the vector ~i defining the Conf C must satisfy 
£?Cfik = O. Hence, we may state 

Theorem 4.2: In a V~ every Conf C is a CC. 

It follows immediately from Theorem 4.2, Theorem 
3.6, and Corollary 3.2 that we may state 
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Corollary 4.3: If a V~ admits a Conf C, then the 
Conf C must be a S Conf C. 

Corollary 4.4: If a V~ admits a Conf C, then it 
also admits a field of parallel vectors. 

B. Einstein Spaces 

Next consider a Vn which is an Einstein space. It 
then follows (assuming R ~ 0) that20 

Rij = (R/n)gij = (n - l)Kgij' (4.4) 

where K is the scalar curvature which is constant for 
n > 2. Let us consider first the case n > 2 and 
assume the space admits a Ricci colIineation (RC). 
It follows from (2.9) and (4.4) that £gij = 0. Hence 
we may state 

Theorem 4.3: Every RC in an Einstein space 
(R ~ 0, n > 2) is an M. 

Since every space of constant curvature is an Ein­
stein space we have from Theorem 4.3: 

Corollary 4.5: Every Re in a space of constant 
curvature (R :;I: 0, n > 2) is an M. 

Since every harmonic space is an Einstein space21 

we obtain from Theorem 4.3: 

Corollary 4.6: Every RC in a harmonic space 
(R :;I: 0, n > 2) is an M. 

From Theorem 2.2 we know that in a Vn every ce 
is a RC. Hence, we have 

Corollary 4.7: Every CC in an Einstein space 
(R ~ 0, n > 2) is an M. 

Corollary 4.8: Every ce in a space of constant 
curvature (R :;I: 0, n > 2) is an M. 

Therefore (still assuming R :;I: 0) we find 

£gi; = -(£R/R)gij' 

Hence we have 

(4.6) 

Theorem 4.4: Every RC in a V2 is a Conf M (or M 
as a subcase when £R = 0). 

It follows immediately by means of Theorem 2.2 
that we may state another result. 

Corollary 4.10: Every CC in a V2 is a Conf M (or M 
as subcase when £R = 0). 

5. SCC AND FIRST INTEGRALS OF THE 
GEODESIC EQUATIONS 

We now wish to examine more closely the class of 
ee which we have called sec. It will be recalled 
[see Eq. (3.2)] that these symmetries were character­
ized by the existence of a vector ~i for which 

(5.1) 

If the £{t} is expressed in terms of the hi; by use of 
(1.2), it then follows that (5.1) implies 

(him;; + hmj;i - hij;m);k = 0. (5.2) 

By interchanging the indices i and m in (5.2) and 
adding the resulting equation to (5.2), we obtain 

(5.3) 

It is easily seen that (5.3) also implies (5.1); hence, 
we may state 

Theorem 5.1: The necessary and sufficient condition 
for a Vn to admit an sec (i.e., a ee such that 
(£g{fk});l = 0) is that there exist a vector ~i for which 
hi;;kl = 0, where hij == ~i;; + ~;;i' 

If we multiply (5.3) by gim and sum, we obtain 

Corollary 4.9: Every ee in a harmonic space Aj;k == ~m;mjk = 0. (5.4) 

(R ~ 0, n > 2) is an M. Hence, we may state 

Next we consider the case n = 2. Since, for every 
V2 , Eq. (4.4) is applicable (i.e., every V2 is an Einstein 
space, and where R is a scalar) we have from (4.4) 
and (2.9), assuming the space admits an Re, 

(£R)gi; + R£gij = 0. (4.5) 

20 J. A. Schouten, Ricci-Calculus (Springer' Verlag, Berlin, 1954) 
2nd ed., p. 148. 

21 T. 1. Willmore, An Introduction to Differential Geometry 
(Clarendon Press, Oxford, 1959), p. 238. 

Corollary 5.1: If a Vn admits an sec then it admits 
a parallel field of vectors A.; == ~m;m;' where ~m is 
defined by (5.1). 

It is well known (see Ref. 7) that the necessary and 
sufficient condition for the geodesic equation 

_ + pipk = 0, pi == _ , dpi {i} dx
i 

ds jk ds 
(5.5) 
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to admit an mth order first integral of the form 

A. . .., . ni1pi l ••• pi", = const (5.6) 
'1'2 tm,r , 

where Ai ... i is assumed symmetric on all indices, is22 
1 m 

(5.7) 

Physically, such integrals are of interest in general 
relativity in that they are constants of the motion for 
a free mass particle. 

For the case m = 1 we find from (5.6) and (5.7) 
that the geodesics have linear first integrals 

(5.8) 

provided 
(5.9) 

We recognize (5.9) to be Killing's equations or the 
necessary and sufficient conditions for the Vn to admit 
a motion [See Eq. (1.1) and Ref. 2]. 

Similarly for the case m = 2 we find from (5.6) 
and (5.7) that the geodesics have quadratic constants 
of the motion of the form 

(5.10) 

provided 
(5.11) 

It was recently shown (Ref. 3) that PC and AC are 
basicly related to quadratic first integrals in much 
the same manner that M are related to linear first 
integrals.23 

Taking m = 3 in (5.6) and (5.7), we find the geo­
desics have cubic first integrals of the form 

(5.12) 

provided 

A. .. . + A. . . . + A· .. . + A. .. . = 0 (5 13) 
'1'2'3;" 1.4'1'2;'&3 '3'4'1;12 '2'3 t 4;t 1 • . 

We next define 

Aiik == hii;k + hki;i + h ik;; 

and, by means of (5.3), observe that 

Hence, we may state 

(5.14) 

(5.15) 

2. The symbol P{ } indicates the sum of the terms obtained by 
cyclic permutation of all free indices within the braces. 

,slt has been shown (R. Morgan, M.S. Thesis, North Carolina 
State University at Raleigh, 1967) that the maximum number of 
linearly independent quadratic first integrals admitted by a Minkow­
ski space-time may be directly related tp the existence of PC and AC 
by means of the "related integral theorem" [G. Katzin and J. Levine 
(Ref. 3»). Further discussion of first integrals in spaces of constant 
curvature may be found in papers by G. Katzin and J. Levine, 
Tensor, New Series, 16, 97 (1965); 18, 32 (1967); G. Katzin, J. 
Levine, and J. Halsey; 19,42 (1968). 

Theorem 5.2: If a Vn admits an SCC with respect 
to the vector ~i, then the geodesics in the Vn admit a 
cubic first integral of the form Aiikiipk = const, 
where Aiik is defined by (5.14) and satisfies (5.15). 

From Theorem 5.1 and Eqs. (5.4), (5.8), and (5.9), 
we may write 

Theorem 5.3: If a Vn admits an SCC with respect 
to the vector ~i, then the Vn also admits an M (Killing 
vector) with respect to the vector Ai, where Ai == ~;";mi 
and where Ai :k = O. In addition, the geodesics in the 
Vn admit a linear first integral Aipi = con st. 

In Sec. 3, we found that every SPC is an SCc. Thus, 
by means (1.7) and (5.14) (assuming c/>;ik = 0 as 
required for the PC to be an SPC),we construct the 
coefficient Aiik of the cubic first integral which must 
exist and find 

(5.16) 

We notice that (5.16) satisfies (5.15) and the resulting 
cubic first integral reduces to 

(5.17) 

By inspection of (5.17) it is observed that this integral 
may be considered as degenerate24 in that it is expres­
sible as the product of the fundamental quadratic 
first integral giipipi = 1 and the linear first integral 
c/>;kpk = const (which exists because c/>;ik = 0). 

Also in Sec. 3 we found that every S Conf C is an 
SCC. Thus, by using (1.14) and (5.14), we construct 
(using (];ik = 0 as required for an S Conf C) the 
coefficient Aiik of a cubic first integral and obtain 

(5.18) 

which we observe satisfies (5.15). Thus"the resulting 
cubic first integral reduces to 

(5.19) 

As with the cubic first integral resulting from the 
SPC, we also find the cubic first integral resulting 
from the Vn admitting an S Conf C is degenerate in 
that it too is a product of the fundamental quadratic 
first integral gikpjpk = 1 and the linear first integral 
(];ipi = const (which exists because (];ik = 0). 

Although we have found that SPC and S Conf C 
(which we recall are subcases of SCC) lead to degener­
ate cubic first integrals, we have no reason to suspect 
that, in general, all cubic first integrals concomitant 
with the existence of SCC in a Vn are degenerate. 

"' See W. R. Davis and M. K. Moss, Ref. 3. 



                                                                                                                                    

626 KATZIN, LEVINE, AND DAVIS 

6. A CONSERVATION LAW GENERATOR 
CONCOMITANT WITH THE EXISTENCE 
OF CC IN Vn WITH R = 0 AND Rii ~ 0 

We assume that a Vn with R = 0 and R;i ¢ 0 
admits a Ricci collineation (RC), i.e., we assume 
there exists a vector ~i which satisfies (2.9). It therefore 
follows that 

£R == £(gikRilr) = Rik£gik = O. (6.1) 

Since £gik == _gitgmk£glm' we can express (6.1) in 
the form 

(6.2) 

Now, using £glrn = ~!;m + ~m;l in (6.2), we obtain 

R:"~!;m = O. (6.3) 

From the twice-contracted Bianchi identity (see Ref. 
7, p. 82) we find (using R = 0): 

R7:". = O. (6.4) 

Combining (6.4) with (6.3) gives 

(R:,,~l);m = O. (6.5) 

In a space-time with R = 0, the Einstein field 
equations take the form 

(6.6) 

where K is a constant and T'(' is an energy-momentum 
tensor with trace T == T: = O. Substituting (6.6) 
in (6.5) gives 

Theorem 6.1: If a space-time V4 , with R = 0 and 
Rii ¢ 0, admits an RC, then there exists a covariant 
conservation law generator of the form 

(g!T:"~I);m == (g!Tl ~l)'m = 0, 9 == IDet giil, (6.7) 

where ~l is defined by £;Rii = O. 

Since we have already found (see Theorem 2.2) 
that every CC is also an RC it follows that we may 
state 

Corollary 6.1: If a space-time V4 with R = 0 and 
Rii ¢ 0 admits a CC, then there exists a covariant 
conservation law generator of the form (6.7) where 
~l is defined by £<R~kl = O. 

We wish to point out that covariant conservation 
law generators of the form of (6.7) were first discussed 
by Trautmann25 who showed they held for ~i 

25 A. Trautmann, "Conservation Laws of General Relativity" in 
Gravitation: An Introduction to Currel1f Research, L. Witten, Ed. 
(John Wiley & Sons, Inc., New York, 1962); also. see Bull. Acad. 
Polon. Sci. CI. III 4,675,679 (1965); S, 721 (1957). 

representing Conf M in space-times with R = 0 and 
for M in space-times with R ¢ O. 

7. CONSERVATION LAWS FOR NULL FIELDS 

In this section, we consider the special case of 
space-times constituting null-electromagnetic and 
pure null-gravitational fields that admit Cc. It will 
be shown that conservation laws of the type first 
directly constructed by Sachs4 for these null V4's 
actually follow from a symmetry argument when CC 
are admitted. 

First the null-electromagnetic case will be con­
sidered; the matter tensor is given by26 Tii = Rii = 
/1,kiki , where f1, is a scalar and gijkiki = O. It follows 
(see Ref. 4) that there is no loss of generality in 
taking k\iki = O. Assuming this type of space-time 
admits a CC and using Corollary 6.1 [cf. Eq. (6.3)] 
one can write 

Thus, for27 ki~i ¢ 0 one finds 

which gives the above mentioned conservation law in 
the form first found by Sachs. Here we have succeeded 
in relating this conservation law to a symmetry 
property that may be admitted by null metrics. 
Before discussing a nontrivial example of a null­
electromagnetic metric which admits CC, it will be 
shown that these considerations can be extended to 
the case of a pure null field of gravitational radiation. 

In accord with the close analogy that exists between 
null-electromagnetic and null-gravitational fields, it 
follows that this particular type of V~ is defined by the 
Bel-Robinson tensor taking the algebraic form28 

where 'V is a scalar and giikiki = O. For vacuum 
spaces V~ (Rii = 0) it can be shown that Riikm = 

R* * - (.1g!) (.1!) Rrsu~. d' add't' - iikm = - 2 Eiirs 2g Ekmuv ,an In 1 lon, 
when (7 3) holds we find R.. Rrs',m = 0 R .. * Rrskm = • , z,rs ' t,rs 
o which, along with the full Bianchi identities, imply 

(7.4) 

26 See, for example, J. Ehlers and R. Sachs, Z. Physik llS, 1094 
(1959); A. Peres, Phys. Rev. 118, 1105 (1960). 

27 Here we note that ki;; cannot, in general, vanish for all the 
independent curvature collineation vectors (corresponding to 
distinct sets of values of the independent parameters involved in the 
solutions ;i constituting the CC) which, of course, even include 
motions as special cases. This matter will be considered further on 
the basis of the specific example of the next section. 

28 See Ref. 4 and also I. Robinson, Report to the Royaumont 
Conference 1959 (unpublished). 
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With the help ofthese relations it will now be shown 
that 

(7.5) 

provided the given null metric admits ce with respect 
to the vector ~k. In addition, it will be shown that 
(7.5) is essentially related to a conservation law of the 
form (gtvki);i = (gtvki);i = 0 which holds for the 
case of a pure null-gravitational field. Writing out 
(7.5) gives 

(g!Tijkm~k);m = gtTijkm~k;m + (g!Tijkm);m~k' (7.6) 

Clearly, by use of (7.4), the last term in (7.6) vanishes. 
Thus (7.5) holds for CC provided it can be shown that 

Tijkm~k;m == 2RirisR (krm)'~k;m = O. (7.7) 

Returning to Sec. 2, it will be recalled that a 
necessary condition for a ce was given by [cf. Eq. 
(2.12)]: 

hkmRmris + hrmRmki8 = 0, 

where hkm == ~k;m + ~1n;k' If this equation is multi­
plied by gkj and summed on k and j one finds (using 
Rii = 0): 

I: R(mk) - 0 
~k;m i r - , (7.8) 

for all ~k constituting CC of the given space-time.29 

Thus (7.8) shows that (7.7) and thereby (7.5) hold 
when CC are admitted by pure null-gravitational 
metrics. Using (7.8) it immediately follows that one 
can also write 

(g!Tijklll~.~.~) = 0 
t :1 k ;m 

in addition to Eq. (7.5). Hence the following theorem 
can be stated: 

Theorem 7.1.' If a null V: [i.e., a V: with Tiikm = 
2RirisRkrm. = vkikikkkm, where kiki = 0 and v is a 
nonzero scalar] admits a ee, then the null V: admits 
a "conservation law" of the form 

(gtTiikm~k);m = 0, 

or a proper conservation law generator of the form 

(gtTijkm~Jlk),m = (g!Tijkm~Ji~k);m = O. 

When ce are admitted by a null V:, this theorem, 
in tum, implies Sach's conservation law 

(glvkm);m = (glvkm),m = 0, 

for30 ki~i ¢ 0 with ki;~i = O. This result immediately 
follows by expressing (7.5) in the form 

(glvkikjklkm~l);m = (glvkm);mkikjkl~l = O. 

It It is of interest to note that (7.8) is equivalent to the demand 
gii£Riri. = 0 for space-times in which (7.3) holds. 

30 In this connection see Ref. 27 and Ref. 4. 

Also, in this connection, it should be mentioned 
that Komar31 has recently pointed out that for a V:' 
pm == gtTijkm~i~i~k with pm,m = 0 gives a constant 
of the motion which generates a "proper canonical 
mapping" closely related to that of the linearized 
theory providing Killing vectors ~i are admitted. In 
terms of Theorem 7.1, it is now seen that this observa­
tion due to Komar can be extended to include the 
more general case32 of ce for null V~. 

8. EXAMPLE OF A V4 WHICH ADMITS A CC 

We now wish to demonstrate the existence of a type 
of space-time which admits a proper CC, that is, a 
CC which is not degenerate in the sense of being at the 
same time a lesser symmetry such as an M or PC, etc. 
The fundamental form of the space-time we wish to 
examine is 

ds2 = - (dXI )2 - (dX2)2 - C(u)(dX3)2 + (dx4)2, (8.1) 

where u == Xl - x4. Physically, (8.1) can be inter­
preted as the line element of a null-electromagnetic 
(plane-wave) radiation space-time of the type con­
sidered, for example, by Sach's (refer to the discussion 
of Sec. 733). The line element (8.1) is a special case ofa 
more general V4 which is known to admit a five­
parameter group of motions.34 

A brief outline of the procedure for finding the CC 
vector ~i admitted by (8.1) is next presented. Starting 
with (2.3), the equations to be solved for the ~i can be 
expressed in the form 

£R~kl = R~kl,m~m - R;;'l~i,m + R!..kl~m,i 
+ R:ml~m'k + R}km~m,l = O. (8.2) 

From the algebraic symmetries on the indices we 
find that, in a V4 , Eq. (8.2) formally represents 96 
equations. Evaluation of these equations by use of the 
metric tensor defined by (8.~) leads to the following 
set of equations (redundant and trivial equations have 

31 A. Komar, Phys. Rev. 164, 1595 (1967). 
3. Recall (Sec. 4) we found that in V~ (Rii = 0) that Conf C and 

PC are also CC. From Fig. I we see that this implies that in a null 
vf that the extension of Komar's result to include CC actually 
means that it now is applicable for all the symmetries in the diagram 
(excluding RC since Rij = 0) . 

• 3 The physical properties of this particular V. [Eq. (8.1») were 
investigated by G. C. Duncan, M.S. Thesis, North Carolina State 
University at Raleigh, North Carolina, 1966. 3. Petrov (Ref. 6) has shown that the V. with metric 

ds' = 2 dXl dX4 - a(X4)(dx2)2 - 2{j(X4) dX2 dX3 - y(X4)(dX')2 (a) 

admits a five-parameter group of motions. By making the coordinate 
transformation Xl = (ItVZ)(Xl + x4), X2 = x', X3 = x', X' = 
-(I/VZ)(xl - X4), we obtain (a) in the form 

ds2 = _(dXl )2 - ex(U)(dX2)2 - 2{J(u) dx' dx' - C(u)(dx3)' + (dX4)2. 

With ex = I and (J = 0, we find (b) reduces to (8.1). 
(b) 
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been omitted): 

£R~12 = ° => e,2 = 0, 

£R~13 = ° => ~2 ,3 = 0, 

£R~13 = ° => ~l,S + C~S,l = 0, 

£R:13 = ° => ~4,3 + Ce,l = 0, 

£R~14 = ° => ~3 ,I + e,4 = 0, 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

£R~23 = ° => e,2 - ~4 ,2 = 0, (8.8) 

£R;13 = ° => ~2 ,I + e ,f. = 0, (8.9) 

£R~lS = ° => ~l,3 - C~3 ,4 = 0, (8.10) 

£R!34 = ° => ~4 ,3 - Ce ,f. = 0, (8.11) 

£R:34 = ° => ~1,3 - ;',3 + C(e,1 + ~S,4) = 0, (8.12) 

£R~13 = ° => 2(e - ~4),l 
+ [In (C-1Rl3lS)],Je - e) = 0, (8.13) 

£R:34 = ° => -2W - t).4 
+ [In (-C-1Rl3lS)],,.(~1- t) = 0, (8.14) 

£R~34 = ° => (e - ~4),l - (~l - ~4),4 

+ [In (-C-1Rl3l3)J.u(~1 - ~4) = 0, (8.15) 

£R~13 = ° => ~1,4 + ~4,l - 2~3,3 
- [In R1313],u(~1 - ~4) = 0, (8.16) 

£R~13 = ° => ~\1 - U 4
,1 - ~4,4 + 2e. 3 

+ [In Rl3lsl u(e - ~4) = 0, (8.17) 

£R~S4 = ° => e,1 + 2~l,4 - ~4" - 2e,s 

- [In Rl3lSl,,( ~1 - ~') = 0, (8.18) 
and 

Rl3lS = -lCi ( C-iC,u),u . 

By inspection, we find the following relations 
exist between equations of the set (8.3)-(8.18): 

2[Eq. (8.15)] - Eq. (8.13) - Eq. (8.14) = 0, (8.19) 

Eq. (8.5) - Eq. (8.6) - Eq. (8.8) + Eq. (8.9) = 0, 

(8.20) 

Eq. (8.17) - Eq. (8.18) + 2[Eq. (8.16)] = 0. (8.21) 

Eq. (8.13) - Eq. (8.14) - 2[Eq. (8.16)] 

- 2[Eq. (8.17)] = 0, (8.22) 

Eq. (8.5) - Eq. (8.10) - C-l Eq. (8.9) = 0. (8.23) 

By means of (8.19)-(8.23) we may eliminate Eqs. 
(8.1), (8.11), (8.15), (8.17), and (8.18) from the set 
to be solved. 

From (8.3) and (8.7) we find ~s = ~S(u, XS). 
Equations (8.4) and (8.9) show that ~2 = ~2(U, x2). 

Next we define fJ. == ~l - ~'and by use of (8.8), (8.7), 
(8.12), (8.13), and (8.14) we obtain fJ. = fJ.(u). 

By assuming fJ. ¢ ° (i.e., A ¢ 0) we obtain from 
(8.13) that fJ. = AT-i where A is an arbitrary constant 
and T == C-1Rl3ls . Also from the form of fJ. we 
observe that (8.5) and (8.6) are equivalent. Using 
~4 = ~l - fJ. we express (8.16) in the form 

~1,4 + ~l,l - Us,s = M(u), (8.24) 

where M(u) = (In R1313),ufJ. + fJ.,u' Integrating (8.5) 
with respect to x 3 gives ~l = cf>(u, r) + 1J!(xl, X2, x4), 
where cf> and 1J! are arbitrary functions. With this 
expression for ~1 substituted into (8.24) we are able to 
integrate (8.24) and find ~3 = D(u)r + E(u), where 
D and E are arbitrary. Substitution of this value of 
~s back into (8.5) allows (8.5) to be integrated giving 
~l = -c(u)[lD,u(XS)2 + E,uxS] + F(x l , X2, x4), where 
F is arbitrary. Then substitution of ~l and ~s into 
(8.24) shows that F = i(x l + x4)[M(u) + 2D(u)] + 
P(u, X2), where P is arbitrary. We now summarize the 
components of the CC vector for the case fJ. ¢ 0: 

~l = - c(u)[tD (u),u(r)2 + E(u),ur ] 

+ i(x l + x4)[2D(u) + M(u)] + P(u, X2), (8.25a) 

~2 = ~2(U, X2), (8.25b) 

~3 = D(u)r + E(u), 

~4 = ~l - A [Rl3ls/C(u)]-!, 

(8.25c) 

(8.25d) 

where A is an arbitrary constant; D(u), E(u) , and 
P(u, x 2) are arbitrary functions; and 

M(u) == A{ (~(:)r\ln Rl3ls),u + [(~(:)riJ.J 
For the case in which fJ. = 0, i.e., A = 0, which 

implies ~l = ~4, we find the solution (8.25) is still 
valid.ss 

As a check on the solution we consider the necessary 
conditions (2.12) which for the metric (8.1) can be 
expressed as 

hSl = 0, 

hS2 = 0, 

hS4 = 0, 

hn - C-1hs3 + h41 = 0, 

h12 + h42 = 0, 

h" + C-1h33 + h41 = 0. 

(8.26) 

By use of (8.25) and the definition hi; = ~i;j + ~j;i' 
we verify that Eqs. (8.26) are satisfied. 

•• In accord with the comments of Sec. 7 (see Ref. 27), it is easily 
seen for the space-time (8.1) that k/;i = 0, where k. = (1,0,0, -I) 
only in the very special case where the parameter A = 0 in (8.25). 
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We established that the vector ~1 is, in general, not 
a motion vector or affine collineation vector by 
showing that, in general, hi; ¢ 0 and h;;:k ¢ O. 

A simple calculation shows that, in general, 
~i:iik ¢ o. Thus by Theorems 3.5 and 3.6 we conclude 
that in general ~i does not define a Conf M (including 
HM) or Pc. 

It follows that for special choices of the arbitrary 
functions that ~ can be forced to be a motion vector 
as expected (see Ref. 34). 

Note Added in Proo/" We have recently shown 
("Curvature Collineations in Conformally Flat Spaces. 
I," submitted to Tensor, New Series) that the Einstein 
static cosmological space-time admits both proper 

JOURNAL OF MATHEMATICAL PHYSICS 

CC and proper SCC. In addition, it was found that 
a class of field conservation laws could be constructed 
as a consequence of this space-time simultaneously, 
admitting both a proper SCC and a geodesic con­
gruence with vanishing expansion, rotation, and 
shear. This is in accord with the symmetry approach 
to the formulation of conservation laws where it can 
be shown that there are fundamental connections 
between field conservation laws associated with the 
kinematic properties of curve congruences and the 
symmetry properties admitted by the given space­
time, as already suggested by the results of Sec. 7. 
We plan to publish the results of further investiga­
tions in this area in the near future. 
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We investigate the eigenvalues of a finite matrix Hamiltonian H = Ho + go V, where Ho is diagonal 
with eigenvalues 1,2, ... ,N, and where all the elements of Vare equal to 1. We are interested in the case 
N -+ 00. The radius of convergence of the perturbation series is (In N)-', but nevertheless the exact 
eigenvalues of Htend to well-defined limits when N -+ 00. It is shown that if we defineg = (go' + In N)-' 
and if we letgo -.. 0 as N -.. 00 in such a way thatg is constant, then it is possible to obtain a perturbation 
series with the "renormalized" coupling constantg, provided that suitable counter terms are introduced. 
We also investigate a different model (where Vmn = mn) and show that no such renormalization is 
possible there. 

I. INTRODUCTION AND SUMMARY 

The purpose of this paper is not to produce another 
new theory, bu t only to clarify the concept of renormal­
ization by means of an elementary algebraic model. 

The model consists in finding the eigenvalues l of a 
sequence of finite matrices H which we write as 

H=Ho+goV. (1) 

Here, Ho represents a truncated harmonic oscillator2 

1 
2 

Ho= (2) 

N 
• Supported in part by NASA Grant No. NSG-436. 
t Permanent address: Department of Physics, Technion-Israel 

Institute of Technology, Haifa, Israel. 
'In a recent paper, C. M. Bender and T. T. Wu [phys. Rev. 

Letters 21, 406 (1968)] have also investigated the eigenvalues of a 
model Hamiltonian. 

S H. A. Buchdahl, Am. J. Phys. 35, 210 (1967). 

and V is also an N x N matrix which has the property 
that V2 diverges (i.e., is not defined) when N ~ 00. 

For instance, in Sec. II we take V mn = 1 (for all m 
and n) so that V2 = NVhas no limit for N ~ 00.3 

We first investigate the "energy levels" in perturba­
tion theory: in first order, they are all shifted by go, 
but the second-order shifts ~ehave as -g~ In N, i.e., 
diverge for N ~ 00. On the other hand, an exact 
treatment of the problem shows that all the energy 
levels, except possibly one, tend to the positive 
integers for N - 00, if go is kept fixed and finite. 

However, it is shown in Sec. III that if we let 
go ~ 0 in such a way that 

(3) 

remains constant, then all the energy levels (and 
corresponding eigenvectors) tend to fixed nontrivial 
values for N -+ 00. Moreover, for small g, these 

3 This property is reminiscent of the divergent behavior in quan­
tum field theory of Je(x)Je(y) when x -+ y. 
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values are the same as we would compute from first­
order perturbation theory with H = Ho + gV. We can 
therefore call g the "renormalized coupling constant." 
Higher orders can also be computed by introducing 
infinite counter-terms,just as in quantum field theory.4 

In Sec. IV we consider a different "interaction," 
namely V mn = mn. Again, the second-order perturba­
tion diverges for N ->- 00 and fixed go. But in this case 
there is no possibility of introducing a renormalized 
coupling constant such that H = Ho + g V would 
simulate, in first order, the results of the exact theory. 
This Hamiltonian is not renormalizable. 

II. THE MODEL 

Consider H = Ho + goV, where Ho is given by Eq. 
(2) and V is a N x N matrix, all the elements of which 
are equal to 1. We have V2 = NV, so that the eigen­
values of V are Nand O. The normalized eigenvectors 
of V are conveniently taken as 

(4) 
where 

a = e2Uik/N, k = 0, 1, ... , N - 1. (5) 

The eigenvalue N of V is obtained when we set k = O. 
All the other values of k yield the eigenvalue O. 

The scalar product of any eigenvector of Ho with 
any of the eigenvectors (4) is equal to N-k. When 
N ->- 00, these two complete sets of eigenvectors 
become, so to speak, orthogonal to each other. As 
we shall see in the sequel, this property is closely akin 
to the well-known Van Hove orthogonality in quantum 
field theory. 5 

We now consider go as a small parameter and 
expand the eigenvalues of H in a perturbation series. 
We obtain 

Ek = k + go - g~ 2' (n - k)-l + .... (6) 

Obviously, the second-order perturbation diverges 
logarithmically for N -+ 00. (The difference between 
energy levels remains finite in second order, but not in 
third order, as can be seen by a straightforward 
calculation.6) 

On the other hand, it is not difficult to obtain the 
exact solution of HlfI' = ElJ:". We set 

(7) 

where Houn = nUn and VU n = .2 um • We obtain, by 
virtue of the orthogonality of the Un' 

(8) 

• N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory 
of Quantized Fields (Interscience Publishers, Inc., New York, 1959), 
p.376. 

• L. Van Hove, Physica 18, 145 (1952). 
• See, e.g., L. D. Landau and E. M. Lifshitz, Quantum Mechanics 

(Pergamon Press, Ltd., London, 1965), p. 132. 

f(EI 

----'O+-~-.-=-21----='1--4+_--=5+_---E 

-In N 

FIG. 1. Qualitative shape of the function f(E) = ~(E - n)-l for 
large N. 

or 

(9) 

Summing over n, this gives the algebraic equation 

2 (E - nr1 = gol. (10) 

The qualitative shape of the function 

f(E) == .2 (E - n)-l (11) 

is given in Fig. 1 for large N. (The eigenvalues of Hare 
obtained by drawing a horizontal line at height l/go') 
Obviously, the graph has vertical asymptotes at 
E = 1,2, ... ,N. Moreover, for small lEI (i.e., 
lEI « N), the curve can deviate appreciably from these 
asymptotes only around fee) = -In N. This is easily 
seen from Eq. (11): if E is not too close to an integer, 
then feE) + In N must be finite. 

If E is close to some finite integer k, then (10) gives 

(E - krl = go! + In N + finite terms (12) 
or 

E = k + go/[1 + go(ln N + .. ')]. (13) 

This result can now be expanded in powers of go, 
whence it is readily seen that the radius of convergence 
of the perturbation series is (In N)-l and tends to zero 
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for N -+ 00. In other words, the eigenvalues of H 
become nonanalytic at go = 0 when N -+ 00. 

This is seen most strikingly if we consider the 
ground state of H, for fixed negative go and N -+ 00. 

[All the other states are simply shifted by (In N)-l, as 
seen from Eq. (13).7] Let us write (10) as 

_(gO)-l = (l - E)-l + (2 - E)-l 

+ ... + (N - E)-l (14) 

= (1 + IE/)-l + (2 + IEI)-l 

+ ... + (N + IEI)-l 

r-J -In lEI + In (N + lEI). 

(15) 

(16) 

It follows that 

E ~ _NI(e-l / ao - 1) r-J -Nel / YO (17) 

which is conspicuously nonanalytic at go .7.8 

A further insight into this situation is obtained by 
considering the eigenvectors of H. From (9), we have 

anlam = (E - m)/(E - n) (18) 

so that, whenever E is very close to some integer, the 
corresponding 'Y is very close to the unperturbed 'Y 
even though perturbation theory is not valid. 7 

However, for the ground state which we considered 
above, we have 

an = a1(IEI + 1)/(IEI + n), (19) 
whence 

I lan l2 = 1 = lal l2 (lEI + 1)2 I (lEI + n)-2. (20) 

A rough estimate of I (lEI + n)2 is 

1'''(IEI + n)-2 dn = (lEI + lr\ 
so that 

lal l2 ~ (lEI + 1)-1 ~ N-le-l /go • (21) 

We see that a l is very small and, from (19), the other 
an are even smaller: the ground state of the perturbed 
Hamiltonian is "almost orthogonal" to all the eigen­
states of the free Hamiltonian.5 

III. RENORMALIZATION 

We have seen that, when go is held fixed and N -+ 

00, all the finite eigenvalues of H tend to those of Ho. 
To obtain a nontrivial theory, we must, therefore, 

7 A closer look at Fig. I shows that the other states are actually 
shifted by -I + (In N)-1 if go < 0, and by (In N)-1 if go > O. 
This is also not analytic at go = O. 

8 This is a rather delicate point, because (17) was derived by 
taking N --->- OCJ for fixed negative go and holds only if -go» 
(In N)-1. The nonanalyticity of the perturbation series in quantum 
field theory was first suggested by F. J. Dyson, Phys. Rev. 85, 631 
(1952). For other nonanalytic models, see Ref. I, and A. Peres, 
J. Math. Phys. 4, 332 (1963). 

let go tend to zero as N -+ 00 in such a way that 

gill + In N == g-l 

remains finite. (This is easily seen from Fig. 1.) 

(22) 

First, we note from Eq. (13) that, if g is small, all 
the eigenvalues of H can be written as k + g, i.e., 
they are correctly given by first-order perturbation 
theory, as ifwe had H = Ho + gV. 

More precisely, consider 

H = Ho + g(1 - gin N)-lV (23) 

which is exactly equivalent to (1). Formally, we can 
write 

H = Ho + gV + g21n NV + g3(In N)2V + .... 
(24) 

To first order in g, we have E = k + g, which is 
correct as we have seen. In the next order, we have two 
contributions: g V contributes 

_g2 I' (n - k)-I, (25) 

as in Eq. (6), and g21n NV gives a shift 

+g2lnN (26) 

for all energy levels. The total shift is 

g2[ln N - I' (n - k)-l] , (27) 

which is finite. 
The important point is that the cancellation of the 

divergence in (25) is due to the next term of the 
divergent series (24).9 What we have actually done in 
(24) is to find, in a single stroke, all the counter terms4 

needed to cancel the ultraviolet divergences in all 
orders. Note that all these counter-terms are propor­
tional to V (no other matrix is needed): we only need a 
renormalization of the coupling constant.lO 

We can thus obtain the energy levels as a power 
series in g. When Igl becomes large, l/go tends to 
-In N and all the eigenvalues tend to well-defined 
limits. It would be interesting to see whether the 
power series in g has an infinite radius of convergence 
or is only asymptotic (a finite radius of convergence 
seems unlikely). These questions, however, are beyond 
the scope of this paper. 

Anyway, we have seen that for small enough g, 
the exact theory (with go) can be simulated by a few 

• On the other hand, the expansion of (23) into a convergent 
series (of negative powers of g In N) would be completely useless. 

10 As usual, the counter terms are not uniquely defined by the 
form of Eq. (I) and we can add to them arbitrary finite multiples of 
V. This, however, merely amounts to altering the value of g by a 
finite amount, i.e., to a redefinition of g. To obtain an unambiguous 
definition of g, we may set, for example, El = I + g exactly, and 
this fixes all the other E, (as seen in Fig. I). 
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perturbation terms of the "phenomenological" theory 
(with g). To complete the discussion, we must still 
show that this result holds not only for the eigen­
values of H, but also for the corresponding eigen­
vectors. 

From Eq. (9), we have 

1 = I lanl2 = Igo I aml2 I (E - n)-2. (28) 

But I (E - n)-2 converges and, if E is close to some 
integer k, is dominated by (E - k)-2. It follows that 
Igo I ami ~ IE - kl ~ Igl. Substitution in (9) then 
gives (with proper account of signs): 

an ~ g/(k - n), n ~ k, (29) 

in agreement with first-order perturbation theory. 
The extension of this result to higher orders is left as 

an exercise for the skeptical reader. 

IV. A NONRENORMALIZABLE MODEL 

We now consider a different "interaction," namely 
V mn = mn. This interaction is more singular than the 
previous one (the matrix elements grow faster) and 
more serious difficulties can be expected. 

Equation (18) now becomes 

nan + gon Imam = Ean (30) 
or 

nan = gon2(E - n )-1 I man. . (31) 

Summing over n, this gives 

gol = I n2/{E - n) (32) 

= E2f(E) - tN(N + 1) - NE, (33) 

wheref(E) is given by (11). We can also write (33) as 

fee) = [gol + tN{N + 1) + NE]/E2
, (34) 

so that the eigenvalues of H can easily be obtained as 
the points where the graph of Fig. 1 intersects the 
graph of [gOl + tN(N + 1) + NE]/E2. It is obvious 
that, if go is held fixed and N -- 00, all the eigenvalues 
of H simply coincide with the positive integers. 

If we are interested in the nontrivial case where at 
least one eigenvalue of H is not an integer, we must 
make go -- 0 in some definite way as in Sec. II. Let W 
be such an eigenvalue. The behavior of go for large N 
is given by 

gol = W~(W) - tN(N + 1) - NW (35) 

and (34) can be rewritten as 

f(E) = [(E - W)N + W2j(W»)/E2. (36) 

Let us now investigate the other eigenvalues of H. 
The function on the rhs of (36) has, at the point 
E = W, a slope 

NW-2 - 2f{ W) W-l (37) 

which tends to infinity for large N, because f{ W) c::: 
-In N if W differs appreciably from an integer. It 
then follows from Fig. 1 that all the other eigenvalues 
of H are infinitely close to the positive integers when 
N -- 00: if one energy level has a finite shift, all the 
energy levels below it are not shifted at all, and all the 
energy levels above it are shifted by -1. 

Obviously, if we attempt to construct a "phenomeno­
logical" Hamiltonian giving the above result in first­
order perturbation theory, it will bear no resemblance 
to the true Hamiltonian (for which perturbation 
theory gives energy shifts gok2 , in first order). The 
theory is not renormalizable.ll 

V.OUTLOOK 

In this paper, we have considered two models of 
finite matrix Hamiltonians in the limit when the order 
of the matrices tends to infinity. 

We have found that the eigenvalues of the Hamilton­
ian (23) tend to well-defined (and nontrivial) limits 
which can be computed by perturbation theory, even 
though the series (24) diverges. 

On the other hand, we have found no possibility of 
treating the model of Sec. IV by perturbation theory. 
(More precisely, we have shown that a phenomeno­
logical theory giving the same eigenvalues would bear 
no resemblance to the exact theory.) 

This paper sheds, therefore, no light on the mystery 
of higher-order terms in nonrenormalizable interac­
tions. 
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11 Formally, this is due to the difference between (35) and the 
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Starting from the covariant field equations for a vector meson, the energy-momentum tensor entering 
in Einstein's field equations is derived. It is shown that its most general algebraic form involves two 
vector fields and two scalars. Specifying the formalism to the special cases for which the fields are either 
parallel or perpendicular to each other, it is found that the vector field cannot be described in terms of a per­
fect fluid involving only density and pressure, but includes an additional term involving the stresses. 
The conservation laws are given, which, in addition to the ones of relativistic hydrodynamics, also in­
clude the ones describing the streaming of the vector field. 

1. INTRODUCTION 

The description of a vector-meson field within the 
framework of general relativity is of interest in astro­
physics whenever large gravitational fields and high 
densities are involved. 1 Some time ago, Zel'dovich2 

showed that a classical vector field interacting with 
stationary point charges can produce the most rigid 
equation of state possible, which is compatible with 
relativity, of the form 

pic! = p, (1.1) 

where P denotes the pressure and p the density. 
It would, therefore, also be of interest to study a 

vector-meson field of finite mass interacting with the 
gravitational field and see what conclusions can be 
drawn about the effective equation of state. The 
problem is similar to the geometrization of the Max­
well equations which impose certain restrictions on the 
gravitational field.3 In this case, too, the form of the 
energy-momentum tensor (2.10)-which contains a 
part identical in form to that of the Maxwell field­
results in certain limitations on the gravitational field 
and the equation of state. In particular, it is found 
(cf. Sec. 3) that a massive vector meson cannot be 
described by a perfect fluid in terms of a pressure and 
density only, but involves at least an additional term 
describing stresses [cf. Eq. (4.17)]. 

In this paper, we develop the general formalism 
for a vector field in the presence of a gravitational 
field. Starting with the field equations for the vector 
meson (Sec. 2), the energy-momentum tensor is 
derived as usual from an invariant Lagrangian. By 

1 cr. v. A. Ambartsurmayan and G. S. Saakyan, Astron. Zh. 
37,193 (1960) [SOy. Astron.-AJ 4, 187 (1960)]; A. G. W. Cameron, 
Astrophys. J. 130,884 (1959); E. E. Salpeter, Ann. Phys. (N.Y.) 11, 
393 (1960). 

a Ya. B. Zel'dovich, Zh. Eksp. Teor. Hz. 41, 1609 (1961) [SOy. 
Phys. JETP 14, 1143 (1962)]. 

a G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925). 

identifying this tensor with the one for a fluid and 
using the identities applying to the Maxwell tensor, 
we find (Sec. 3) the most general (algebraic) form 
involving two vector fields, the velocity field u/l and 
the vector field AI', as well as two scalars related to 
the density and the pressure. In Sec. 4, two particular 
cases are studied, one for which the two fields are 
parallel and one for which they are orthogonal. It is 
here shown that the description as a fluid involves an 
additional term. Finally, in Sec. 5, the conservation 
laws and field equations are given. It is found that, in 
addition to the ones of ordinary relativistic hydro­
dynamics, another set appears describing the stream­
ing of the vector field. 

2. FIELD EQUATIONS 

In ordinary field theory, the field equations for a 
vector meson of mass m are given by 

together with the subsidiary conditions 

OvAV = 0, 
where 

0. = a/ox', 0 = 0.0', 

and in our units c = Ii = 1. 

(2.1) 

(2.1') 

These two sets of equations can be combined into 
one, 

[(0 - m2)E/l' - 0/la.]A' = 0, (2.2) 

and it can be seen easily that the subsidiary conditions 
(2.1') follow from (2.2) by a further differentiation 
with respect to x/l. 

The situation in general relativity is slightly more 
complicated owing to the fact that the covariant 
derivatives do not commute. In fact, we have 

D/lD.A/l - D.D/lA/l = R • .,A.I., (2.3) 

633 
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where Rv;. is the Ricci tensor and D" denotes the 
covariant derivative. A simple calculation shows that 
(2.2) has to be replaced by4 

[(DaDa - m2)g/lV - DvD,,)AV = O. (2.4) 

The covariant subsidiary condition 

D/lA/l =0 (2.5) 

then follows by operating with D" on (2.4). Since the 
covariant derivatives of gllV are zero, we can write 

D" DaDagllvAv = g;.vgap DvDaDpA;.. 

Applying now the commutation relation (2.3) to the 
tensor DpA;., we obtain 

DvDiDpA;.) = DaDv(DpA;.) 

+ R~PvaD"A;. + R~;'vIlDpA" 
and, hence, 

D" DIlDIlA" = Dil D"DIlAP 

as the last two terms cancel on account of the anti­
symmetry of the Riemann-Christoffel tensor 

g;.VgIlPR" = -R";' g;.vgaPR" = R"P ,pva ' ·).vll • 

Thus, so long as m ¥: 0, the first and the third term in 
(2.4), after operating with D", cancel and (2.5) follows. 

Imposing now the subsidiary condition and making 
use of the commutation relations (2.3), the field 
equations (2.4) become 

(DIlDag"v - Rpv)AV = m2A" , (2.4') 

which differ from (2.1) (apart from the replacement 
of partial derivatives by covariant derivatives) in the 
explicit appearance of the Ricci tensor.5 Alternately, 
the field equations (2.4) can be put in a more concise 
form by introducing the antisymmetric tensor 

(2.6) 

Raising and lowering appropriate indices then yields 
the familiar form 

(2.7) 

These equations are seen to differ in form from the 
Maxwell equations (for empty space) only by the 
appearance of the vector potential AP on the right­
hand side, although, of course, the meaning of the 
various terms is now different. 

For a consistent description of the vector meson in 
a gravitational field we also have to consider Einstein's 

4 Note the order of the covariant derivatives. They can be put in 
the usual order by using the commutation relation (2.3). 

• Of course, if we assume that the gravitational field is known and 
Einstein's equtions RJlv = 0 for empty space hold, then there is no 
change. 

field equations 

G JlV = Rpv - igpvR = KT/lv, (2.8) 

where TJlv is the energy-momentum tensor of the 
meson field. The form of this tensor can be obtained 
by variation of the Lagrangian density L with respect 
of gilP. Since variation of L with respect to All must 
also give the field equations (2.7), it follows that 
(apart from a divergence) the Lagrangian density is 

L = .J - g[tFllpF"P + tm2A"A"). (2.9) 

Carrying out the variation with respect to g/lV then 
yields the required form of the energy-momentum 
tensor: 

Tpv = m[FpaFvpg"P - tgJlvF"pF"P) 

+ m2[AJlA v - tgJlvA"Aa) (2.10) 

(which, again, differs in form, from the Maxwell 
energy-momentum tensor in the appearance of terms 
containing A explicitly). Substituting (2.10) into the 
Einstein equations (2.8), together with the field equa­
tions (2.7), then gives a codetermined description of the 
vector meson in a gravitational field. 

3. THE ENERGY-MOMENTUM TENSOR 

For a perfect fluid, the energy-momentum tensor 
can be written in terms of two scalars, the pressure 
p and density p, and the velocity field uJ' = dxJl/ds as 

Tpv = (p + p)uJlUV - gJlVp. (3.1) 

The field equations of Einstein are not sufficient to 
determine these quantities uniquely and it is customary 
to impose a relation, an "equation of state," between 
the pressure p and the density p. In the presence of an 
external field, the particular form of the energy­
momentum tensor and the equations satisfied by that 
field provide the additional information needed to 
solve the field equations (at least, in principle). In our 
case, too, it would be interesting to know whether 
(2.10) can be cast into the form (3.1) and, in particular, 
what, if any, limitations are imposed on p and p. 

Instead of (3.1) we start with a more general form of 
the energy-momentum tensor allowing for possible 
viscous terms. Thus, we consider 

(3.2) 
with 

(3.2') 

[Clearly, (3.1) is a special case of (3.2) with (f = p, 

Spv = (uJlUV - gpv)p·) 
We have already remarked that part of the energy­

momentum tensor (2.10) is of the form found in 
electromagnetic theory, i.e., 

EJlv = F"aFvpgaf/ - tgJlvFaf/FIlf/, 
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and is known to satisfy the identity6 

E"EV _1 VE E·P Il • - 4gll.P . 

We substitute for E llv , where 

(3.3) 

(3.3') 

where Tllv is given by (3.2), and VI'V is the part of the 
energy-momentum tensor containing AI' explicitly 
and is defined by 

V 8 8 1 8 2 8 A 8 2 = 8,,81'. 
I'V = I' v - 2gllv' /' = m 1" ~ 

(3.3") 
We find that 

u uV«(i + aB2) + S"Sv + B2sv - 1aUUV - Xv Il Il " Il 2 Il I' 

= tg;[a2 + S2 + B2(a + S) - (laU2 + X»). (3.4) 

Here, XI' is the vector 

X il = S;Bv' XIlU Il = 0, 

while UIlV and XI'V are the tensors 

UIlV = ullBv + uvBIl' 

XI'V = BIlXv + BvXI' . (3.5) 

U, X, and S are the respective traces, and S2 = S.pS·p. 
These equations are clearly symmetric upon inter­

change of the indices, and the trace of each side being 
equal to each other. A further simplification can be 
achieved by multiplying and contracting in turn with 
ull and AI': 

(3.6a) 
and 

(3.6b) 

where, in addition to the quantities (3.5), we have 
defined also the vector 

YI' = S;Xv = S;S~B., Yl'ul' = 0 

and introduced the abbreviations 

b = !(a2 + aB2) - taU2 - !(B2S + S2) + iX, 

d = b - (a2 + aB2) - tx. (3.7) 

We can generate additional' relations between the 
various vector fields by operating on (3.6) with S~. 
For example, from (3.6a) and (3.6b) we obtain 

aXv + Yv = 0 
and 

dXv + Zv = 0, 

where we have used (3.2'), and defined 

Zil = S;Yv = S;S~X" = S;S~S!Bp, 
ZIlUIl = 0. 

(3.8a) 

(3.8b) 

6 See, e.g., C. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2,525 
(1957). 

Further multiplication of (3.8a) with S~ yields 

aY;.+Z;.=O. (3.8c) 

(Tn principle, we could continue thus to generate new 
equations, but, as we shall see later, the system is 
closed and no new information can be derived from 
further operation.) It follows from the above results 
that both vector fields YI' and Zit can be expressed in 
terms of XI" 

(3.9) 

and that the system of equations is consistent, pro­
vided that 

a2 + d = 0. (3.10) 

Contraction of (3.6a) with ul' and All, respectively, 
provides two additional limitations, i.e., 

(3.10') 
and 

(3.10") 

provided that U ~ 0. 7 

It can readily be seen that these are the only inde­
pendent relations between the various quantities and 
that further contraction gives nothing new. 

Making use of these results and (3.7), it follows that 
the Eqs. (3.6) reduce to one, 

taUull - aBIl - Xil = 0, (3.11) 

which expresses Xil (and therefore also Yll and ZIl) in 
terms of the two vector fields ul' and Bil . Furthermore, 
from (3.7) and (3.10) we find 

S2 = S.pS"p = 2a2 + (a + B)2 - aU2, (3.12a) 

while the trace S is given by 

S = -(a + B2), (3.12b) 

which follows from (3.2) and the fact that E; is a 
traceless tensor. 

We still have to satisfy (3.4) and the question 
arises, whether there exists an algebraic form of S 
which satisfied that condition. Since we have two 
vector fields ul' and Bil in addition to the fundamental 
tensor gllv, it is suggestive to assume for S; the form 

S; = rJ.g; + {3U; + yBI'BV + <5u/luv, (3.13) 

where the functions rJ., (3, y, and <5 are yet to be 
determined. From the properties of S; it follows that 
we must impose the following conditions: 

(i) That derived from Eq. (3.2'): 

S;U v = 0; 

(ii) That derived from Eqs. (3.5) and (3.1l): 

S;Bv = X il + a(tUul' - BI'); 

, The case U = 0 is an important subcase which will be considered 
later (Section 4). 
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(iii) Eq. (3.12b): 

S = -(a + B2). 

These result in the following system of equations: 

ex + !fiU + b = 0, 

{J + !yU = 0, 

fiB2 + !~U = taU, (3.14) 

ex + !{JU + yB2 = -a, 

40c + {J U + Y B2 + b = - a - B2. 

Although these are five equations for four functions, 
they are found to be consistent and have as their 
solution 

with 

ex = -!B2, 

(J = -!yU = -!dU(a + ex), 

y = d(a + ex), 

() = d(!aU2 + cxB2), 

d-l = HU2 - 4B2), 

(3.14') 

where the three functions B2, U, and a are still arbi­
trary. It can be shown by a straightforward, although 
tedious, calculation that there are no further condi­
tions imposed on S; by its properties. For example, 
the conditions 

S;S~UIl = 0, 

S;S~BIZ = -a2(!uI<U - BI<) 

are identically satisfied by (3.13) and (3.14). 
Finally, inserting (3.13) into (3.14) gives one addi­

tional relation between the three functions 

(3.15) 

from which one can be eliminated. If we eliminate U 
and use ex instead of B2, it can be shown that (3.13) 
now takes the form 

S; = (a + ex)-l[ex(a + ex)g; + a(a - 3ex)ul<uV 

+ 2aBI<Bv - (2a)!(a - ex)U;] (3.16) 

involving two vector fields ul< and BI< as well as two 
scalars a and ex. This is the most general algebraic 
form of S; and we now consider two special cases. 

4. PARALLEL AND ORTHOGONAL FIELDS 

If the two vectors ul< and BI< are not independent, 
they may be either parallel or perpendicular to each 
other. [n the first case we can set 

BI< = tUul<, B2 = !U2 (4.1) 

and, consequently, 

XI< = S;Av = 0, 
(4.2) 

With this assumption, (3.4) becomes 

ul<uV(a2 - !aU
2
) + S:S: + !U2S; 

= h;[(a2 + S2) + !U2(S - a)]. (4.3) 

Contracting this equation with ul< (or BI<) results in 

3(a2 - !aU2) = S2 + !SU2. (4.4) 

Since we now only have one arbitrary vector field ul<, 
Eq. (4.13) takes the simple form 

(4.5) 

where the two functions ii and /5 are to be determined 
from the conditions 

(4.6a) 
and 

(4.6b) 

This, together with (4.4), enables us to express all 
functions in terms of a: 

ii = -/5 = -a, 

U2 = 8a. (4.7) 

A simple calculation then shows that (4.3) is identi­
cally satisfied and no further conditions are imposed 
on S;. Therefore, the energy-momentum tensor T"V 
(3.2) is now given by 

TI<V - aul<uv + SI<V = 2aul<uv - ag"V (4.8) 

which corresponds to a perfect fluid (3.1) with 

p = p = a. (4.8') 

However, if we introduce (4.1) also into (3.3"), we find 

V"v = !U2U"uv - kg"v U2 = 2au"uv - ag"v, (4.9) 

which is exactly equal to (4.8). Thus, we conclude that 
the tensor E"v [Eq. (3.3')] vanishes. This implies that 
either m = ° or 

and, hence, AI< is the gradient of a scalar 

oc/> 
A =-. 
" ax" 

From this it appears that a massive vector meson 
cannot be described by a perfect fluid in terms of a 
pressure and density only. 

Now let us turn to the second possibility, viz., that 
the two vector fields u" and B" are orthogonal to each 
other, i.e., 

(4.10) 
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In this case, (3.4) reduces to 

u U,(0'2 + O'B2) + SitS' + B2S' - X' I' I' It I' I' 
= h;[0'2 + S2 - B2(0' + S) - Xl. (4.11) 

Contracting this equation in turn with ul' and B" leads 
to [cf. Eq. (3.6)]: 

u b = 0 or b = 0 I' ' 
Y" + dBI' = 0, 

(4.12a) 

(4.12b) 

where band d differ from their unbarred counterparts 
(3.7) by the fact that now U = O. As before, it is 
again possible to generate additional equations by 
operation with S. For example, from (4.12b) we 
obtain 

ZI' + aXI' = O. (4. 12c) 

Since YI' is determined by BI' and Z" by XI" it appears 
that we have again three arbitrary vector fields 
determining the structure of S;. Nevertheless, we see 
that these are not independent. If we again assume for 
S; the form (3.13), 

S; = &g; + PU; + y{3"B' + Jul'u', 

it follows from 

that 

Also, 

S;u, = (& + J)ul' + PAl' = 0 

oc + 8 = 0, 

P= o. 

XI' = S;B, = (& + yB2)B" = ).BI" 

indicating that XI' and BI' are parallel. 
Furthermore, from 

Y" = S;X, = ).2AI' 

and (4.12b), we have the relation 

).2 + d = o. 

(4.13) 

(4.14) 

(4.15) 

Additional conditions on the different functions are 
imposed by evaluating S: 

S = 4& + yB2 + J = -(0' + B2) (4.15') 
and 

S2 = (0' + B2)2 + 2).2 = 2&2 + ).2. (4.15") 

It can be shown that there are no further independent 
conditions and that S; [Eq. (4.13)] is completely 
determined by the two vectors ul' and BI' and two 
functions 0' and B2: 

oc = -(0' + B2) = -P, 

P=O, 
y = 2P/B2, 

8 = -oc = P, 

(4.16) 

which gives, for the energy-momentum tensor (3.2), 

TI" = O'ul'u' + SI'V 

= (0' + P)ul'uY - pgl" + (2P/B2)BI'BY (4.17) 
with 

(4.17') 

This expression differs from that for a perfect fluid 
(3.1) in two important aspects. In the first place, in 
addition to the usual terms a third term appears which 
may be taken to describe the stresses, since even for a 
comoving "fluid" it does not vanish. Secondly, the 
vect-or potential BI' (or AI') contributes to the effective 
pressure through B2, although, of course, P [Eq. 
(4.17')] is not the actual pressure of the fluid. 

5. CONSERVATION LAWS AND FIELD 
EQUATIONS 

The vector A" is not arbitrary, but must be a solu­
tion of the field equations (2.7), while the energy­
momentum tensor (4.17) has to satisfy the conserva­
tion laws8 

DI'TI" = O. (5.1) 

(Of course, these are a consequence of Bianchi's 
identities and are identically satisfied once Einstein's 
equations are solved. Nevertheless, they are of 
considerable interest and determine the behavior of the 
velocity field ul'.) 

We find it convenient to introduce the unit vector 

al' = AI'/A = BI'/B, (5.2) 
so that 

and the scalar 
C = InB. 

(5.2') 

(5.3) 

In terms of this vector, (4.17) can now be written as 

pv = uI'UV(O' + P) _ pgl" + 2Pal'av. (5.4) 

From the conservation laws (5.1) we find 

u"u~,(O' + P) + u,,;vuY(O' + P) + uI'UV(O' + P),v 

= P,,, - 2P"ava" - 2P(a,,;vaV + al'a;Vv)' 

Contracting this equation with u" and a", respectively, 
on account of the orthogonality of these vectors we 
obtain 

u~.(O' + P) + uVO',v = -2Pij) 
and 

2Pa7v + aVp.v = -(0' + P)'Y, 

where we have introduced the two quantities 

ij) = al':'aVul' = -ul';vaVal', 

'Y = u,,;,u'al' = -a,,;yul'u'. 

(5.5a) 

(5.5b) 

(5.5c) 

8 We limit our discussion to the energy-momentum tensor given 
by (4.17), although it is not difficult to treat the general case also. 
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Furthermore, from the subsidiary condition (2.5) we 
also find 

(5.6) 

so that (5.5b) can be written as 

2PC,Ilail - P,llall = (0' + P)ull;vuvall. (5.5b') 

Since this equation is of the form J;,a lt = 0, it is 
suggestive to take as its solution fll = O. Substituting 
this result into (5.4) and contracting with ull, however, 
leads to P = B~ which is only consistent with (4.17) if 
0' = O. A more satisfactory solution is of the form 

where f is an arbitrary function. 
Substituting (5.7) into (5.4) and contracting with 

ull yields for f, 

f = P,Il UJl - 2PullC,JI = O',IlUIl - 20'u Jl C,Il' (5.7') 

and, after some simplification, for (5.7) yields 

This expression is seen to be similar to the usual 
results of hydrodynamics9 and differs from it mainly 
through the appearance of the extra term involving 
the electromagnetic potential. If we now also insert 
(5.7") into (5.4), we obtain 

PaJl;vav = P<1>u ll + (g: - aJla lZ 
- uJlua)(P,a - PC,a), 

(5.8) 

which determines the streaming of the vector field aJl. 
If a is a space like vector, so that allall = -1 (and 
hence B2 negative), a similar calculation gives slightly 
modified results. Instead of (5.3), we find 

TIlV = (0' + P)uIlUV _ pgllV - 2PaJlav (5.3') 

with P = 0' - IBI2. 

The sign of the right-hand side of (5.5a) is now 
positive, but (5.5b) remains unchanged. Furthermore, 
(5.7") remains the same, but (5.8) has to be replaced 
by 

PaJl;vav = P<1>uJl + (ullu a - aJla lZ 
- g:)(P,a - PC,a)' 

(5.8') 

It is easy to see that contracting this equation with 
uJl and aJl yields nothing new. 

The behavior of the two vector fields is then deter­
mined by (5.7") and (5.8) together with the subsidiary 
conditions (5.5a) and (5.6). 

Furthermore, from the field equations (2.4), 

DaDaBIl - RllvBv = m2BIlV ' 

upon introducing the vector all and scalar C, we also 
obtain 

(DC + CaCa)aJl + 2CPaJl ;p + DaDaaJlV 

(5.9) 
where 

DC + C C,a = D(P - 0') 
,a 2(P _ 0') 

_ ! (P - O'),a(P - O'),pga/J 

4 (P _ 0')2 

and, upon contracting, 

(DC + CaCIZ
) - a~aa:; - RIlAaAa ll = m2

• (5.9') 

These equations together with (5.7) completely deter­
mine all and C. 

This completes, then, the general analysis of the 
vector meson field including the subsidiary conditions. 
It is still necessary to solve Einstein's field equations 
(2.8). Since the general case is rather involved, we 
limit ourselves to special examples involving spherical 
symmetry and the expanding universe. These are 
given in a subsequent work. 

• See, e.g., A. Lichnerowicz, Theories relativistes de la gravitation 
et de l' electromagnetisme (Mason et Cie., Paris, 1955). 
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A quantum field with nonlocal but translation-invariant interaction is considered. We prove that, with 
a proper smoothness condition on the interaction, the asymptotic limits of the annihilation-creation 
operators exists. The asymptotic limits are then used to prove that the state space decomposes as a 
tensor product of an incoming (outgoing) Fock space and a zero-particle space. 

1. INTRODUCTION 

In an earlier paperl we considered a fermion field 
with self-interaction and proved that, if the kernels 
describing the interaction were sufficiently smooth, 
then the asymptotic limits of the annihilation­
creation operators did exist. It was also proved that 
they were free fermion fields with the same mass as 
the original free fields and that the total Hilbert space 
could be written in terms of these asymptotic fields as 
a tensor product of an asymptotic Fock space and a 
zero-particle space. 

The object of this paper is to prove a similar result 
for the case of translation-invariant or momentum­
conserving interaction, if the interaction contains no 
zero- or one-particle interaction. If, on the other hand, 
there is a zero- or one-particle interaction, then the 
asymptotic annihilation--creation operators can not be 
expected to exist, as we know from perturbation con­
sideration (see, for instance, Refs. 2-4). 

2. FERMION FIELD WITH MOMENTUM­
CONSERVING INTERACTION 

As in Paper I, here we consider a free fermion field 
with mass m in the Fock representation. This is a 
Hilbert space Je, where the elements in Je are repre­
sented by sequences I = {In} of anti symmetric 
functions In = In(xl , ... , xn) in n variables Xl, ... , 
X n , Xi E E3 • The inner product in Je is given by 

(f, g) = i n!f' . ·fln(Xl, ... ,xn ) 
n=l 

x gn(Xl, ... , xn) dXI ... dXn 

and the annihilation operators a(x) by 

(a(x)J)n(XI, •.. , xn) = (n + l)/n(X, Xl, .•. , xn). 

The creation operator a*(x) is the adjoint of a(x). The 

1 R. Heegh-Krobn, J. Math. Phys. 9, 2075 (1968), referred to as 
Paper I. 

I L. D. Faddeev, Dokl. Akad. Nauk SSSR 152, 573 (1963) [Sov. 
Phys.-Dokl. 8, 881 (1964)]. 

• K. O. Friedrichs, Perturbation of Spectra in Hilbert Space 
(American Mathematical Society, Providence, R.I., 1965). 

• L. van Hove, Physica 21, 901 (1955); 22, 257 (1956). 

free-energy operator Ho is given by 
n 

(Hof)n = L o.Jn(xI , ... , xn), 
i=l 

and (Ho/)o = 0, where o.i is the operator 0. = 
(-~ + m2)t applied to Xi' The mass m is strictly 
positive. The total energy operator is H = Ho + V, 
where the interaction V is momentum conserving and 
contains no vacuum or one-particle interaction. That 
is, 

V = L Vk •l , 
k.I=2 

where Vkl is given in terms of the kernel 

VkZ(Xl ,'" ,Xk I Yl,'" 'Yl)' 

which is translation-invariant, i.e., 

Vkl(Xl + z, ... , Xk + Z I YI + z, ... , Yz + z) 

and 
= VkZ(Xl, ... ,Xk I Yl, .. " Yl) 

Vkl = r . "f dXI ... dXk dYl ... dyz 

X Vkl(XI, .. " Xk I YI, ... ,Yz) 

x a*(xl)· .. a*(xk)a(Yl) ... aCYl)' 

We recall that In is antisymmetric if In = asym In, 
where 

1 
asymfn(Xlo ... , Xn) = - L (-lYfn(xa(l) , ... , Xa(n»)' 

n! a 

The reason for excluding terms of the form VkO ' VOl' 
Vkl , and Vu-i.e., vacuum and one-particle inter­
action-is that such terms leads to infinite vacuum 
renormalization and finite-mass renormalization re­
spectively, and it is beyond the scope of the technique 
presented in this paper to deal with such problems. 

It is obvious that Ho is self-adjoint on its natural 
domain of definition Do, and we assume V to be 
symmetric, i.e., 

Vkl(XI, ... , Xk I Yl, ... ,Yz) 

= VZiYI' ... 'Yl I Xl' •.• , xk)· 

Let a(h) = f a(x)h(x) dx and 

a*(h) = f a*(x)h(x) dx. 

639 
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Due to the anticommutation relations of the fermion 
field we have 

a(h)a*(h) + a*(h)a(h) = Ilh(X)1 2 dx. 

Observing that a*(h) is the adjoint of a(h), we now 
obtain 

Ila(h)11 = Ila*(h)11 ~ Ilh11 2· 
On the other hand, let cPo be the vacuum state 
cPo = {I, 0, .. '}. Then 

Ila*(h)cPoll = Ilh112' 
and this proves the following lemma. 

Lemma 1: Ila(h) II = Ila*(h)11 = Ilh11 2· 

For the subsequent development we also need the 
following lemma. 

Lemma 2: Let f E Do (domain of Ho); then 

n IIInl12 ~ m-
l II (Hof)n II 2 , 

where m is the mass of the free fermion field. 

Proof' 
n 

(Hof)n = ! OJn 
i=l 

and, since 0 = (-~ + m2)1, we have that (h, Oh) ;;::: 
m(h, h), which proves the lemma. 

Lemma 3: Let Ilullo = max {llulll' lIu112} and let Akt , 
for k, I ;;::: 1, be the annihilation-creation operator 
with the kernel 

Akt(Xl,' . " xk I Yl' ... ,Yt) 

= asym asym Ul(Xl - Yt) ... uixk - Yt) 
'" 11 

X Vl(Yl - Yt) ... Vt-l(Yt-l - Yt)· 

Then, for allfE Do, we have 

IIAkdl1 ~ Ckilluilio' .. lIuklio II vIII 0 ••• IIvl-lllo ' II Hoi II , 

where Ckt = m-1(1k - 11 + 1)1. 

Proof: Let p = k - I + n; then 

II Akdn II 2 = P!r· J dXl'" dxp 

x /(n)l! asym I·· ·IdYl··· dYt 
1 "'1 •... • a:p 

X Ul(Xl - Yt) ... uixk - Yt) 

x Vl(Yl - yz) ... VI-l(Yt-l - Yt) 

x In(Yl,' .. ,YI' kk+1" . " Xp)r 

By the fact that asym is an orthogonal projection in 
L 2 , we get 

II Akdnl1 2 ~ P!r . J dXl ... dxp 

x [G) I! I dYt IUl(Xl - Yt)1 

x / asym I·· ·IdYl ... dYt-l 
X2,'" ,Xp 

X U 2(X2 - Yt) ... Uk(Xk - YI) 

X Vl(Yl - YI) ... Vt-l(Yt-l - YI) 

X In(Yl, ... ,Yt, Xk+1' ... ,Xp)\r· 

By the Schwarz inequality, 

II Akdnl1 2 ~ P!r . J dXl ... dxp I dYt IUl(Xl - YI)I 

x I dYt IUl(Xl - YI)I 

x / (n) I! asym I·· ·IdYl ... dYt-l 
1 "'2 ••••• "'. 

X U2(X2 - Yt) ... uixk - Yt) 

x Vl(Yl - YI) ... vt-l(Yt-l - Yt) 

X In(Yl,"', Yt, xk+1"", Xp)r 

= p! IIUlllir· J dYt dX2'" dxp 

x I(n) I! asym I·· ·IdYl ... dYI_l 
1 "'2,' ","'. 

X U2(X2 - Yt) ... uiXk - YI) 

X Vl(Yl - Yt) ... vt-l(Yt-l - Yt) 

X In(Yl,' ", Yt, xk+1'" " Xp)r· 
By Lemma 1. this is bounded by 

p! IIUllli(n - 1)![(n)/!J2. [(n - 1)(1_ 1)!J-
2 

(p - I)! 1 ,I - 1 

x IdYL Ilu211;' .. Ilukll; Ilvlll~' .. IIVI_lll~ 

x r . J dYl ... dYt_l dXk+1 ... dxp 

x I/n(Yl, ... , YI' Xk+1' ... , Xp)12 
= p' n' n! IIUlili IIU211~'" IIUkll~ 

x IlvllI:'" IlvI_llI~ IIlnll~. 
Recalling that p = k - / + n, by Lemma 2 we get 

IIAkdnll ~ (k - 1 2+ n)n ~ IIUlili IIU211~ ... Ilukll~ 
n m 

X II vIII: ... IIVI_lll~ II Holnll 2
, 

and this proves the lemma. 
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Lemma 4: Let a(g) = f a(x)g(x) dx and a*(g) = 
f a*(x)g(x) dx andfE Do if k, / ~ 2; then 

II [Akl , a(g)]fII and II[Ak" a*(g)]fll 

~ kCk,llgll oo lIulll o " 'lIukli o II VI II 0 ••• II VI_III 0 IIHofll· 
Proof: Let p = k - / + n - 1; then 

II [Akl , a(g)]fnIl2 

= P!f"'"f dXI'" dX7> If dz g(z)C)I! 

X asym f·· ·fdYI ... dy, 
~l)" ',Q:j 

k 

X ~ (-1)iU1(XI - YI) ... ulz - YI) 
;=1 

X Ui+1(X. - YI) ... UiXk-l - YI) 

X VI(YI - YI) ... VI_l(YI_l - YI) 

X f • .(Yl, ... 'YI' Xk, ... ,X7»1
2

• 

By the Schwarz inequality we get that this is equal to 

p! k.± J . . . JdXl ... dX7> 
'=1 

X 1(11) I!JdZ g(z) asym f" ·fdYl ... dy, 
I ~1,'" ,Zp 

X Ul(Xl - Yz) ... u.(z - YI) 

X Ui+1(Xi - YI) ... UiXk-l - Yz) 

X vl(Yt - YI) ... VI-l(YI-1 - YI) 

X fiYl ... YI' Xk ' .. X7>f 

Since asym is a projection in L 2 , the first term in the 
summation is bounded by 

r· "fdXl '" dX7> 

X IG)l!JJdZ dYzUl(Z - YI)g(z)U 2(XI - YI) 

X x:~~~P r . "f dYl ... dYI_l 

X UiX2 - YI) ... Uk(Xk_l - YI) 

X Vl(Yl - YI) ... VI-l(Yz-1 - YI) 

X f1.(YI, ... 'YI' Xk, .. " X7»r 

~ IIgll~ IIUIII~r'"f dXl'" dX7> 

X [(;)I!J dYII1I2(Xl - y,)1 

x I x:~~~" r . "f dYl ... dYI_l 

X U3(X2 - YI) ... UiXk_l - YI) 

X vt(Yt - YI) ... VI-t(YI-I - YI) 

X fn(Yl, ... 'YI' Xk, ... ,X7»1 r· 

By the Schwarz inequality, this is bounded by 

IIgll~ IIUIII~ IIU 2111f"'"f dxl '" dX7> f dyz lu2(xl - YI)I' 

X [(n) I! I asym f·· ·fdYI ... dYZ-l 
1 X2," • ,xv 

X U3(X2 - Yt) ... UiXk_l - YI) 

X VI(YI - Yz) ... VI_l(YI_1 - YI) 

X fn(YI, ... 'YI' xk, ... ,X7»1 r 
= IIgll~ IIUIII~ IIU211~f dYzJ""f dXa'" dX7> 

X I (n) I! a~~.m f" ·fdYl ... dYI_I 
I x., ,x" 

X U3(X2 - YI) ... Uk(Xk_1 - YI) 

X Vt(Yl - YI) ... VI-l(YI-1 - YI) 

By Lemma 1, this is bounded by 

2 2 2 (n - 1)' 
II gil 00 IIUlil l lIu211l (p _ 1); 

x [C)l!JTe = ~)(l- 1)!r

2 

X J dy, IIU311~ ... IIUkll~ IIV11I~ ... IIVI_11I; 

x f" . "f dYl ... dYI_l dxk ' .. dX7> 

x If,,(Yt, ' .. 'YI' Xk , •• " X7»1 2 

= IIgll~ IIUtll~ IIU211~ n 

x (p ~! I)! lIu3 I1i·· 'IIUkll~ IIVIII~" . IIVI_III~ IIfnll~ 

n! II 112 I 2 2 ~ n . (p _ I)! g 00 I uilio' .. lIuklio 

x IIVIII~'" IIv,_tII~ IIfnll~. 

By estimating the remaining terms in the summa­
tion in the same way, we get 

II [Ak!> a(g)]fnIl2 ~ n . pk2l1gll~ 

x IIUIII~' .. IIUkll~ IIVtll~' .. IIvl-llI~ IIfnll2. 

Using Lemma 2, we get the first part of Lemma 4. 
The second part is proved in the same way. 

We are now in position to give the smallness and 
smoothness conditions on the kernels 
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Assumption 1: The kernels 

Vkl(X1 , ••• , Xk I Yl' ••• ,Yl) 

can be represented in the following way: 

Vkl(X1,···, Xk I Yl,···' Yl) 
00 

- '" A(n)(x .•• x I Y ... Y) - £.. kl 1 , 'k 1 , 'I , 
n=1 

such that 

I Ckl Ilu~klllo ... Ilu~klllo Ilv;klllo ... IIv~fllo < 1, 
nkl 

where Ak~)(Xl' ••• , Xk I Yl' ••• ,Yl) is a kernel of the 
form given in Lemma 3, and Ck ! = m-1(lk - II + l)t. 
Moreover, 

Vk! = 0 for k = 0 or 1, or 1 = 0 or 1. 

Assumption 2: 

IkCklllu;klllo· .. Ilu~klllo Ilv;klllo· .. IIv~illo < 00. 
nkl 

Theorem 1: Under Assumption 1 we have that 

H= Ho + V, 

with V = 2;:1=2 Vkl ' is a self-adjoint operator on the 
domain of Ho, i.e., on Do. 

Proof: From Assumption 1 and Lemma 3 we get 
that, for f E Do, 

II VIII ~ ;. IIHo/1i 
with 

;. = I Cklllu~klllo· .. IIU~klllo Ilv;k11Io· .. IIv~illo < 1. 
nkl 

It is a well-known result that this implies that H = 
Ho + V is self-adjoint on the same domain as Ho. 

We observe that it follows from Theorem 1 that 
Do is invariant under eitH as well as under eitHo , and 
that for fE Do, both eitHI and eitHoj are strongly 
differentiable with respect to t. 

Lemma 5: For h E Dfl C L 2(E3) we have that a(h), 
as well as a*(h), leaves Do invariant, where Do is the 
domain of Q in L2(E3). 

Proof: The proof of this lemma follows immediately 
from the definitions of a(h) and a*(h) (see,forinstance, 
Ref. 1). 

We define 

atCh) = e-itHeitHoa(h)e-itHoeitH, 

a:(h) = e-itHeitHoa*(h)e-itHoeitH 

and observe that for hE Dfl both at(h) and ai(h) leave 

Do invariant. Moreover, at(h)fand ai(h)ffor fin Do 
and h in Dfl are both strongly differentiable in t, and 
by differentiation we get, for h E DfI , that 

a.(h) - a(h) = -ilSe-itH[V, eitHOa(h)e-itHo]eitHdt, 

a:(h) - a*(h) = _ilSe-itH[v,eitHOa*(h)e-itHO]eitHdt. 

(1) 
For details see Ref. 1. 

Theorem 2: Under Assumptions 1 and 2 we have 
that the strong limits of at(h) and ai(h) as t -+ ± 00 

exist for all h E Ll(E3). Denote 

a±(h) = strong lim at(h), 
t-+±oo 

a!(h) = strong lim at(h). 
t-+±oo 

Then a± and a: satisfy the same anticommutation 
relations as do a and a*: 

{a±(h), a±(g)} = {a!(h), a!(g)} = 0, 

{a±(h), a!(g)} = J h(x)g(x) dx, 

and the operators a±, a:, and H satisfy the same 
commutation relations as do a, a*, and Ho; i.e., for 
hE Dfl we get 

[H, a±(h)] = a±( -Qh), [H, a!(h)] = a!(Qh), 

and for hE Dfl we have that a±(h), as well as a:(h), 
leaves Do invariant. 

Proof: The proof is similar to one given in Ref. 1 
but for the fact that here strong limits substitute the 
norm limits in Ref. 1. 

Since II at (h) II = Ilh112' we have that the mapping 
atCh)f: L2(E3)xJe -+ Je is uniformly bounded in t, so it 
is sufficient to prove that at(h)f tends strongly to a 
limit for h E C; and I in Do. From (1) we get that this 
is equivalent to proving that the integrals on the 
right-hand side of (1) converge strongly at infinity. 
Consider, therefore, 

lIe-itH0[V, eitHOa(h)e-itHo]eitHfll = II [V, a(ht)]eitHfll, 

where ht = e-itOh. 
By Lemma 4 and Assumptions 1 and 2, we get that 

this is bounded by 

C Ilhtll.., . IIHoeitHfll, 

where C is a constant depending only on V. According 
to a lemma proved in Ref. 1, we have that 

IIhtll.., ~ C1 Itl-! 
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for h E C;'. Since Hand Ho have the same domain of 
definition, there exist two constants a and b, such that 

IIHofll ~ a IIHfll + b IIfll. 

Using this, we get the new bound 

C2 Itl-! (a II Hfll + b Ilfll), 

which proves that the integrals on the right-hand side 
of (1) converge strongly. 

That a± and a! satisfy the same anticommutation 
relations as do a and a* follows from the strong 
convergence. Consider now, for h E Do and f E Do, 
the expression at(h)f Since at(h) leaves Do invariant, 
we have that at(h)fE Do and thus 

Hat(h)! = [H, atCh)]j + atCh)Hj, 
[H, atCh)]j = e-itH[H, eitHoa(h)e-itHo]eitHj 

= e-itHeitHoa( _ Oh)e-itHoeitHj 

+ e-itH[V, eitHOa(h)e-itHo]eitHj. 

We have already proved that the last term tends 
strongly to zero and the first term is atC -Oh)f, which 
we know converges strongly to a±( -Oh)f Using the 
fact that H is closed, we get that a±(h)fE Do, i.e., is in 
the domain of H, and that [H, a±(h)]f = a±( -Oh)f 
This proves the theorem. 

Theorem 3: The Hilbert space Je decompose in two 
ways as a tensor product of two Hilbert spaces 

Je = :F ± @ Je! . 

:F ± is the Fock representation of the incoming 
(outgoing) asymptotic fields. Je~ is the incoming 
(outgoing) zero-particle space; i.e., the subspace of 
Je of the form O± @ Je~ is annihilated by all incoming 
(outgoing) annihilation operators. 

In accordance with this decomposition, the energy 
operator H decomposes as a sum: 

H = Ht@ 1 + 1 @H!, 

where Hi" is the free-energy operator with mass m in 
:F ± and Hl is the restriction of H to O± @ Je~ . .Q± 
is the vacuum of:F ± . 

Proof: The proof of this theorem is the same as in 
Ref. 1, since only the fact that H was bounded below 
and the strict positivity of the mass m, together with 
the commutation relation between H and the asymp­
totic fields, were used in the proof of this theorem in 
Ref. 1. 

as 
Theorem 4: The M011er-wave operators W±, defined 

W± = strong lim e-itHeitHo, 
t-±oo 

exist under Assumptions 1 and 2 and define a unitary 
equivalence between Ho in Je and H in Jei. Here 
Jei is the smallest closed subspace containing the 
vacuum element CPo of Je and invariant uQder a! (h) for 
all h in L 2(E3). 

Remark: Such a theorem was first proved by 
Chistyakov,5 but for the sake of completeness we give 
a proof below. It is interesting to observe here how 
much more information one gets on the spectral 
structure of H from the existence of asymptotic 
annihilation-creation operators than from the exist­
ence of the wave operators. From the existence of the 
wave operators one may conclude that there is a 
subspace of Je in which H acts as a free-energy 
operator. But as we have seen in Theorem 3, from the 
existence of the asymptotic annihilation-creation 
operators one may conclude that Je decomposes as a 
tensor product, so that H acts as a free-energy 
operator in one of the factors. 

Proo!, Since CPo is cyclic in Je-relative to the set of 
operators a*(h), hE L2(Ea)-it is enough to prove that 
e-itHeitHoa*(hI) ... a*(hn)cpo converges strongly. But 
since Ho and H both annihilate CPo, this is equal to 
ai (hI) ... ai (hn)cpo, and this we know converges 
strongly. 

This proves the theorem. 

5 A. L. Chistyakov, Dokl. Akad. Nauk SSSR 158, 66 (\964). 
6 Y. Kato and N. Mugibayashi, Progr. Theoret. Phys. (Kyoto) 

30, 103 (1963). 
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. We ex~end to th~ N-body ca.se previous techniqu~~ for solving three-body problems with repulsive 
mterp~rtlcl~ potentials and penodlc boundary conditions on each particle. For clarity, we begin with 
one-dl~ensl~nal problems, although the techniques are not peculiar to them and can be generalized to 
three dimenSIOns. We decompose the wavefunction 'f0 intoN(N - 1)/2 parts, according to 

N 
'Y = 1: 'l'il; 

i<;=1 

from t~e SchrOdinger equation we find a b~sic.equatio.n for a typical "!il' As a test of this equation, we 
apply It for N = 4 and the case o~ t:5-functlon mteractlons, and solve It numerically to find close agree­
ment between the e~ergy per particle o.f a four:body system. and a system of the same density in which 
N -+ 00. The n~meflcal results are consistent With the analytic one that E.(oo), which is the ground-state 
energy per particle of the system with an infin~te number of particles, is related to E.(N), which is that 
energy for the N-body system of the same denSity, by E.(N) = E.(oo)[1 - (lIN)] for weak repulsion and 
by E.(!f) = E.(oo)[1 - (liN")] for very strong repulsion. We begin a similar comparison for the three­
dimensIOnal hard-sphere case by workmg out the problem of two hard spheres with periodic boundary 
conditions over a length L. such that the density is the same as for an N-body problem in volume V = L 3 

• 

2/ L: = N/ L.~ . W~ find that we get the analog of th~ on~-~imensional result, for which case E.(2) = E.( 00 )/i 
for N = 2. That IS, we find £.(2) = Tra1hlmv, which IS Just one-half of the many-body theory result. We 
also calculate the two-body correlation function and find good agreement with the many-body one, as 
calculated by Lee, Huang, and Yang. 

I. INTRODUCTION 

In previous papers1.! we have presented a new 
method for solving the quantum-mechanical problem 
of finding the ground-state energy and wavefunction 
of a system of three interacting particles. One of its 
essential novelties was the decomposition of the 
wavefunction into three parts, one for each pair of 
interparticle interactions. Among other applications, 3.4 

one has been to the problem of particles with repulsive 
t5-function interactions! in one dimension. It is then 
natural to ask whether or not this work can be extended 
to more than three bodies, possibly even to the N-body 
problem. 

In this paper, we give a partial answer to this 
question. In particular, we show that for repulsive 
interparticle interactions in one dimension, the 
equations can be generalized to the N-particle case; 
moreover, the derivation can be extended to three 
dimensions. As a test of the equations that we derive, 
we have applied them for N = 4 to one-dimensional 
t5-function interparticle interactions. This serves as a 
useful check, since we expect the numerical results 
(whose nature is discussed below) to lie between 
those that are at hand for N = 3 and those for very 
large N; in fact, they do. The problem can also be 

1 Leonard Eyges, Phys. Rev. 115, 1643 (1959); Phys. Rev. 121, 
1744 (1961); J. Math. Phys. 6, 1320 (1965). 

• Leonard Eyges, J. Math. Phys. 7, 938 (1966). 
a Leonard Eyges and John R. Jasperse, J. Math. Phys. 9, 805 

(1968). 
'J. R. Jasperse and M. H. Friedman, Phys. Rev. 159, 69 (1967). 

solved for N = 2, so that we now can compare 
results for N = 2, 3, 4 and N - 00. 

The main result we are interested in is the energy 
per particle for systems with different N, but with the 
same linear density. The linear density is defined to 
be NILN, where LN is the length of the "box" over 
which periodic boundary conditions are applied. We 
have already made this comparison! between the 
cases N = 3 and N - 00 and found surprisingly close 
agreement. In the present paper, we add the results 
for N = 4 and for N = 2; with them the general trend 
is quite striking; we find, for example, that the energies 
per particle for N = 4 and N - 00 usually agree (as a 
function of the strength of interaction) to within ten 
or fifteen per cent. Some analytic light is thrown on 
this numerical work by the fact that we can find 
formulas for the energy per particle as a function 
of N in the two limits of very weak and very strong 
interactions. For weak interactions, it turns out that 
this quantity differs from its value for N - 00 by the 
factor [l - (lIN)] and for very strong interactions by 
[I - (liN!)]. Presumably, interactions of intermediate 
strength are bracketed by these limits. Thus, if we 
seek to approximate the many-body results by the 
few-body ones, the worst possible case is N = 2 
and weak interactions for which case the answer is 
off by a factor two; but the accuracy increases 
markedly as either N or the strength of the interaction 
increases. 

With these results for the one-dimensional problem, 

644 
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it is natural to ask if there are analogous ones for 
three-dimensional problems with repulsive potentials, 
of which the so-called hard-core potential is an 
example. For such repulsive potentials in three 
dimensions, the three, four, and many-body problems 
are, of course, not as tractable as they were for b 
functions in one dimension; but we can solve the 
two-body problem. For we have shown previously 
in one dimension that the solution of the problem of 
two particles with repulsive interparticle interactions 
and periodic boundary conditions over length L 
on each coordinate is reducible to the one-body 
problem of a particle moving in a periodic lattice 
generated by putting one of the potentials at each 
point of a one-dimensional lattice of lattice spacing L. 

A similar result holds in three dimensions, and we 
can show that the problem of two hard spheres with 
periodic boundary conditions on each coordinate 
is the same as that of a point particle (of reduced mass 
M12) moving in the periodic field generated by putting 
one hard sphere at each lattice point of a simple 
cubic lattice with lattice constant L. Now this is a 
problem that can be solved, to the accuracy we seek, 
by the Wigner-Seitz method; and we do this. We get 
expressions for the energy per particle of this two-body 
system and for the two-body correlation function, 
which is the relative probability for finding the two 
particles within a given distance of each other. 

The only available results for the N-body problem, 
with which we might compare these, are the perturba­
tion ones for small hard spheres5 ; these presumably 
correspond to the weak-interaction case in one dimen­
sion. The comparison is quite interesting. First, for 
the energy we find essentially the same result here as 
we did in one dimension: The energy per particle for 
the two-body problem is just half that for the N-body 
problem. If the one-dimensional case is any guide, 
this result should improve as the strength of the 
interaction, i.e., the hard-sphere radius, increases. 
Secondly, we have compared the two-body correlation 
function (as derived in Ref. 5) for the N-body system 
and as calculated for the two-body system in the way 
we have indicated. The agreement between these two 
functions is surprisingly good. The function as 
calculated from the two-body problem serves as a 
quite respectable approximation to that derived from 
the N-body one. 

II. N-BODY EQUATIONS IN ONE DIMENSION 

We start with the problem of N identical particles 
of mass m, coordinates Xl, X2, ••• , XN, and with 

6 T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 
(1957). 

total potential energy V t given by 

V t = I Vii' (1) 
i< i 

where Vii is shorthand for V(IXi - XiI). The Schro­
dinger equation for the system is then 

N (}2 

(-I -2 + I Vii)'f" = E'f". 
n~l OXn i< i 

As in our previous work, it is convenient to intro­
duce other sets of coordinates in place of the set 
Xl' ••• , x N • In fact, we shall introduce one such set 
for each potential Vii and, therefore, N(N - 1)/2 sets 
altogether. For the three-body problem, these sets 
were the so-called Jacobi coordinates, and these can 
be defined for the N-particle system as well; but it 
turns out that they are inconvenient in that they 
tend to camouflage the symmetry of the ground-state 
N-body wavefunction. This defect is not shared by the 
sets we now describe. 

Consider then the following coordinates associated 
with the potential Vii' We first write the original 
coordinates in their natural order: 

Xl' X 2 , Xs,'" ,XN' 

For a given i and j, we then replace Xl and X2 by their 
relative and center-of-mass counterparts Xii and Xii: 

Xii = Xi - Xi' Xii = X. + Xi; 

then we replace Xi and Xi by Xl and X 2 , respectively, 
to give the ijth of the N(N - 1)/2 sets 

Xii' Xii' Xa,'" ,Xi-I, Xl,'" 'Xi-I' X 2 ,'" ,XN' 

Given these sets, one of the basic ideas of our 
general method is to write the wavefunction 'f" as a 
sum of partial wavefunctions or two-body orbitals "Pii' 

'f" = I "PH , (2) 
i< ; 

wherein we take the ijth orbital to be a function of the 
set appropriate to it: 

"Pi; = "Pi;(Xii' Xii" •• ). 

The functions "Pii can be taken to satisfy6 

N (}2"Pii 
- I -() 2 + Vii'f" = E"Pii' 

n~l Xn 
(3) 

since, if we sum this over i and j and use (2), we see 
this equation is equivalent to the original Schrodinger 
equation. 

Moreover, it is moderately clear (from the fact 
that 'f" is a symmetrical function of all its variables 
and from the symmetrical way of defining coordinates) 
that all the "Po are identical functions of their respective 
variables; e.g., "Pu is the same function of xu, Xu' •• 

8 We set {j = 2m = 1. 
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as "P29 is of X29 , X29 · ... This point is discussed in 
some detail in the references,1.2 so we shall simply 
assume it here. With this, we see that we have only 
one unknown function to find and the index ij on "Pi} 
does not label different functions but labels a single 
function but of different variables. 

We turn our attention then to Eq. (3) for the orbital 
"Pi}' Since all the orbitals are of the same form, we 
can be specific and consider the equation for "P12; 

and since this turns out to be more convenient for the 
bookkeeping, we shall assume this done: 

"Pii --+ "P12 • (4) 

We want the wavefunction to be periodic with period 
L in each of the variables Xl, X2, ... , XN' and this 
will be insured if each of the orbitals is similarly 
periodic. We assume such periodicity and so expand 
"P12 in Fourier series, i.e., with basis functions 

27ri 
exp - (mlxl + ... + mNxN)' (5) 

L 

We introduce Xu and X12 , and let ml - m2 = nl' 
ml + m2 = n2 , which implies that nl and n.~ are both 
even or both odd. We shall frequently express this 
condition by using the function Ll(s, t) we have 
introduced previously: 

Ll(s, t) = {I; s, t both e~en or both odd, (6) 
0, otherwIse. 

With this, the basis function (5) can be written 

exp [~7 (n1x12 + n2X 12 + 2maxa + ... + 2mNXN)] 

x Ll(nl' n2)' (7) 

We have one further requirement. We want'P' to be a 
wavefunction for a system whose center of mass is at 
rest; i.e., we want it to be an eigenfunction of the 
center-of-mass operator Pem = -i L~-:l a/axi with 
eigenvalue zero. This will be so if each basis function 
is a similar eigenfunction. Applying this condition to 
(5), we find the requirement 

n2 + M = 0, 
where 

M = ma + m4 + ... + mN' 

We can then eliminate n2 from (7) to get the final 
basis function appropriate to periodic boundary 
conditions and zero momentum of the center of mass: 

exp [~7 (nl x12 - MX12 + 2maxa + ... + 2mN XN)] 

x Ll(nl' M). (8) 

If then we sum7 over all such functions with coefficients 

7 A sum simply written as 1:. will mean 1:~- 00 , and similarly for 
multiple sums. 

C(nl' ma, m4' ... ) mN), we can conclude that the 
general expression for the orbital "P12 that yields a 
periodic wavefunction with center of mass at rest is 

x exp - (n1x12 - MX12 [
27ri 

2L 

+ 2maxa + ... + 2mNXN)]Ll(n1, M). (9) 

Since the "Pii orbital is the same function of Xii' 
Xii' ... that "P12 is of X12' X12 , ... , we can write 

"Po = L C(nl' ma, m4,"', mN) 
nl.ma.···.m ... v' 

+ ... + 2mixl + ... + 2mjX2 + .,. + 2mNxN) 

x Ll(nl' M). (10) 

There is one more point to make before we begin to 
reduce Eq. (3). As we have discussed previously, 
we must expand the potential V12 in Fourier series, 
that is, replace it by its periodic counterpart. We 
write then 

~ (i27rXl I) 
V(X12) = f U(l) exp 7 . (11) 

If then we put Eqs. (10) and (11) into Eq. (3), we get 
(on putting primes on the summation variables for 
convenience and remembering that ij --+ 12) the 
following: 

L [E - (27r)2(n? + M,2 + m~2+ ... + m'J)] 
"1'.m3··· mlfl L 2 

x CCn{, m~, m~ ... m~'V)Ll(n{, M') 

[
27ri ( , M'X x exp - n1x12 - 12 
2L 

+ 2m~xa + ... + 2mNXN)] 

=1."l,.~ .... ,mlfly(l) exp C27121)ccn{, m~'" mN) 

x i exp [27ri (n{xij - M'X;} + 2m~xa 
i<i~l 2L 

+ ... + 2m;xl + ... + 2m;x2 + ... + 2mNXN)] 

x Ll(n~, M'). (12) 
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Now we multiply this by 

and integrate over all variables from zero to 2L. The 
left-hand side of Eq. (12) then becomes simply 

On the right-hand side, we must do the typical 
integral: 

f· . J exp [~7 {(21 - n1)x12 + MX12 - 2m3x3 

+ .,. - 2MNxN + n{xij - M'Xi; + 2m~x3 
+ ... + 2m;xl + .. , + 2m;x2 + ... + 2mNXN}] 

x dX12 dX3 ..• dXN' (13) 

Although there are N(N - 1)/2 such integrals, they 
break up into four different types depending on 
whether Xi; has both indices in common with X 12 , 

one index in common, or none. That is, there are 
integrals of the following types: 

I. one integral for which Xi; = X12 ; 
II. N - 2 integrals for which Xii = Xli; 

III. N - 2 integrals for which Xii = Xi2 ; 

IV. N2 ~ 5N + 3 integrals for which neither i = I, 

norj = 2. 

The integral for which Xii = X l2 is trivial and leads to 
the following term on the right-hand side of (12): 

! u(nl - n{)C(n{, m3, m4"", mN)~(n{, M). 
nt" 2 

Now consider a typical integral of type II. For 
convenience, we take the case j = 3; this is no real 
loss of generality, and it has the advantage of permit­
ting more compactness in the writing. To do the 
integral, we must transform the expression in Xl3' Xl3 
variables in curly brackets, that is, in the exponent of 
the integrand of (13) to X 12 , X12 ... variables. On so 
doing, it becomes 

and the integral we have to do becomes the (N-fold)­
one: 

f r [27Ti{ (21 n{ + M' ,) " " '. exp 2L X 12 - nl + 2 - m3 

+ X (M + n{ - M' + m') 
12 2 3 

+ xl-2m3 - n{ - M') + xim4 - m~) 

+ ... + xN(mN - mN)}] dX12 dX12 dx3' .. dXN' 

(14) 

Each of the N integrations yields a ~ function and we 
end up with a set of N simultaneous equations: 

21 - n1 + n{ + M' - m~ = 0, 
2 

, M' 
M + nl 

- + m~ = 0, 
2 

2m3 + n{ + M' = 0, 

m, = m~, 

(15a) 

(15b) 

(15c) 

(15d) 

(15N) 

These equations can all be satisfied in the following 
way. Eqs. (15d) through (l5N) imply that 

M'=M-m3+m~. 

With this Eq. (15c) becomes 

-m~ = m3 + n{ + M, 

which enables us to eliminate a summation over m~ 
in Eq. (12) in terms of one over n~. With the above 
results for m; and M', Eq. (15b) turns out to be the 
same as (15c), i.e., it is satisfied identically. Finally, 
Eq. (15a) becomes 

1 = (n l + n{ + M)/2, 

which enables us to eliminate I from the summation 
on the right-hand side of Eq. (12). Thus, the multiple 
sum there becomes simply a sum over n~ and finally 
we see that, corresponding to the integral (14), there 
is a term on the right-hand side of Eq. (12) with the 
form 

! u (n1 + n{ + M) 
nt" 2 

x C(n{, -m3 - n{ - M, m" m5 '" mN)' 

Of course, we get a similar term for other values of j 
than j = 3, and, mutatis mutandis, similar results for 
integrals of type III. In fact, all the integrals of type 
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II and III yield terms for the right-hand side of Eq. 
(12) of the form 

f ~ [U(n l + n{ + M) + U(nl - n{ - M)] 
8=a nt' 2 2 

x C(n{, ma , m,'" ms-I, 
-M - ms - n{, ms+1 ••• mN)' (16) 

Now we consider integrals of type IV. Again for ease 
of writing we take a typical one, say that for i = 3, 
j = 4. On working it out, we find it leads to a set of 
equations analogous to (15), and by adding and 
subtracting a pair of them they reduce to 

21 - nl + m~ - m~ = 0, (17a) 

M+m~+m~=O, (17b) 

M' + ma + m, = 0, 

n{ - ma + m, = 0, 

(17c) 

(17d) 

(17e) 

(17N) 

These are not all independent, since it is easy to see 
that if (17e) through (17N) are satisfied and (17b) is 

satisfied, then (17c) will be satisfied as well. Eq. (17d) 
enables us to eliminate n~ from the summation, and 
so we are left with Eqs. (17a) and (17b) in the three 
unknowns I, m;, and m~. We can choose to eliminate 
two of these in terms of the third. If we eliminate 
/ and m~ in favor of m~ , we get 

m~ = -M - m~, 

I = m~ + [(n l + M)j2]. 

This leads to a term in the right-hand side of Eq. (12) 
of the form 

In a similar way, we can calculate the other integrals 
of type IV,and find that they contribute the following 
to the right-hand side of Eq. (12); 

f ~ u(m; + ni + M) 
t<s=a ml' 2 

X C(m. - mt, m" ms'" m._I' -m; - M, 

m.+l .•. mt- I , m;, mt+l ... ml\.)' 

Thus finally, our basic set of equations, written out in 
full for the function C(nl , ma. m4 ••• mN), is 

+ ""'''''' + nl , ma, m,'" mB- 1 , -M - m. - nl , ms+!'" mN ? ~ (u(n l + n{ + M) u(nl - n{ - M))C( , ') 
s=ant' 2 2 

+ I ~ u(m; + nl + M)c(m. - mt, m" ms'" m._l , -m; - M, m.+! ... mt-I' m;, mt+! ... mN)' 
t<s=aml' 2 

(18) 

III. ONE-DIMENSIONAL FOUR-BODY PROBLEM WITH «5-FUNCTION INTERACTIONS; FEW-BODY 
APPROXIMATIONS TO THE MANY-BODY PROBLEM 

In this section, we test and apply Eqs. (18) by first writing them for N = 4, and then further specializing 
these equations to the case of Cl-function interparticle interactions. We then solve the resulting equations 
numerically to find the ground-state energy of the four-body system as a function of o-function strength. With 
this, with previous results for N = 3 and 2, and with those of Lieb and Liniger8 for N -+ 00, we can compare 
the ground-state energy per particle as a function of N, extending a previous comparison of this kind. 

8 E. Lieb and W. Liniger, Phys. Rev. 't30, 1605 (1963). 
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We begin then by writing out Eqs. (18) for N = 4. With M = m3 + m4' they become 

[E - C:)2 (n~ ~ M2 + m~ + m:) ]C(n1 , m3, m,)~(nl' M) 

= ~ u(nl - n~)C(n~, m3, m,)~(n~, M) 
til' 2 

+ ~ (u(n~ - n1 +23m3 + m,) + u(n~ + nl +2 m, + 3m3) )C(n~, -n~ - 2m3 - m" m,) 

+ ~ (u(n~ - nl +2 m3 + 3m,) + u(n{ + n1 +2 ma + 3m,) )C(n{, -n~ - m3 - 2m" ma) 

+ ~ u(m~ + n1 + M)C(m3 - m" -ma - m, - m;, -m;). (19) 
m,' 2 

For the special case of b-function interactions, i.e., those for which 

Vii = tb(Xii), 

the Fourier coefficients U(n) are constant: 

Then Eq. (19) simplifies to 

t 
U(n) = -. 

L 

[E - (2;)2 (n~ ~ M2 + m~ + m:) ]C(n1 , ma, m,)~(nl' ma + m,) 

= !... ~ C(n{, ma, m,) + ~ ~ (C(n{, -n{ - 2m3 - m" m,) + C(n{, -n{ - ma - 2m" ma» 
L til' L til' t 

+ - ~ C(m3 - m" n, -n - m3 - m,). (20) 
Ltl 

We see that for this case we can reduce the problem to one for a function F(ms, mJ of two variables by the 
ansatz 

C(nl' ma , mJ = F(ma. mJ/{E - C:)2(n~ ~ M2 + mi + m:)}. 

Putting (21) into (20) leads to the equation for F(ms , m4): 

F(ms, mJ~(nl' m3 + mJ 

= i F(m3' m,) ~~(n{, m3 + m,)/{E - e;)Tnr + t(ma + mJ2 + m: + m:J) 

+ ~~,F(-n{ - 2m3 - 2m" m,)/{E - e;)Tn~2 + t(n{ + 2mS)2 + (n{ + 2ms + m,)2 + m:]} 

+ ~~, F( -n~ - m3 - 2m" m3) /{E - e;)Tn~2 + iCn{ + 2m,)2 + (n{ + ma + 2mJ2 + m:J} 

(21) 

+ ~ ~ F(n, -n - ms - m,) /{E - (2;f[(ms : m,)2 + iCma + m,)2 + n2 + (n + ma + m,)2J}. (22) 

Now it is convenient to change some of the names of the summation variables. In the first sum on the right-hand 
side, we replace n~ by n; in the other sums on that side, we replace n~ + 2ma + m4 by n. After some algebra, 
and with the definition 
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we then get the equation 

27lF(ma, m,) = tLF(ma, m,)!~(n, rna + m4)/{E' - [n 2 + (rna + tn,)2 + 2mi + 2m!]) 
n 

+ tL! [2F(n, m,) + 2F(n, rna) + F(n, -n - rna - m,)]/{E' - 4[mi + m! + n2 + mam, + man + m4nJ}. 
n 

This is as far as we can go algebraically, and at this 
point we have solved Eq. (23) numerically on a digital 
computer. This equation really represents an infinite 
set of homogeneous ones which has a solution only 
if its determinant vanishes; the ground-state energy is 
found by searching for the smallest root of E for a 
given t. To solve Eqs. (23) in practice we have, of 
course, been forced to truncate them; in so doing, we 
have kept in mind the symmetry relationships of the 
coefficients F(rn, n) which follow directly from Eqs. 
(23). These are 

F(rn, n) = F(n, rn), 

F( -n, -rn) = F(n, rn). 

To test the effect of truncation, we have solved the 
equations in different orders of truncation and have 
kept as few as four and as many as forty-nine of the 
coefficients. In Table I, we give some of the values 
thus found for the ground-state energy as a function 
of t. The numerical results we have obtained are 
accurate to more figures than we have thought 
necessary to put down here. As we shall shortly see, 
in the limit of infinite b-function strength the quantity 
EgV/27T2 approaches the value 10, so that the larger 
values listed for this quantity can be considered to be 
for rather strong interactions. In Table II, we present 
an example of the numerical results for the coefficients 
F(ma, rn,). 

With these results, we can now extend a comparison 
we have made previously for the three-body problem. 

TABLE I. Ground-state 
energy E. vs a-function 
strength t for the four­
body problem in one 

dimension. 

E.L' 
tL 21T' 

1.00 3.768 
3.30 17.20 
5.00 34.81 
7.20 87.29 
8.40 174.5 

(23) 

We take systems of different number of particles N 
but of the same linear density p and compare the 
energy per particle as a function of delta-function 
strength. We do this for N = 2, 3, 4, and N --+ 00. 

The case N --+ 00 is got from the work of Lieb and 
Liniger,B that for N = 4 from the present paper, and 
that for N = 3 and N = 2 from a previous one. For 
convenience, we plot Eg/N p2 vs tp/2, which essentially 
compares energy per particle vs b-function strength, 
since p is constant for the different systems. The 
results are given in Fig. 1. 

In addition to these numerical results, it is worth 
looking analytically at two extremes of b-function 
strength. First, for small t, we can get a perturbation 
result as follows. The ground-state wavefunction for 
periodic boundary conditions over length LN is, for a 
single particle, just the constant function l/(LN )*, 
and for N particles is the product of N such functions. 

TABLE II. The function F(rna, rn.) found by solving Eq. (23), for the case E g L'/21T' = 5.00. 
The number in parentheses in some boxes is the power of ten by which the quantity that 

stands to the left of it is to be multiplied. 

~ 0 2 3 4 5 

5 9.21 (-3) 
4 0.01456 5.63 (-3) 
3 0.02650 9.34 (-3) 4.32 (-5) 
2 0.06566 0.01902 5.27 (-6) 2.88 (-4) 
1 0.09249 0.08838 0.01024 5.63 (-3) 3.54 (-3) 
0 1.000 0.2655 0.06456 0.02230 0.01193 7.45 (-3) 

-1 0.1169 0.01549 7.04 ~ -3) 4.14 (-3) 2.69 (-3) 
-2 8.85 (-4) 4.46 (-4) 1.27 (-4) 2.02 (-4) 
-3 8.60 (-5) 8.97 (-5) 1.25 (-4) 
-4 4.89 (-5) 8.94 (-5) 
-5 1.19 (-4) 
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FIG. 1. Ground-state energy per particle E.IN for systems of 
repulsive delta functions of strength t, with N = 2, 3, 4 and N» 1 
particles. The linear density p is the same for all systems. 

The first-order perturbation result for the interacting 
system is then 

Ell = N(N - l)f"lhd(x) dx = N(N - l)t . 
2 2LN 

For an N-body system with density p = NjLN the 
energy per particle Ea/N is therefore 

; = (1- ~y;. (24) 

Thus, the energy per particle of the system with N = 2 
is one-half that of the system of the same density 
for which N -+ 00, and for N = 3, i of it, etc. Now, 
we consider the opposite limit, for infinite b-function 
strength. Here the problem has been solved by 
Girardeau,9 who gives the following formulalO : 

E = l(N _ !.)7T
2
h

2
N

2 
. 

(/ 6 N mLJ.v 

For a given density p we find for the energy per par­
ticle, in our units, 

Eg = 7T
2p2 (1 _ 1.). 

N 3m N 2 
(25) 

For N = 2, this energy is i of that for the infinite 
system, for N = 3 it is i, etc. In summary then, if we 
approximate the energy per particle of a many-body 
system by that for a few-body one, the error is at 
worst a factor of two (two-body system and weak 
potentials) and the error rapidly diminishes as the 
potential strength and/or the number of bodies are 
increased. 

• M. Girardeau, J. Math. Phys. 1, 516 (1960). 
10 This result holds in fact only for odd n, but we shall use it in the 

spirit of an interpolation formula for even n as well. 

IV. HARD SPHERES IN THREE DIMENSIONS 
AND A TWO-BODY APPROXIMATION 

TO THE N-BODY PROBLEM 

The one-dimensional problems discussed above are 
not, of course, of direct physical interest. For treating 
a physical system, as for example the ground state of 
liquid helium, we must discuss three-dimensional 
problems. In the last analysis, we want to be able to 
treat the problem of N particles "in a box" of volume 
V = L ~, with a potential which acts between each 
pair of particles, and with the understanding that 
"in a box" means that the wavefunction is periodic 
over length LN in each of its 3N coordinates. We 
can't, of course, solve this problem directly, but, 
motivated by the close approximation set out above 
between the N-body and few-body problems in one 
dimension, we can take a similar tack in three dimen­
sions. We shall then begin by considering two particles 
which, in the above sense, are in a box of length L2 
and for which the density is the same as for the N-body 
problem, i.e., for which 

2 N 
L~ = L1 = p. 

If the coordinates of the particles are Xl, Yl, Zl and 
X 2 , Y2, Z2, and the wavefunction is "P(xl , Yl' Zl, X2' 

Y2, Z2) or, as we shall write more succinctly, "P(fl' f2), 
this condition of periodicity means, for example, 

"P(xl + L 2 , YI' Zl, X 2 , h, Z2) 

= "P(x l , Yl' ZI' x 2 , h, Z2) (26) 

with a similar condition on the other five coordinates. 
The Schrodinger equation that must be solved, 
subject to (26), is 

[- 21i~ (v~ + v~) + v(rl2) ]v1(f1, f 2) = E1p(fl' f 2), 

(27) 

where v(rI2) is the central potential, possibly with hard 
core, that acts between the particles. 

Now we recall that in one dimension it was useful­
in fact almost essential-to consider the two-body 
potential not as it was given, but rather as extended in 
a periodic way. This extension of the potential to the 
periodic counterpart vp did not change its definition 
in the basic domain but simply added replicas to it 
outside that domain. The advantage of the periodic 
potential was that with it one could use Fourier series 
in solving the Schrodinger equation; there is the same 
advantage in three dimensions. 

For the wavefunctions, we want each particle 
coordinate to satisfy periodic boundary conditions 
over a length L2 in each of the three mutually per­
pendicular coordinate directions. Thus, we want to 
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introduce a periodic potential vp{r) which has the 
same periodicity properties, which are essentially the 
properties of a simple cubic lattice. We do this in 
the following way: We consider a simple cubic lattice 
with lattice basis vectors bl , b2 , bs that are just unit 
vectors along the coordinate axes 

i j k 
bl =-, b2 =-, ba =-· 

L2 L2 L2 

A general reciprocal lattice vector K j is then defined by 

K; = 27T{hbl + hb2 + jabs), 

where jl' h, ja are integers. If the potential v{r) has 
Fourier transform w{k), 

v(r) = f w(k)eik
.
r dk, 

then the periodic potential vp{r) that we introduce in 
its place is 

vir) = L w(K j ) exp (iK j • r). 
Kj 

With this, we consider the construction of the 
wavefunction of the system. Since this is periodic in 
r l and r2 , we can consider it as built up by summing 
over basis functions of the form 

exp [i{Ki • r l + K •. rJ] 

with appropriate coefficients. Then, if in this basis 
function we introduce the relative and center-of-mass 
coordinates r = r l - r2 and R = rl + r2 and proceed 
much as in the one-dimensional case, it is straight­
forward to show that a candidate for the wavefunction 
If(r, R), in that it is periodic in rl and r2 , is 

If(r, R) = L L C(Km, Kn) exp i(Km • r + Kn' R) 
Km K.. 2 2 

X ~(ml' nl)~{m2' n2)~{m3' na), (28) 

where C(Km, Kn) is some arbitrary function. If we 
put (28) into the Schrodinger equation with ~(m, n) = 
~(ml' nl)~(m2' n2)~{ma, ns), we get 

[E - i(K:' + K~)C(Km' Kn)]~{m, n) 

= L w(Km - K~)C(K:", Kn)~(m', n). (29) 
Km 2 

As in one dimension, we shall assume that the ground­
state solution corresponds to zero momentum of the 
center of mass. In this case, C(Km' Kn) takes the form 
of an arbitrary function of Km times a delta function 
in K,,: 

C(Km' KJ = D(Km)8{Kn). (30) 

If now we put (30) into (29) and transform back to 

position space, we conclude that to solve (29) with 
center of mass at rest is equivalent to solving the 
Schrodinger equation 

( 
1i2 2 ) - -; yo + vir) lfo(r) = Elfo{r), (31) 

where lfo{r) is the Fourier transform of D(Km). 
Although we have sketched the formal derivation of 

(31), it is clear on other grounds that (31) is the 
equation we want. For if we start with Eq. (27) for 
If(rl , r2) and introduce the coordinates rand Rand 
the periodic potential vp(r), the wavefunction which 
nominally becomes a function of both rand R is in 
fact, for the center-of-mass at rest, a function of r 
only. We have then called this function lfo(r) in (31). 
Thus, Eq. (31) is just Eq. (27) transformed and 
relabeled. The point that needs discussion now is to 
show how, using Eq. (31), we can satisfy the periodicity 
conditions on rl and r2 • To do this we begin by 
observing that Eq. (31) is like the equation of a single 
particle of reduced mass ml2 moving in a periodic 
potential. We know from the theory of this equation in 
solid-state physics that it has solutions of Bloch form, 
i.e., in which a phase factor eikr multiplies a func­
tion which is periodic in r with the periodicity of the 
lattice. The ground-state solution usually corresponds 
to A = 0, and we shall assume this here. This being 
the case, the ground-state solution of Eq. (31) is a 
periodic function of r. That is, if P. is a lattice vector, 
then 

But, since r = rl - r 2 , this means 

lfO«rl + P.) - r2) = lfo(rl - r2), 

which shows that 11'0 is separately periodic in rl (and, 
of course, equally in r 2) and therefore satisfies the 
periodicity conditions we have imposed. 

Let us then consider the solution of Eq. (31); it will 
suffice to use the Wigner-Seitz method. According 
to this method, we introduce a sphere of radius I 
which is centered at a given potential and whose 
volume is equal to that of the unit cell. In this case 

47T1Sj3 = L~ = 2u, u = L~jN. (32) 

Then we approximately satisfy the periodicity condi­
tion by requiring that the normal derivative of the 
wavefunction vanish on the surface of the sphere 
(r = I). We shall take the interparticle potential as 
corresponding to a hard core in the relative variable 
r of radius a, which is equivalent to the boundary 
condition that the wavefunction vanish at r = a. 
In terms of the two particles with which we began, this 
implies that they are hard spheres of diameter a. 
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To come back then to (31), we observe that a 
general form of the wavefunction in the region 
a < r < 1 is 

(33) 

where jo and no are spherical Bessel and Neumann 
functions and k2 = mEjJi2. On applying the two 
conditions stated above to (33), we find that the 
(unnormalized) wavefunction is 

jo{kr) + tan (ka)no{kr), (34) 

and that k is determined from the equation 

kl = tan k(l - a). (35) 

We are interested in the case a « I, for which we get, 
on expanding (35), the result k 2 ~ 3ajf3. With the 
expression in (32) for f3, this yields k2 = 21Tajv or 

Eg = 21TaJi2jmv. 

We must remember, however, that this result refers to 
the energy of the two-body system. The ground-state 
energy per particle of this system is then: 

Energy per particle = Ji21Tajmv (two-body system). 

This is to be compared with the analogous result for 
the N-body (N)> 1) system: 

Energy per particle = 2Ji21Tajmv (N-body system). 

In a way, this is a very gratifying result-for this is 
just the answer we got for one-dimensional b functions 
in the perturbation theory limit, i.e., the energy per 
particle for the two-body system is just half that for the 
N-body (N)> 1) system. This agreement between 
one dimension and three then encourages us in the 
hope that there may be similar and perhaps even 
better agreement away from the perturbation limit, 
and that in three dimensions, as in one, the two-body 
problem is a fair approximation to the N-body 
problem. 

To look further into this, we can make another 
comparison between the two-body and N-body 
results: we can compare the respective correlation 
functions. By "correlation function," we mean the 
expression for the relative probability D(r) that two 
particles are within a distance r of each other. For the 
two-body case this function is just the square of the 
wavefunction; i.e., from (34), on adding a subscript 
to D to label the two-body function, it is 

Here C is a normalization constant at our disposal. 
The corresponding function for the N-body case as 

TABLE III. Comparison of the 
correlation functions D2(r) and 
DN(r) for 87Ta3/v = 10-3

• D2(r) is 
normalized arbitrarily to equal 

DN(r) at rIa = 3.0. 

rIa D 2(r) DN(r) 

1.00 0.00 0.025 
1.50 0.108 0.124 
2.00 0.252 0.259 
3.0 0.449 0.449 
5.0 0.646 0.641 

10.0 0.813 0.809 
20.0 0.884 0.902 
30.0 0.891 0.935 
50.0 0.962 

100.0 0.980 
200.0 0.990 

given by Lee, Huang, and y ang5 and correctedIl by 
Bocchieri, Orzalesi, and Smith12 is 

DN(r) = [1 + G(r»)2 

. + [1 + F(r)J2 - 1 - 2f[F(r) + G(r»), (36) 

where the functions G(r), F(r), andfare defined in the 
two papers just cited. 

The correlation functions depend on a parameter 
which is essentially the ratio of volume of the hard 
core to the volume available per particle. We can 
characterize this by a quantity 

We have then calculated and compared the functions 
D2(r) and DN(r) for various values of A.. In calculating 
DN(r), we have evaluated by digital computer the 
integrals that enter the functions F(r) and G{r). We 
shall present results for the typical case A. = 10-3• 

The agreement we have found is quite striking. In 
fact, it is so close that, were we to plot the two func­
tions, they would be hard to distinguish over much 
of their range, for any reasonable graph size. We have, 
therefore, made a tabular comparison; this is set out 
in Table III, for which we add some words of explana­
tion. The normalization of the N-body wavefunction 
is arbitrarily taken to be that DN(r) -+ 1 as r -+ 00. 

Now the two-body function is defined only within the 
unit cell, i.e., for r < I, so we cannot normalize it the 
same way; instead, we have chosen its normalization 
so that it coincides with DN{r) at the arbitrary point 
r = 3a. Again, for the reason that D2(r) is only 
defined for r < I, the function DN(r) is plotted over a 

11 The correction cited is that of changing the factor 4[ in Ref. 5 
to the factor 2[that appears in Eq. (36). 

1. P. Bocchieri, C. A. Orzalesi, and V. H. Smith, Jr., Nuovo 
Cimento 52, 18 (1967). 
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more extended range than is D2(r).13 Finally, we note 
that the function D2(r) is zero at r = a, which it must 
be to satisfy the boundary conditions exactly. The 
function DN(r), on the other hand, satisfies the 
boundary conditions only approximately at r = a­
witness the fact that it is small but not strictly zero 
there. 

As we have remarked, the agreement between the 
two functions is quite good, perhaps to such a degree 
that it is partly fortuitous. In this connection it should 
be borne in mind that Table III does not really 
compare D2 with DN, but compares an approximation 

13 For the value of A we have chosen If a to be about 30, which is 
why the last entry in the table for D.(r) is for rfa = 30. 
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to D2 (Wigner-Seitz method) with an approximation 
to DN (use of pseudopotentials). Also, the close 
agreement between the functions throughout the range 
over which they are mutually defined is not in neces­
sary contradiction with the fact that the energy per 
particle differs by a factor of two for the two different 
cases; it may be the longer-range correlation in the 
N-body case that accounts for this. 
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in detail. The full amplitude is treated as a function of cos () for fixed physical momentum k; using the 
Sommerfeld-Watson transformation, we show that A(k, cos 0) is analytic in the cut plane of cos (). 

1. INTRODUCTION 

Because of the photon'S zero mass and the infinite 
range of the associated forces, it is still not clear 
whether electromagnetic forces can be incorporated 
into analytic S-matrix theory. The long range of the 
forces invalidates all usual definitions of the S matrix; 
and even if an S matrix can be defined, it will probably 
not satisfy some of the usual requirements in S-matrix 
theory and, in particular, the infrared problems 
associated with soft photons will presumably remain.1 
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1 These questions have been discussed by several authors and 
widely differing conclusions have been expressed. G. F. Chew 
[Sci. Progr. 51, 529 (1963)] argues that electromagnetic interactions 
can certainly not find a place in S-matrix theory. Papers expressing 
the opposite view include: A. O. Barut, Acta Phys. Austriaca 
Supp!. 2, 162 (1966); A. O. Barut and R. A. Blade, Nuovo Cimento 
39, 331 (1965); T. T. Chow and M. Dresden, Rev. Mod. Phys. 39, 
143 (1967). The spirit of these papers is to assume that electro­
magnetic interaction can be included in S-matrix theory and that the 
usual properties--existence of S, cluster decomposition, analyticity­
continue to hold. 

It is in the hope of clarifying a few of these questions 
that we examine here some properties of the non­
relativistic scattering by a long-range potential 

U(r) = 20cjr + VCr) 

consisting of a Coulomb interaction 20cjr and a short­
range potential VCr). This problem has already 
received considerable attention. Dollard2 has shown 
that, although the usual definitions fail when Coulomb 
forces are present, it is possible to define a satisfactory 
S matrix which has the normal interpretation and 
leads to the usual amplitude used in practical calcula­
tions. Co mille and Martin3 and Mentovsky4 have 
examined the partial-wave amplitude as an analytic 
function of momentum k for fixed physical angular 
momentum I. Klarsfeld5 has considered the same 
amplitude as a function of 1 for fixed physical k. 

In this paper, we consider both the partial-wave and 
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3 H. Cornille and A. Martin, Nuovo Cimento 26, 298 (1962). 
• Yu. L. Mentovsky, Nuc!. Phys. 65, 673 (1965). 
• S. Klarsfeld, Nuovo Cimento 48A, 1059 (1967). 
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the full amplitude. We first establish the properties 
of the partial-wave amplitude a(/, k) as an analytic 
function of both I and k and then use these results to 
find the properties of the full amplitude A(k, cos 0) 
as an analytic function of cos 0 for fixed physical k. 

In Sec. 2, we examine a(l, k) using a method 
developed by Froissart6 for the non-Coulomb case. 
This method allows us to treat a very wide class of 
potentials, our only requirement being that the 
short-range part VCr) satisfy 

(Ll) 

for some 'YJ and € both greater than zero. We illustrate 
our results with the example of a Coulomb plus a pure 
Yukawa potential, for which the analytic properties 
are very similar to those of the non-Coulomb case; 
specifically, a(l, k) is meremorphic in (I, k) except for 
branch points at 

k = ±inf-lj2 

where n = 0, 1,2, ... and f-l is the inverse range of the 
Yukawa potential. The most important difference 
between the Coulomb and non-Coulomb cases is the 
singularity at k = 0, which in the Coulomb case is an 
accumulation point of bound-state poles and is also 
the starting point of the left-hand cut. We examine this 
singularity in detail and show that, in spite of these 
difficulties, it is still possible to express the amplitude 
in the familiar Nj D form. , 

In Sec. 3, we consider the full amplitude A (k, cos 0) 
for the case where the short-range part of the potential 
is a Yukawa. Following the method of Regge7 we use 
the Sommerfeld-Watson transformation to establish 
the analytic properties of A(k, cos 0) from those 
of the partial-wave amplitude aU, k). We find that this 
transformation cannot be applied to the complete 
amplitude A but that, at least for physical k, it can be 
applied to the difference between A and the pure 
Coulomb amplitude Ac: 

A'(k, cos 0) = A(k, cos 0) - Ac(k, cos 0). 

This establishes that, for physical k, A'(k, cos 0) is 
analytic in the whole plane of cos 0 except on the 
branch cut starting at 

cos 0 = 1 + f-l2j2k2• 

The crucial part of the proof is the verification that, 
as III ---->- 00 in any direction in the half-plane Re I ~ 
-t, the partial-wave amplitude a(l, k) is sufficiently 
bounded to allow use of the Sommerfeld-Watson 
transformation. This we establish by examination of a 

6 M. Froissart, J. Math. Phys. 3, 922 (1962). 
7 T. Regge, Nuovo Cimento 14, 951 (1959). 

Lippmann-Schwinger equation for a(l, k). Our method 
breaks down when k becomes complex, and for this 
reason we can establish the properties of A(k, cos 0) 
for real k only. 

We conclude, therefore, that the analytic properties 
of the amplitude for scattering by long-range forces 
are a natural generalization of the corresponding 
properties of short-range amplitudes. This suggests 
that, at least as far as analyticity is concerned, there 
should be no obstacle to incorporating long-range 
forces into S-matrix theory. 

Most of our proofs are rather long and complicated 
and we therefore omit some details, for which we refer 
the reader to the thesis of the first named author.s 

2. THE PARTIAL-WAVE AMPLITUDE 

A. Outline and Results 

The partial-wave amplitude is defined in terms of 
solutions of the radial Schrodinger equation 

tp" + [k2 _ 1.
2 

- ! - 2Cl - V(r)] tp = O. (2.1) 
r2 r 

(We use units for which Ii = 2m = 1 and introduce 
the angular-momentum variable A == 1 + t.) As usual, 
we define certain standard solutions of this equation: 
the "regular" solution 

f(}., k, r) ,.....,,; rl+1, 
r-O 

(2.2) 

and the "incoming" and "outgoing" solutions 

X±(A, k, r) "'" exp T i[kr - (Cl/k) In (2kr)]. (2.3) 
r~(f) 

The Jost functions are defined as the coefficients in 
the expansion of f in terms of9 X±: 

fer) = [f+(A, k)x-(r) - f-(A, k)x+(r)]j2ik (2.4) 

and the partial-wave S matrix is defined as the ratio 
of these coefficients, 

(2.5) 

Finally, the partial-wave amplitude is defined as 

a{l., k) = [S(A, k) - l]j2ik. (2.6) 

Our starting point is the Schrodinger equation for a 
pure Coulomb potential [i.e., Eq. (2.1) with V == 0] 
with corresponding solutions 

fc(A, k, r) = (2ikrl-1Mv,;.C2ikr) (2.7) 
and 

X~(A, k, r) = e- iilV
/
2W±vj±2ikr), (2.8) 

B W. R. Ross. Ph. D. thesis, University of Colorado, 1968. 
• Whenever possible without danger of confusion we drop the 

arguments iI. and/or k from the functions ",(ii., k, r) etc. 
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where Mv,;.(z) and Wv,;.(z) are Whittaker functions1o 

and 
)' == ir:x.jk. (2.9) 

In terms of these pure Coulomb solutions, we obtain 
iterative expansions for the actual solutions cf; and x± 
in powers of the short-range potential V(r). These 
lead to expressions for the lost functionsf± as power 
series in VCr) and it is from these power series that we 
deduce the analytic properties off± and, hence, those 
of S or a. 

Our method is a direct generalization of a technique 
developed by Froissart6 for pure short-range poten­
tials. The series expansions for f± are written in the 
form 

f± = r~ + L" dr X~(r)V(r)cf;e(r) 

+ Loo dr' f'dr x~(r') V(r')I(r, r') V(r)cf;e(r), 

(2.10) 

where I(r, r') is, of course, a series in powers of V. 
Assuming that r2-~eETV(r) is bounded, we show that 
this expression is analytic in a certain domain of 
(A, k) but that the integrals diverge when (A, k) moves 
outside of this region. Those parts of the integrals 
which diverge can be explicitly separated and ex­
pressed in terms of the Mellin and Laplace transforms 
of the potential VCr) and the kernel I(r, r'). We 
examine the analytic properties of the transforms of 
I(r, r') and find their singularities in terms of the 
singularities of the corresponding transforms of the 
potential VCr). In this way we establish the analytic 
properties of f±(A, k) for all (A, k) and express all 
singularities in terms of the singularities of the Mellin 
and Laplace transforms of VCr). 

Our conclusion is that the lost functionf+(A, k) is 
analytic for all A and k except when A or k is contained 
in one of the following sets of pointsll: 

A E { _ ~ + m : 1 (S - 2)} 

or 

kE{O m:J'O+ff'l mff'O+2ff'1 :J'2), 
, 2i ' 2i ' 2i 

(2.11) 

where m and n = 0,1,2,"', and Sand:J' .. denote 
the sets of singularities of the transforms 

u(a) = fdr r,,-lV(r) (2.12) 

10 See E. T. Whittaker and G. N. Watson, Modern Analysis 
(Cambridge University Press, Cambridge, England, 1962), 4th ed., 
Chap. 16. 

11 There are in addition fixed poles when A is a negative half­
integer but these always cancel out of S = f+elrr1If-. See Eq. (2.26) 
below. 

and 

(2.13) 

with v = ir:x.jq. The set of points m:J' 0, for example, is 
the set of all 

q=ql+"'+qm, q;Eff'o. 

The singularities of f-(A, k) are obtained by the 
substitution k --+ -k and the domain of meremorphy 
of S follows immediately from the definition S = 
f+eir.1If-· 

For any given potential, this result immediately 
locates the singularities off± and S. For the example 
of a pure Yukawa VCr) = yrprjr, the singularities of 
f+ are poles at A = - (n + 1)/2 and branch points at 
k = inflj2. This implies meremorphy of S except at 
k = ±inflj2, as already mentioned in the introduction. 

The nature of the singularity at k = 0 is examined 
in Sec. 2C and in Sec. 20 we show that the partial­
wave amplitude can be written in the usual "N 
over D" form. 

After this brief outline of our method and results we 
proceed to the main proof. As far as possible we refer 
the reader to the paper of Froisart6 ; for details of 
certain estimates we appeal to Ref. 8. 

B. The Main Proof 

We first note that one can easily show, using the 
definitions (2.2) to (2.4) that 

f-O., k) = e1T~/kf+O" ke-i1T) (2.14) 

and that it is therefore sufficient to establish analyticity 
of f+, for which Eq. (2.4) implies the following 
expression: 

f+ = W[X+, cf;] 

= lim W[xt, cf;], (2.15) ,_00 

where W[u, v] denotes the Wronskian of the functions 
u(r) and vCr). 

To make use of this expression forf+ we replace the 
differential equation (2.1) and the boundary conditions 
(2.2) for cf;(r) by the integral equation 

cf;(r) = cf;e(r) + 1: dr' G(r, r')V(r')cf;(r'), (2.16) 

where G is the appropriate Green's function 

G(r, r') = [u(r')v(r) - u(r)v(r)]jW[u, v], 

where u and v are any two independent pure Coulomb 
solutions (e.g., x~). Substituting this integral equation 
into Eq. (2.15) we get 

f+ = ft + 100 

dr xt(r)V(r)cf;(r), (2.17) 



                                                                                                                                    

ANALYTIC PROPERTIES OF SCATTERING AMPLITUDES 657 

where f: denotes the pure-Coulomb Jost function 

it == w[xt, CPo] 

= (2ik)-'e,,"/kr(21 + 2)jI'(1 - 'V + 1). (2.18) 

Finally we iterate Eq. (2.16) for cP and substituting 
the resulting series into Eq. (2.17) obtain the expres­
sion (2.10) for f+ with 

00 

I(r, r') = 2. 1 n(r, r'), (2.19) 
n=2 

1 n(r, r') 

= f gG(rm+1,rm)gV(rm)drm , 

r=., < ... < r .. =.' (2.20) 

and 
12(r, r') = G(r', r). 

By a method similar to that used by Froissart we 
can show that the kernel I(r, r') is an entire function of 
A and k and satisfies the following bound12 : 

I/(r, r')1 < N,u[F(r')/F(r)](r' - r), (2.21) 

where 

(

rIReAI-i, r ~ 1, IRe AI ~ t, 
F(r) = 1, r ~ 1, IRe AI ~ 1, 

ellmkl., r > 1. 
(2.22) 

If we now assume that the short-range part of the 
potential satisfies condition (1.1), this bound for 
I(r, r') implies that the two integrals in Eq. (2.10) 
for f+(A., k) converge and define an analytic function 
for 

expansion13 

xt(r) = (2kry [e-ikr + i:e-Pf'F'(P/ik) dP/ikJ 

+ remainder, (2.25) 

where F'(z) denotes the derivative of the hyper­
geometricfunction F[ -I - '11,1- 'V + 1, 1, (1 - z)/z] 
and the remainder is of order rVe-Ar ; with a similar 
expression for CPo. 

Much as in the paper of Froissart, we can now 
continue the two integrals in Eq. (2.10) for f+ to all 
(A., k). Before doing so we note that it is convenient 
to consider not f+, but 

1'+ = f+/r(2A. + 1), (2.26) 

since this avoids the fixed pole of CPc when (2A. + 1) 
is a negative integer. (And, of course, we can calculate 
S in terms off' ± just as well as f ± .) 

To continue the single integral in Eq. (2.10) we 
split it into two parts, n and fe;', and substitute the 
separation (2.24) for CPo and X; into the first and that 
of (2.25) into the second. By choosing N and A 
sufficiently large we can guarantee that, for any 
given (A, k), the integrals involving the remainders are 
convergent and analytic. Thus the integral n has 
singularities, if any, coming from a finite sum of 
terms of the form 

II rn+2A+1 V(r) dr = u(n + 2). + 2) 

which is precisely the Mellin transform defined in Eq. 
(2.12). By definition, these are analytic except when 

). E {-n/2 + HS - 2)}. (2.27) 

Re A> t - 'Yj, 1m k < E/2 (2.23) Similarly, the integral fe;' is analytic except when14 

(except of course at k = 0 where the Coulomb 
functions have a branch point). 

If A. moves outside of this region the integrals (2.10) 
diverge because of bad power behavior near r = 0; 
if k moves out the integrals diverge because of bad 
exponential behavior as r ---+ 00. In order to continue 
outside of the region (2.23), we must,therefore, isolate 
those parts of the integrals which diverge and to this 
end we use the power series for CPo and X~ to write 

N 

cpo(r) = 2. anrn+1+1 + remainder (2.24) 
n=O 

with a similar expression for xt, the remainders 
being of order rN+A+i and rN-IAI+i, respectively, for 
small r. Similarly for large r, we use the integral 

12 This corresponds to Eq. (8) of Froissart. For the proof see 
Ref. 8. 

k E {O, <J2/2i}. (2.28) 

To isolate the divergent parts of the double integral 
in Eq. (2.10), we divide the range of integration into 
three parts: 0 < r < r' < 1, 0 < r < 1 < r' < 00, 

and 1 < r < r' < 00. In the first case, for example, 
substitution of Eq. (2.24) for CPo and X~ leads to 
potentially divergent integrals of the form 

(1 r' Jo dr' Jo dr rln'+A+irn+A+1V(r') V(r)/(r, r') 

ioo 

= -(27T)-2ff A(n + A. - a + tn' +). - a' +!) 
-ioo 

X u(a)u(a') da da', (2.29) 

13 For the proof of this integral relation, which corresponds to 
Eq. (17) of Froissart, see Ref. 8. 

"The singularity at k = 0 comes from 1.1" which is singular at 
k = O. 
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where A(s, s') is the double Mellin transform of 
I(r, r') and we have used the inverse of the Mellin 
transform (2.12) in writing the second line. 

The integral (2.29) can be analytically continued 
except when the singularities of u(O') or u(O") pinch 
against those of A. These latter singularities we 
discuss in a moment. Clearly, once they are located 
we can find those of the integral (2.29) and hence all 
singularities of 1'+ arising from small rand r' in the 
double integral of Eq. (2.10). 

The remaining two parts of the double integral of 
Eq. (2.10)-r small, r' large and rand r' both large­
can be treated similarly and their singularities located 
in terms of those of the Mellin-Laplace and double 
Laplace transforms of I(r, r').15 

It remains to establish the analytic properties of the 
three transforms of I(r, r') which we can do much as 
in the paper of Froissart,15 Thus the bound (2.21) 
guarantees analyticity of A(s, s') when 

Re s > max (IRe AI -!,O), Re s' > 1 - Re s. 

One can continue beyond this region using the 
differential equation for I(r, r') whose Mellin trans­
form is16 

[(s - 1)(s - 2) - 1(1 + 1)]A(s - 2, s') 

- 2ocA(s - 1, s') + k 2A(s, s') 

- (27Ti)-1{i:A(S - O', s')u(O') dO' = l/(s + s' - 1) 

and a similar equation in s'. These equations allow a 
strip by strip continuation of A(s, s') which turns out 
to be analytic except whenl ? 

S E {-I - s' - n + m(8 - 2)} 
or 

S E {±A - t - n + m(8 - 2)}. 

Returning to Eq. (2.29) we find that the double 
integral for 1'+ has singularities when 

A E {-tn + Hm + 1)(8 - 2)}. (2.30) 

A similar analysis for the other two parts of the 
double integral gives singularities when 

k E {m~o + ~l , m~o + 2~1}, 
2i 2i 

(2.31) 

but no new singularities in A. 

15 See Ref. 6 or Ref. 8. 
16 This corresponds to Eq. (lOa) of Froissart. Note that we have 

an extra term with coefficient IX, coming from the Coulomb potential. 
11 Compare Eq. (12) of Froissart. Note ·that in our case the 

Coulomb potential causes some additional singularities. 

Combining Eqs. (2.27), (2.28), (2.30), and (2.31) 
we arrive at the result quoted in Eq. (2.11).18 

C. The Singularity at Threshold 

The singularity at threshold for our long-range 
potential differs from that of the short-range case for 
two obvious reasons. First, since the Coulomb 
potential has an infinite number of bound states close 
to threshold, the point k = 0 is an accumulation 
point of singularities. Second, the left-hand cut, which 
for a Yukawa potential starts at E = -/12/4 (or 
k = i/1/2), in our case starts at E = O. This makes the 
branch point at E = 0 considerably more complicated. 
In particular, as a function of k, the short-range 
partial-wave amplitude is analytic at k = 0 when I is 
physical, while for our case this is not so. 

In order to examine the branching properties of the 
Jost function f+(A, k) at k = 0 we note first that 
cp(A, k, r) is clearly analytic at k = 0 and hence that 
the circuit relations for f+ = W[X+, cp] are the same as 
those of X+. Since X+ satisfies the integral equation 

x+(r) = xt(r) - J."" dr'G(r, r')V(r')x+(r') 

[analogous to Eq. (2.16)], where G is analytic at 
k = 0, it follows that the circuit relations for X+ are in 
turn the same as those of the pure Coulomb solution 
X~ . These latter can be derived from standard proper­
ties of Whittaker functions1o and imply that 

j+(A, ke-211i) = j+(A, k)e-211«/k 

- j+(A, ke-l1i)27Tie-211
«/kjr( -1 - v)r(l - v + 1). 

(2.32) 

In the non-Coulomb limit, for which v == ioc/k = 0, 
the second term on the right vanishes when I is 
physical and f+ has no branch point. Obviously, 
when oc -:;6 0 this is not so. 

The circuit relations for SeA, k) or a(A, k) follow 
simply from Eq. (2.32). It is easily seen that the 
branch point at k = 0 is still present for physical 
angular momenta. 

D. Representation as N over D 

In the case of short-range potentials, one can 
express the amplitude a/k2 ! as the quotient of two 
functions Nand D, where N has only the left-hand 
and D only the right-hand cut. In our case the 
corresponding expression is 

a(A, k)e l1«/2k N(A, k) 
=---

k21 D(A, k) 
(2.33) 

18 All singularities of ['+ are certainly included in Eq. (2.11). 
Some points of this set may not in fact be singular if some cancella­
tion occurs. 
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The function N has a cut in E from 0 to - ro and is 
real for E > 0, A real, while D has a cut from E = 0 
to + 00 and is real for E < 0, A real. 

It is clear from the definitions (2.5) and (2.6) that 
Eq. (2.33) can be satisfied by the choice 

N(A, k) = [f+(A, k)ei~l - I-(A, k)J/2(iky+l (2.34) 

and 

(2.35) 

That Nand D defined in this way have the required 
properties follows from the following four relations, 
all of which can be checked by inspection of the 
asymptotic forms (2.2) and (2.3): 

[4>(A*, k*, r)J* = 4>(A, k, r), 

4>(A, -k, r) = 4>(A, k, r), 

[X+(A*, k*, r)J* = X-(A, k, r), 

X-(A, kei~, r) = e-1T«/kX+(A, k, r). 

(2.36) 

From these it follows easily that D(A, k) as defined 
in Eq. (2.35) is real when A is real and k positive 
imaginary (E < 0). The desired analytic properties 
of D follow from the results of Sec. 2B. Similarly 
from Eq. (2.36) follows an identical equation for 
f±(A, k) and from this it follows for real I and k > 0 
that N(A, k) as defined in Eq. (2.34) is real. This 
completes the proof. 

3. THE FULL AMPLITUDE 
A. Outline and Results 

As one would expect, the properties of the full 
amplitude A(k, cos 0) can be derived from those of 
the partial-wave amplitude a(A, k) by means of the 
partial-wave series. For a purely short-range potential 
(such as the Yukawa) a(A, k) falls off exponentially 
as A -- + 00 and the partial-wave series converges 
very well. In the present case (short-range plus 
Coulomb) a(A, k) oscillates as A __ + 00 and the 
partial-wave series for A is of no use. However, the 
difference 

a'(A, k) = a(A, k) - ac(A, k) (3.1) 

behaves much as the ordinary short-range amplitude 
and the series 

A'(k, cos 0) == A(k, cos 0) - AcCk, cos 0) 
00 

== I (21 + 1)a'(A, k)P,(cos 0) (3.2) 
1=0 

converges well. It is obviously sufficient to study the 
properties of A', since the Coulomb amplitude Ac is 
explicitly known.19 

19 See, for example, A. Messiah, Quantum Mechanics (John 
Wiley & Sons, New York, 1966), p. 430, Eq. (XI.55a). In particular, 
A.(k, cos 0) is analytic in cos 0 except on a cut from cos 0 = 1 to 
+00. 

In this section, we shall take as the short-range part 
of our potential a pure Yukawa 

VCr) = ye-p.r/r. 

For this case we show that as IAI -- 00 anywhere in 
the right half-plane Re A ~ 0 (including the imaginary 
axis) a'(A, k) is bounded by 

la'(A, k)1 < const X I A2V
-!e-«A I (3.3) 

as IAI -- 00 with Re A ~ 0 and k real, where 

IX = cosh-1 (1 + fl,2/2k 2). (3.4) 

In the standard way20 this bound guarantees that 
the partial-wave series (3.2) converges and defines an 
analytic function of cos 0 provided 

1m 0 < IX. (3.5) 

This condition confines cos 0 to the interior of the 
so-called Lehmann ellipse centered at the origin with 
semimajor axis (1 + fl,2f2k 2

). 

The bound (3.3) also allows us to continue beyond 
the Lehmann ellipse using the Sommerfeld-Watson 
transformation; that is, we can replace the· sum (3.2) 
by the appropriate contour integral and then distort 
the contour to the imaginary A axis to give the well­
known expression20 

A'(k, cos 0) = i [iOO dA. Aa'(A, k~PI( -cos 0) 
J-ioo sm 7TI 

+ Regge pole terms, (3.6) 

where the usual Regge pole terms are, according to 
Eq. (3.3), finite in number. The expression (3.6) is 
convergent and defines an analytic function of cos () 
provided only 

Re 0 ¥- 0; 

that is, A' is analytic in the cos 0 plane cut from 1 to 
+00. 

Combining this result with the analyticity in the 
Lehmann ellipse of Eq. (3.5), we conclude that, as 
one might expect, A'(k, cos 0) is analytic for all cos 0 
except on a cut from cos 0 = (1 + fl,2f2k2) to + 00. 

B. The Proof 

In order to establish the bound (3.3) for a'(A, k), 
we express a' in terms of an off-shell T matrix satisfying 
a Fredholm equation of the Lippmann-Schwinger 
type. Our method is suggested by a paper of Brown 
e/ al. 21 on short-range potentials, modified by a trick 
described by Scadron, Weinberg, and Wright.22 

20 See, for example, E. J. Squires, Complex Angular Momenta and 
Particle Physics (W. A. Benjamin, Inc., New York, 1964), pp. 3-6. 

21 L. D. Brown, D. Fivel, B. W. Lee, and R. F. Sawyer, Ann. 
Phys. (N.Y.) 23, 187 (1963). 

22 M. Scadron, S. Weinberg, and J. Wright, Phys. Rev. 135B, 
202 (1964). 
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Our starting point is the integral equation 

'P+(r) = 'Pe(r) + LX) dr'G+(r, rl)V(rl)'P+(r') (3.7) 

for the scattering wavefunction 'P+(A, k, r). In this 
equation G+ is the Green's function 

G+(r, r') = - x-;(r> )4>c(r <)/f-; 
and 'Pc is normalized as 

where 

f3 = ie-n / 2k(2k)l+l 

x [ru + ')I + 1)r(l - ')I + 1)]i/1Tr(2A + 1). 

The scattering solution 'P+(A, k, r) is, of course, 
proportional to the solution 4>(.1., k, r). 

The off-shell T matrix is defined as usual to be 

Ti(p, k) = 100 

dr 'PiA, p, r) V(r)'P+(A, k, r) (3.8) 

and comparison of the behavior of 'P+ and 4> for large 
r shows that the amplitude a'(A, k) is related to the on­
shell T matrix TI(k, k) as follows: 

a'(A, k) = Ti(k, k)ScCA, k)/ k2, 

where Se denotes the pure Coulomb partial-wave S 
matrix 

Se(A, k) = r(l + ')I + 1)/r(l - ')I + 1). 

Since Sc"""; A2v as 1.1.1 -+ 00, this means that we can 
prove the bound Eq. (3.3) by showing that 

ITi(k, k)1 < const x IA-te-~).I (3.9) 

as 1.1.1 -+ 00, Re A ~ 0, k real. 
We obtain this bound on T+ by studying the 

Lippmann-Schwinger equation which follows from 
the representation23 

G+( ') =food 'Pc(q, r)'Pc(q, r') r, r q 2 2 • 
o k - q + ie 

(3.10) 

Substitution of this representation into Eqs. (3.7) 
and (3.8) gives the integral equation 

T+(p, k) = Tip, k) + C dq T~:, q)~+~q,. k), (3.11) 
",0 - q Ie 

where Te is defined by Eq. (3.8) with 'P+ replaced by 'Pc' 

•• See Ref. 8. 

As it stands, this integral equation is not V for 
real k. It is, however, a simple matter to replace 
Eq. (3.11) by an equivalent equation for the operator 

t+ = V-!T+V-i 

and the V norm of the latter equation is 

(oodk' (oodk" ITc(k ', k"W . (3.12) 
Jo Jo (k2 - k'2 - ie)(k2 - k,,2 + ie) 

To show that this norm exists and has suitable 
properties as 1.1.1 -+ 00 one must now assume some 
specific form for the short-range part of the potential. 
We shall consider just the case where V is a pure 
Yukawa, in which case Te can be explicitly evaluated 
in terms of the hypergeometric function24 

Tc(k' , k") = y{J(k'){J(k") 

where 

x r(b)sa'+a"-b(s - 2ik')-a'(s - 2ik,,)-a" 

x F[a ', a", b, -4k'k"/(",2 + [k' - k,,]2)], 

a' = I + 1 - iCJ./k ' , 

b = 2.1. + 1, 

s = '" + i(k' + k"). 

Using standard properties of the hypergeometric 
function, it is easy to show that the integral (3.12) is 
convergent. Furthermore, from the asymptotic form 
of the hypergeometric function,25 it follows that 

I Tc(k', k")1 ~ f(k ' , k")A-ie-aA, 
where 

CJ. = cosh-1 [(",2 + k,2 + k,,2)/2k'k"] (3.13) 

and the precise form of the function f(k' , k") is 
unimportant. Substitution of the bound (3.13) into 
the norm (3.12) shows the latter to be O(A-i) as 
1.1.1-+ 00 anywhere in the right half-plane Re A > O. 
This means that the solution T+ of Eq. (3.11) can be 
arbitrarily well approximated by Te when A is suffi­
ciently large, which, in turn, implies tbat T+ satisfies 
a bound of the same type as Te for large 1.1.1, namely, 
Eq. (3.13). This is the desired result. 

"The properties of the hypergeometric functions used in this 
section can be found in Higher Transcendental Functions, A. Erdelyi, 
Ed. (McGraw-Hili Book Co., New York, 1953), Vol. 1. 

•• See, in particular, Ref. 24, p. 77, Eq. (16). The bound (3.13) 
is analogous to the result obtained from Hobson's inequality for 
Legendre functions in Ref. 21 . 
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A statis.ti~al-mechanical theory ?f fields is devel~ped. Since a field has an infinite number of degrees of 
free~o.m, It IS nat~ral and convement to use functIOnal methods for its description. The most general 
statlstlcal-mechamcal state for a field is represented by a distribution functional which satisfies a func­
tional differential equation analogous to the Liouville equation. The functional Fourier transform 
(characteristic functional) is introduced and its properties are studied. Multitime functionals and various 
reduced distribution functions are also discussed. The formalism is applied to the free electromagnetic 
fields as well as to a system of charged particles (plasma) interacting via the electromagnetic field. 

INTRODUCTION 

The statistical theory of charged particles and 
electromagnetic fields has been for some time a 
problem of great interest. Usually, the statistics of the 
field enters only indirectly through relations between 
the field and the fluctuating charge and current 
densities due to the particles. However, in 1957 
Brittin1 and, independently, Harris,2 developed an 
approach in which the fields expressed in terms of 
the oscillator variables were treated statistically on 
an equal footing with the particles by means of an ex­
tended p;1ase space. This approach has been used by 
several people to derive kinetic equations.3 However, 
it has some inherent difficulties4 which can, to a large 
extent, be traced to the fact that for many cases the 
oscillator coordinates do not provide the most 
appropriate description of the electromagnetic field. 
In many ways it is more satisfactory to have a statis­
tical theory in terms of the actual measurable electric 
and magnetic fields. Such a theory is presented here 
and it is shown to provide a very succinct and powerful 
way of describing such a system. 

By its very nature, this description leads to the 
introduction of probability functionals because the 
corresponding "phase space" is a function space. 
Functional descriptions are not new in kinetic theory. 
They have been used to describe Brownian motion,5 
to re-express the BBKGY hierarchy,6 and to treat the 

• This work was supported in part by the U.S. Air Force Wright 
Air Development Division. 

t JlLA is operated jointly by the National Bureau of Standards 
and University of Colorado. 

I W. E. Brittin, Phys. Rev. 106, 843 (1957). 
2 E. G. Harris, Naval Research Laboratories Report 4944, 

1957. 
3 Yu. L. Klimontovich, Zh. Eksp. Teor. Fiz. 37, 735 (1959) 

[Sov. Phys.-JETP 10, 524 (1960)]. 
• R. E. Aamodt, O. C. Eldridge, and N. Rostoker, Phys. Fluids 7, 

1952 (1964). 
• S. G. Brush, Rev. Mod. Phys. 33, 79 (1961). 
6 N. N. Bogoliubov, in Studies in Statistical Mechanics, Vol. /, 

J. de Boer and G. E. Uhlenbeck, Eds. (North-Holland Pub!. Co., 
Amsterdam, 1962), 

problem of turbulent fluids. 7.S Of course, the methods 
of functional analysis are still not developed to a 
point where there are many techniques for solving 
explicit problems. However, in many problems, 
particularly in quantum field theory,9 they have proved 
very useful. Thus, it is important to formulate 
certain problems in functional terms-especially 
problems involving fluctuating fields. Such problems 
are most naturally expressed in functional form. 
Several authors have considered the latter problem 
in the recent past in connection with charged particles 
with only longitudinal fields present. lO •ll 

In this paper we consider the general problem of the 
description of statistically fluctuating fields. Such 
fields might be the hydrodynamic velocity field of 
fluids, the average one-particle phase-space distribu­
tion function for particles, or the exact microscopic 
phase-space distribution function for particles. We 
derive general expressions for the functional Liouville 
equation for systems described by such fields. We then 
introduce the characteristic functional which obeys 
anequation of motion derived from the Liouville equa­
tion. The characteristic functional is of particular in­
terest in turbulence, because various moments of the 
field are given very simply in terms of the character­
istic functional,7·s The theories of Hopf,7 and Rosen,s 
and Nakayama and Dawson10 are included within 
the general formalism presented here. A rigorous 
foundation for the work of Dupree12 is also given. 

I. DISTRIBUTION FUNCTIONALS 

A field is thought of as a real function cJ>(x) defined 
on some underlying space whose points are denoted 

, E. Hopf, J. Ratl. Mech. Anal. 1,87 (1952); E. Hopf and E. W. 
Tit!, ibid. 2, 587 (1953). 

8 S. Rosen, Phys. Fluids 3,519 (1960). 
• R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path 

Integrals (McGraw-Hill Book Co., New York, 1965). 
lOT. Nakayama and J. Dawson, J. Math. Phys. 8, 553 (1967); T. 

Nakayama, Phys. Fluids 10, 247 (1967). 
11 I. Hosokawa, J. Math. Phys. 8, 221 (1967). 
12T. H. Dupree, Phys. Fluids 6,1714 (1963). 
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by x (usually, x denotes a point in some Euclidean 
n-space En). The function cf> may have any (finite) 
number r of components13 cf>i' The field, in general, 
depends upon the time t, and is assumed to satisfy a 
partial differential equation which is of first order in 
time 

0$ "'. a$i ,~. 
- = A[cf>], I.e., - = Ai[cf>], I = 1, ... ,r. (1) at at 
In general, A may be a nonlinear operator, but it 
does not depend upon time. The "caret" over cf> 
indicates that $ is a time-dependent field which 
satisfies Eq. (1). If cf> is a field which does not depend 
upon time, we define ¢(x) as 

¢(x) == A[cf>]. (2) 

The statistical description of the field may be 
accomplished by the use of a field distribution 
functional F = F[cf>, t]. Roughly speaking, F is a 
"function" of the values cf>(x), cf>(x'), ... of cf> at aU 
the points x in En. The functional F is the prob­
ability density for the field cf>(x), which signifies that 
F[cf>, t] d[cf>] is the probability that at time t the field 
is found to be cf>(x) within the volume element d[cf>] of 
function space.14 We normalize F to unity: 

J F[cf>, t] d[cf>] = 1. (3) 

The distribution functional satisfies the continuity 
equation (conservation of probability): 

of f b at + dxA[x, cf>] bcf>(x) F = 0, (4) 

where we have assumed that bA[x, cf>]fbcf>(x) = 0.15 

The functional derivative is defined as the distri­
bution14 bF/bcf> in the following expression 

:), F[ cf> + ),cf>llLt=o = (~:, cf>1)' (5) 

where the scalar product (bF/bcf>, cf>1) for real functions 
is defined by 

J
dX bF[cf>] cf> (x). 

bcf>(x) 1 

18 The formalism presented here is more general than the Hamil­
tonian formulation of fields which it includes as a special case. 
For example, we may think of </> as having "coordinate" and 
"momentum" components. 

1< See Appendix A for a fuller discussion of the various mathe­
matical concepts used in this paper. 

15 For the problems considered in this paper we have aAla</> = O. 
If this is not the case, some of the following development must be 
slightly modified. 

Equation (4) may be written in operator form 

of + LF = 0 
at ' 

(6) 

with the Liouville operator defined as 

L ==JdXA[X, cf>J _D_. 
bcf>(x) 

(7) 

Average values (G) of functionals G[cf>, t] of the field 
are computed through functional integration of the 
product of F and G: 

(G[cf>]) = f F[cf>, t]G[cf>, t] d[cf>] == (F, G). (8) 

In the above equation, (F, G) defines a scalar product 
for functionals. 

The Liouville operator is skew-symmetric with 
respect to the scalar product (F, G): 

(LF, G) = - (F, LG), (9) 

where it is assumed that F and G are in the domain 
of L. 

The formal solution of Eq. (6) is expressed by 

(10) 

Fo[cf>l being the value of Fat time zero. Equation (10) 
may also be expressed in terms of the solution $( -t) 
of Eq. (1) which has the value cf>(x) at time zero: 

F[cf>, t] = Fo[$(-t)], $(0) == cf>. (11) 

Equation (11) follows from the fact that probability 
is conserved along the natural motion of the system. 
The equation of motion for average values of func­
tionals of cf> is obtained directly through 

!!.. (G[cf>]) = jaF , G \ 
dt \at / 

= -(LF, G) 

= (F, LG) == (F, G), (12) 

with G == LG. (If G has an explicit dependence upon 
time, we must define G as LG + aG/at.) We may also 
introduce "Heisenberg" operators G(t) which carry 
all of the time evolution. That is, 

(G) = (F(t), G) = (e-tLFo, G) 

= (Fo, etLG) = (Fo, G(t», (13) 

where G(t) == etLG. Thus, (G)t = (G(t))o which means 
that all statistical averaging may be done at the initial 
time. In the above equations, G itself may depend 
explicitly upon time. 
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If the delta functional M4>] is introduced (see 
Appendix A) having the properties 

M4>] = 0, 4> t= 0, 

I A[4>] d[4>] = 1, 

I A[4>1 - 4>2]G[4>2] d[4>2] = G[4>d, (14) 

we may recover solutions of the exact field equations 
by choosing Fo[4>] = M4> - 4>0]' In fact, for any 
functional G[4>], we have 

(G[4>l> = I G[4>]e-L (4))tA[4> - 4>0] d[4>] 

= I(eL (4>)tG[4>])A[4> - 4>0] d[4>] 

= eIA 4>o ltG[4>o] = G[eL (4)o)f4>o] = G[$(x, t)]. 

( 15) 
In particular for G = 4>, 

<4>(x» = $(x, t) = et L<4>o)4>o. (16) 

We note that $(x, t) is a functional of 4>0' the value of 
$ at t = 0, and that the integration of Eq. (1) is 
equivalent to Eq. (16). For from Eq. (1), it follows 
that 

$[4>0' t] = 4>0 + fA[$(4)o, t)] dt 

and, from Eq. (15), 

$[4>0' t] = 4>0 + fetL(4)O)A[4>o] dt 

etL(4)o) _ 1 
= 4>0 + L( 4>0) A[ 4>0] 

etL(4)o) _ 1 
= 4>0 + L( 4>0) L( 4>0)4>0 

= etL(4)o) 4>0' (17) 

Conversely, from $(t) = eW 4>o)4>o, it follows that 

$(t) = 4>0 + (etL (4>o) - 1)4>0 
etL(4)o) - 1 

= 4>0 + L( 4>0) L( 4>0)4>0 

= 4>0 + Lt eT L(4)o) dT A[ 4>0] 

= 4>0 + fdT A[eTL (4)O) 4>0] 

= CPo + rdT A [$(T)], (18) 
.0 

where we have used the fact that 

L(4)o)4>o(x) =IdX' A[x', 4>0] _15_ 4>o(x) 
o4>o(x') 

= A[x, 4>0] = 1>0,' 

The distribution functional F[4>, t] may also be 
expressed in terms of an average of a delta functional, 
since 

F[4>, t] = Fo[4>( -t)] = I Fo[4>dA[4>1 - $( -t)] d[4>1] 

= (A[ 4> - $(- t)])o· (19) 

This form for F[4>, t] is useful if we wish to consider 
averages offunctionals at different times. For example, 
if we want the average value of 6[$(t1)' $(t2),'" , 
4>(tn)], we may write 

(G[$(t 1), ••• , $(t,,)]) 

= I F,,[4>1 , t1; 4>2' t2 ;··· ; 4>n' tn] 

X G[ 4>1' 4>2' .. 4>,,] d[ 4>d ... d[ 4>,,], (20) 

where we have introduced the multiple-time distri­
bution functional Fn [4>1' t1 ; ••• ; 4>,,, tnJ. However, we 
now show that, since all the statistical information is 
contained i'n F[4>, t] = F1[4>, f], we may express Fn in 
terms of F. In fact, 

(G[$(t 1 ), ••• , $(t,,)]) 

= I F[4>, 0]6[$(t1), $(12)' .. $(tn)] d[4>] 

= I F[4>, OlI A[4>1 - $(t1)] 

X A[4>2 - $(t2)]· .. M4>n - $(tn)] 

x G[ 4>1' 4>2' ... , 4>n] d[ 4>d ... d[ 4>n] d[ 4>] (21) 

= I F[4>, 0] exp {-itLiti} 

X A[4>1 - 4>]A[4>2 - 4>] ... A[4>n - 4>] 

x G[ 4>1' ... , 4>n] d[ 4>d ... d[ 4>n] d[ 4>]. (22) 

Therefore, 

Fn[4>1 , t1; 4>2' t2;··· ; 4>n, t n ] 

= Id[4>]F[4>, 0] exp {-itLiti} 

X A[4>1 - 4>] ... A[4>n - 4>] 

= I d[4>]F[4>, 0] exp {-itL;f;} 
x A[4>1 - 4>]M4>2 - 4>d' .. A[4>n - 4>1] 

= I d[4>]F[4>, 0]A[$1( -t1) - 4>] 

x exp {-itLiti}A[4>2 - 4>d' .. M4>n - 4>d 

= F[4>l td exp {-itLiti}A[4>2 - 4>1] ... A[4>n - 4>1] 

= F[4>1tdA [$2(-t2) - $1(-t1)]··· 

A[$n( -tn) - $1( -t1)], (23) 
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which shows that all multiple-time correlations may 
be expressed in terms of E[cP, t], the single-field 
distribution functional. 

II. REDUCED DISTRIBUTION FUNCTIONS 

The specification of E[cP, t] requires an enormous 
amount of statistical information which must be given 
at the same time, say time zero. Many questions do 
not require such a vast amount of information for 
their elucidation. For example, if G is an ordinary 
function of the field variables G = G[cP(x1), cP(X2), ... , 
cP(xn)], we have for the average of G: 

(G) = <r· J G(cPl" ", cPn) 

X b(cPl - cP(Xl» " . b(cPn - cP(xn)) dcPI'" dcPn) 

= II G(cPl' ... , cPn) dcPl ... dcPn 

X (b(cPl - cP(Xl»' .. b(cPn - cP(xn») 

== IIdcPl'" dcPnG(cPl>"', cPn) 

X in( cPl , Xl; cP2' X2; ... cPn, Xn; t), (24) 

where cPl"", cPn are numerical-valued quantities 
and In dcPl ..• dcPn may be regarded as the prob­
ability that at time t the field has the value cPl at 
Xl, cP2 at X2, ..• , and cPn at Xn within the range 
dcPl' ... , dcPn . Of particular interest are the moments 
(cP(xl) ..• cP(xn» which are simply related to In: 

(cP(Xl) ... cP(Xn» 

= f cPlcP2'" cPnin(cPl"", cPnt) dcPl'" dcPn· (25) 

The Heisenberg picture may be used to obtain a 
particularly useful form for In 

in(Xl cPl' ... , Xn cP .. t) 

/n \ 
= \TI ~(cPi - cP(xi»/ 

= <e-tLFo, iJ. ~(cPi - r/>(Xi») 
/ n '" \ 

= \Fo, 1l ~(cPi - CP(Xi' t» / 

= (b( cPl - $(xit» ... ~(cPn - $(xnt)))o. (26) 

The latter form has been used by Dupreel2 in his 
treatment of radiation and plasmas. 

If we consider an arbitrarily large volume V of the 
underlying space En, and divide V into an arbitrarily 

large but finite number M of cells ~T", ~ = 1, ... , M, 
V = L" ~T", then we may "project" the function 
cP(x) upon the cells ~T" and write an approximate 
expression: 

M 

cP(x),...." L cP"E..(x), (27) 
,,=1 

with 

cPa< == ~~" I cP(x)Eix) dx, (28) 

where E,,(x) is the characteristic function for the cell 
~T" [E,,(x) = 1 if X E ~T", and Eix) = 0 otherwise]. 
The distribution functional, then, is approximately a 
function of the M variables cP,,: 

and, apart from the normalization constant, 

I F[cP] d[cP] 

,...." I F M[cPl' ... , cP ]lIt] dcPl dcP2 ... dcP M = 1. (30) 

Further, if the Xl, •.. , Xn in Eq. (26) correspond to 
cells ~1' 1X2 ••• ~n' we have approximately 

in(Xl' cPl' ... , xncPnt) 

f 
n M 

"" FlI[[cPl"", cPn] 1] ~(cPi - cP"J II dcP,,· (31) 

The above argument also shows how, in a manner 
similar to that used in Wiener measure,5 we can 
recover the full distribution functional by allowing n 
in In to become infinite in a suitable way such that 
(cPl' cP2' ..• , cPn) -- cP(x). 

The equations of motion for In form a hierarchy 
similar to the BBGKY hierarchy of ordinary statistical 
mechanics. These equations may be derived from the 
equation of motion for E[cP, t] or from that of cP 
using Eq. (26). We can also introduce multitime 
correlation functions, most simply defined by 

in(XltlcPl; X2t2cP2; ... ; xntncPn) 

/n '" \ 
= \11 ~[cPi - CP(Xiti)]/O' (32) 

which find application to fluctuation phenomena.12 

We next proceed to the equations satisfied by in' 
and to this end we introduce a generating functional 
g[u(x, cP)] for In by means of 

g[u, t] = 1 + i .l f· . ·fd1 ... dn 
11=1 n! 

X in(l, 2, ... , n, t)u(1)u(2) ... u(n), (33) 
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where 1 == Xl' epl' 2 == X2 , ep2, etc., and dl = "Xl depl' 
.. '. We have 

fn(1,' .. ,n, t) = [ bnG[u] ] (34) 
bU(l) ... ou(n) ,,=0 

From the definition (31) off", it follows that 

§[u, t] = i .l J' .. Jd1 ... £In 
n=O n! 

X (tl b(epi - ep(Xi»)II(t) ... u(n), (35) 

§[u, t] = (exp [f dl b(epl - ep(Xt»U(l)]) 

= f F[ep, t] exp [f d1 b(epl - ep(XI»II(1)] d[ep]. 

(36) 

We set E[ep, u] = exp [S dl O(epl - ep(xl»u(I)] so that 

and 

§=fF'Ed[ep]=(F,E) (37) 

()§ = /oF E \ = -(LF E') = IF LE) (38) at \ot' / " \' , -
where L = S dx A[x, ep]%ep(x). We note that, since 

(39) 

and 

(40) 

we have 

(42) 

(43) 

or, finally, 

(44) 

For applications it is important to note that 

(45) 

The above equation expresses the fact that 

We may obtain an expression for of,./ot by differen­
tiating Eg. (44) n times with respect to u(l),' .. ,u(n) 
and setting u == 0: 

a bn~ I 
= at 011(1) ... ou(n) u=O 

= dx dep I b(x - Xi) -----, If n ab( ep - ep-) 

i=l oep 

The general structure of the hierarchy (47) depends, 
of course, upon A [x, ep], but it is clear, in general, that 
Eq. (47) couples fn to /,1/ , m > /l. 

As a special case we consider A [xep] = Aep(x) + 
Dep(x), where A is a constant matrix and D is a matrix 
involving derivatives with respect to x. Then making 
use of Eq. (45), we find that 

A very simple example consists of a linear string. Here, 
ep = (~[~l), where y(x) is the transverse displacement 
of the string at the position X along the string, and 
vex) is the transverse velocity. The equations of 
motion are: 

. (y(x») (V(X») 
1> = v (x) = c2y"(X) , 

(49) 

so that Aep = (~) and 

Dep = c2!f( 0 ) 
dx2 y(x) . 
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Therefore the hierarchy for the linear string iS16 •17 

(50) 

Equation (44) for ~ can be expressed somewhat 
more simply if one introduces the functional Fourier 
transform of~: 

~[u] = J ei(u,v)JV'[v] d[v(x4>)], 

with (u, v) == f u(x4»v(x4» dx d4>. Then!n are ex­
pressed as moments of v with respect to JV' [v]: 

bU~ I 
fi1, ... , nt) = bu(l)' .. bu(n) u=o 

= in J vel) ... v(n)JV'[u] d[u] 

== in(v(l) ... v(n»x. (51) 

The equation satisfied by .~0 is obtained from Eq. (44) 
and reads 

a." = JfdX d4> aIJ(x, cp) A[x, iJd4>ICP1V(' CPl)] bJV' . at ocp bv(xcp) 

(52) 

It is important to note that, as a result of relation 
(45), we have 

We now present another way of obtaining expressions 
for the functions!". From the definition Eq. (31), we 
have 

f,,(I,·· " I1t) = J IT b(4)l - cp(xi»F[cp] d[cp]. (54) 

Let 

F[cp] = J ei
(4),(h

IG[CPl] d[4>I]' 

(4),4>1) == J CP(X)CPl(X) dx, (55) 

'6 W. E. Brittin and w. R. Chappell, Lectures in Theoretical 
Phy,ics. Vol. VIII, W. E. Brittin, Ed. (University of Colorado Press, 
Boulder, Colo., 1966); W. E. Brittin, Lectures in Theoretical Physics, 
Vol. I X, W. E. Brittin, Ed. (Gordon and Breach Science Publishers, 
New York, 1967). 

17 W. E. Brittin, W. R. Chappell, and A. Y. Sakakura, U.S.A.F. 
Aerospace Research L.aboratories Technical Report 64-85, 1964; 
W. R. Chappell, JIL.A Report 35,1965. 

then 

fn = J ei
(4),4>,) n b(4)1 - cp(x1»G[4>I] d[cp] d[4>IJ 

= _1_ Jfei(</>'</>')JiI dw; 
(27T)nr ;=1 

X exp {ii~ Wi(4)i - CP(X»}G[CPl][dCPl][dCPJ 

= _1_ Jexp {i i Wi(4)i - 4>(X»} 
(27Trr i=1 

X gn(Xl, WI;'" ; Xn, Wn; t) dWI •.. dwn, (56) 

with 

gn == J J d[ cP J d[ CPl]ei
(4),4>t> 

X exp {- J i~Wib(X - x i )4>(x) dX}G[4>I] 

= G[Xn], (57) 

where Xn(x) == L;~1 wib(x - Xi)' In order to obtain 
Eq. (57), we made use of the delta functional defined 
by Eq. (14). It is interesting to observe that the value 
of the functional Fourier transform G of F for the 
argument Xn gives the ordinary Fourier transform 

gn of!n· 
Expressions for the moments or field correlations,18 

(4)(X1)7I'4>(X2)71 2 ••• 4>(x.)"·) 

=Jf(X A. ... X A. )A.n, ... A.7I, dA. ... dA. - s" 1 ~1 , ,s'Ps 'PI 'fIs 'PI 't's, 

may be obtained directly. Since 

where Inl == n1 + n2 + ... + nT, Eq. (55), when used 
in the above expression for the moments, yields 

(4)(X1)''I4>(X2)7I2 ••• 4>(x.)n.) 

= (i)([n,I+ln21+'" +In.11 a "1+'" +71, G[xJlw=o (58) 
awr' ... a(v.:' 

(59) 

A special case of the above result was first reported 
by Hopf.7 

'8 The field 4> has r components; thus, n is an r-component 
vector (n', n', ... , nr) and 4>" is 4>~'4>~' ... 4>~'" For some problems 
it is convenient to set K(2, I) = 0 for t. < t,. 
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III. SUBSIDIARY CONDITIONS 

It may happen that the components of rP are not 
independent but satisfy certain subsidiary conditions 

Sk[rP] = 0, k = 1,'" ,s. (60) 

We may incorporate these conditions by demanding 
that F be zero unless Eqs. (60) are satisfiedI6 : 

Sk[rP]F[rP, t] = 0, k = 1,'" ,s. (61) 

In terms of the functional Fourier transform G of F, 
these subsidiary conditions become 

Sk[i~JG[rPI,t]=O, k=1,"·,s. (62) 
brPi 

For example, in the case of the electromagnetic field 
the condition V . B = 0 is reflected in the subsidiary 
condition 

b 
V . -- G[BI(r)] = 0, 

oBI(r) 
(63) 

which guarantees (by setting BI equal to zero in 
Eq. 63), V· (B(r» = O. 

In certain cases, such as the electromagnetic field, 
subsidiary conditions on the field are satisfied by 
virtue of the field equations if they are satisfied 
initially. In these cases the reflected subsidiary 
conditions Sk[rP]F = 0 are satisfied for all times 
t > 0, if Sk[rP]F = 0 at time t = O. We prove this 
assertion as follows: the condition for Sk[¢] to be 
zero if it is zero at time t = 0, is 

ask[ ¢(xt)] = fdX $(xt) bS:[ ¢] 
at b1>(xt) 

IV. FORMAL SOLUTIONS 

We have seen (Sec. I) that the solution of of/at + 
LF = 0 can be written formally as 

F[ rP2t2] = e-(t2-t1)L2F[ rP2' til, 

F[ rP2t2] = I e-(t2-t1)L2Ll[ rP2 - rPdF[ rPltd d[ rPI] (67) 

which suggests, as has been observed by Rosen,S 
that it is convenient to introduce a propagator 
K[rP2rPlt2tI ] such that 

F[rP2t2] = I K[rP2' rPI' t2, tdF[rPltd d[rPd· (68) 

We observe directly that 

K[ rP2' rPI, t2, til = e-(t.-t1)L2Ll[ rP2 - rPI] 

= Ll[¢2(-t2) - ¢I(-tI)] 

= ~[$2(ti - t2) - rPI] 

= ~[rP2 - ¢1(t2 - t1)], (69) 

where ¢;(t) satisfies the equation a¢i/at = A[¢i] and 
¢;(O) = rPi, i = 1, 2 .... The propagator K satisfies 
the equationI9 

aK~2, 1] + L2K2[2, 1] = 0 (70) 
t2 

and the initial condition 

(71) 

In addition, it has the semigroup property 

= IdX A[x J:] bS,,[ ¢] = 0 
''I' b¢(xt) 

(64) K[2, 1] = I K[2, 3] d[rP3]K[3, 1]. (72) 

or, for an arbitrary function rP(x), 

IdX A[x rP] bSk [ rP] = o. 
, brP(x) 

However, 

(65) 

That the formal solution Eq. (69) has the semigroup 
property follows from the identity 

Ll[rP2 - rPI] = I ~[rP2 - rP3] d[rP3]~[rP3 - rPI]' (73) 

The solution given by Eq. (69) can also be obtained 
by solving Eqs. (70) and (71) in terms of path inte­
grals.6 The interval [tI, t2] is split up into a large 
number, N + 1, of intervals tl = to, tI, ... ,tN+1 = 
t2 with ~t = t i+1 - ti, i = 0, ... ,N. The relation 
given in Eq. (72) is then repeated N times to yield 

K[2, 1] = r . J K(N + 1, N) d[rPN]K[N, N - 1] by virtue of Eq. (65). Therefore, 

SkF(t) = e-tL[SkF(O)], (66) x d[rPN- 1] . .. d[rPI]K[1, 0]. (74) 

so that, if SkF = 0 at time t = 0, Sk[rP]F[rP, t] = 0, 
t > O. A similar statement applies to Sk[ib/brPI] x 
G[rPlt] = o. 

_9 For some problems, it is convenient to set K( 2, 1) = 0 for 
12 < ' 1 , In this case, Eq. (70) becomes oK(2, 1)/01. + L.K(2, 1) = 
(J(t. - t1)~[<P' - <P1]' 



                                                                                                                                    

668 W. E. BRITTIN AND W. R. CHAPPELL 

We have from Eq. (69) that 

K[i, i - 1] 
= e-MLiLl[c/>i _ c/>i-1] 

= f e-l!tLi exp {i f Z;(x)[c/>i(X) - c/>i-1(X)] dX} d[z;]. 

(75) 
However, since 

f . 6 
Li = dx;A(x;, c/>') Dc/>i' 

we may write 

K[i, i - 1] 

= f exp { - iLlt f dx; A[Xic/>i] Z;(X;)} 

{ f[
c/>i(X) - c/>i-1(X)] } 

x exp iLlt - Llt z;(x) dx d[Zi(X)] 

= f exp {jLlt f dx Zi(X) 

where there are now no restrictions on the values of c/> 
at II and 12, The z(XI) integration can be performed 
immediately to obtain 

K[2, 1] = J d[c/>(xt)]LXC~C/>~;t) - A[x, c/>J) 

x Ll[c/>l - c/>(xt1)]Mc/>2 - c/>(xt2)], (79) 

where LX is the delta functional for functions c/>(x, I) 
of x and I with lISt S 12 , 

The delta functional LX in Eq. (79) shows that 
contributions to K[2, 1] come only from exact paths 
o$/ot = A[$]. We therefore expand the delta func­
tionaJ22 into a sum over exact trajectories 

LX[~~ - A[c/>]] = J LX[c/> - $]N[$] d[$], (80) 

where the integral is now over a "spacelike" surface 
$[x, I(X)], (since a solution is determined by one 
point on the trajectory) and N[$] is to be determined. 

X c/>i(X) - c/>i-\X) _ A[Xc/>i]} d[z;(x)]. 
Llt 

(76) Substitution of Eq. (80) into Eq. (79) then yields the 
result 

Following Rosen,8 we introduce continuous time­
dependent functions c/>(x, t), z(x, I), such that c/>(x, 
Ii) = c/>i(X), z(xli) = Zi(X), Then in the limit N--
00, Eq. (74) becomes the conditional path integral8.20 

K[2, 1] = II d[z(xt)] d[c/>(xt)] 

~("'tzl=~2 
4>(",t1 l=4>1 

X exp{if·dtIdXZ(X,t)(~~ -A[X,c/>])}. (77) 

The restrictions c/>(x/2) = c/>2' c/>(X/1) = c/>1 may be 
removed by introducing delta functionals21 : 

K[2, 1] = II d[z(x, t)] d[ c/>(xt)] 

x exp {i.Cdt dx Z(xt)(~~ - A[xc/>])} 

x Mc/>l - c/>(xt1)]Ll[c/>2 - c/>(xt2)] 

= II d[z(xt)] d[c/>(xt)] 

x exp{ifld'dXZ(X,t)(~~ -A[Xc/>])} 

x exp {-if Z(Xt1)[c/>1 - c/>(xt1)] dX} 

x exp {if z(xt2)[ c/>2 - c/>(xt2)] dX}, (78) 

.0 J. Tarski, Lectures in Theoretical Physics, Vol. X, W. E. Brittin. 
Ed. (Gordon and Breach Science Publishers, New York, 1967). 

21 Some of these expressions a.ppear strange at first glance. How­
ever, they can be demonstrated by dividing the interval (fl' t.) into 
small segments to obtain suitable approximations. 

K[2, 1] = f d[$]N[$]Ll[c/>1 - $(x, t1)]Ll[c/>2 - $(x, t2)] 

(81) 

and, since we may take the integral over $ to be that 
over $(X/1), say, we have 

K[2, 1] = N[c/>1]Ll[c/>2 - $(x, t2)]I~(:lt1l=~1 

= N[c/>I]Ll[c/>2 - c/>l-.CA [$l(r)]dr]. (82) 

When 12 = II, K[2, 1] = Ll [c/>2 - c/>1], so N[c/>l] = 1 
and 

K[2, 1] = e-(t2- lt lL2Mc/>2 - c/>1] 

which is just Eq. (69). As a byproduct we have the 
identity 

LX[~~ - Ll[c/>]] = f LX[c/> - $] d[$], (83) 

which shows that all solutions $ contribute the same 
weight. If c/>(XI) is a solution $' say, Eq. (83) states that 

LX[O] = J LX [$' - $] d[$], (84) 

which, at first glance, appears to yield unity on the 
rhs. However, this is not the case, since 

f d[c/>(XI)]Ll[c/>(xI) - c/>I] = 1 

only when the integral goes over all space-time 
paths. 

•• Analogous to the expansion 6[[(x)] = ~i6(x - x;)/If'(Xi)l. 
[(Xi) = o. 
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The propagator K(2, 1] may be Fourier transformed 
to yield the propagator K(2, 1] for the characteristic 
fum:tional G['P]: 

G[V'2t2] = I K[2, l]G['Pl tl] d['Pl], 

where 

(85) 

K['P2'Pl t2td == K[2,1] 

= I J e- i (!J'2,4>')K[2, l]e/(,,.,,4>,) d[ 4>d d[ 4>2]' 

(86) 

The expression (76) for K[2, 1] is then substituted into 
Eq. (86) to yield (after integration by parts of the 
za4>/at term): 

K[2, 1] = Jf d[z(xt)] d[4>(x, t)] d[4>l] d[4>2] 

X exp [- i( '112' 4>2)] 

X exp {-iLlZ(xt)A[X4>J + ~; 4>(xt)] dxdt 

+ i J [z(xt2)4>(Xt2) - z(xt1)4>(xtl )] dX} 

X eXP {-iIZ(xtl)[4>l(X) - 4>(Xtl)]dX} 

X exp {iI Z(Xt2)[4>2(X) - 4>(xt2)] dX} 

X exp [i( 'PI' 4>1)]' (87) 

K[2, 1] = ff d[z(xt)] d[4>(xt)] 

X ~[Z(Xt2) - 'Plx)]~[Z(Xtl) - 'Pl(X)] 

X exp (- i jj dt dX{ z(X t)A[x 4> ] 
t, 

+ ozi:t) 1>(xt»)} (88) 
or 

.K[2, 1] = II d[z(xt)] d[4>(xt)] 

z("'t21~'1'2("') 
.("'t')~'1'l("') 

X exp ( - i if dt dx 1 z(x,)A[ x + l+ :: 1>(xt»)). (89) 

The above conditional path integral for .K[2, 1] has 
been obtained previously by Rosen8 using directly the 
procedure employed above for K[2, 1]. This form (89) 
for K[2, 1) is particularly useful as Rosen has pointed 
out, if A is quadratic in 4>(xt). In that case, the 
integration over 4> can be performed. This is the case, 

for example, for the Navier-Stokes equation8 and the 
Vlasov equation. 

The formal solution Eq. (89) may be used for the 
evaluation of moments. We have, from Eq. (59), 

< 4>(XlYl4>(X 2)rl2 ••• 4>(xr)rl
r)t2 

r5 lnl 
= i lnl --------

b'P2(Xlt' ... b'P2(Xr)n
r 

X J K(2, l)G[ll'1tl] d['Pdl'l'2=o (90) 

= ilnl(-l)lnIJJdfzl, dfA.} bini 
l) l'l-' "( t) n, "( t) 11" uz Xl 2 .. , oZ Xr 2 

X ~[Z(Xt2) - 1I'b:)] 

X d[Z(xtl) - 'Pl(X)] 

X exp ( - i if d, d+rxt)A[X +1 + ozi;t) 1>(xt»)) 

X G['Pltd d['PlJ (91) 

II d{ z} d{ 4> }4>(Xlt2)n1. •• 4>(xrt2f r 

.(",t.)~O 

X exp ( - i j[ dt d+rxt)A[X +1 + oZi;t) 1>(x,»)) 

X G[z(xtl), td. (92) 

Equation (92) generalizes to all orders, the results 
obtained by Rosen8 for <4>(x2» and <4>(Xl)4>(X2». 

V. PARTICLES AS FIELDS IN PHASE SPACE 

We now consider a system of N particles interacting 
with the field 4> and introduce the microscopic phase­
space density23-271(r, p, t) defined by 

N 

l(r, p, t) = L b(r - f;(t))b(p - Mt». (93) 
;~l 

The coupled equations of motion for the particle­
field system may be taken to be 

and 

alex, t) = Al[x, $,1] 
at 

a$(r, t) _ A [ ;t J"'] 
at - 2 r, '1-" , 

where x stands for the phase point r, p. 

(94) 

(95) 

.3 Yu. L. Klimontovich, Zh. Eksp. Teor. Fiz. 33, 982 (195.7) 
[SOy. Phys.-JETP 6, 753 (1958)]. 

'4E. P. Gross, J. Nucl. Energy C2, 173 (1961). 
.5 J. Dawson and T. Nakayama, Phys. Fluids 9, 1881 (1966). 
•• W. R. Chappell, J. Math. Phys. 8, 553 (1967). 
'7 C. S. Wu, Lectures in Theoretical Physics, Vol. IX, W. E. 

Brittin, Ed. (Gordon and Breach Science Publishers, New York, 
1967). 
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The statistical-mechanical treatment of this system 
may be accomplished by the introduction of a distri­
bution functional F[1>,f, t] for the pair of "fields" 
1>(r) and/(r, p). The Liouville equation for F can be 
written 

- + dx Al[x, 1>,1] -of f of 
at of (x) 

+ dr A2[r, 1>, f] -- = 0, f of 
. o1>(r) 

(96) 

provided that 

fdX __ 0_ A (x ..I.. f) +f cirM 2[r, 1>,1] = O. (97) 
of (X) 1 ,'/',- 61>(r) 

Just as in the cases previously treated, we may 
introduce the functional Fourier transform G[1>l,fd 
in terms of which the various moments may be 
expressed, i.e., 

frCX 1X2 ' •• xrt) == <1(x1)f(x2) ••• f(xr» 
_ 'r IY G\ (98) 
- I Of1(X1)'" ofJ(x

r
} ft~O . .p1~O, 

bS 

<1>(rl)1>(r2)1>(rS» = is 61>1(r
1
) ... ;;1>l(r

S

) G\ft~O . .pFO' 

(99) 

<1>(r1)f(x1)1>(r2)' •• 1>(r.)f(xs» 
-,28 

_ '2s U G'I 
-/ -'..I.. )-,{ ) -'..I..()\I' 11=0.4>1=0, 

U,/,1(r1 bJ1(X 1 ••• (J'/'1 rs OJ (x,J 

etc. The quantity!r(x1, ... , xrt) is a reduced r-particle 
phase-space distribution function. However, IT in­
cludes self correlations which can be eliminated by 
introducing the usual r-particle distribution functions 
l~ throughlO 

J,.(XI ... xrt) 

= i _0_ (i _0_ - 0(1,2») 
(jj~(Xl) oUx1) 

X (i _0_ - 0(1,3) - 0(2,3») 
Ofl(X3) 

... (i _0 _ _ 0(1, r) 
oUx.) 

- 0(2, r) - ... - oCr - 1, r») G"'''''O . .p1~O' (100) 

Correlation functions may be introduced through 
their generating functional H, i.e., 

G = ell (101) 

which lead to Mayer-type cluster expansions. 

VI. THE FREE ELECTROMAGNETIC FIELD 

Maxwell's equations for the free electromagnetic 
field are: 

loE 
V x B - - - = 0, V 0 B = 0, 

c at 
loB 

V x E + - - = 0, V 0 E = O. (102) 
c at 

Therefore, the distribution functional F[E, B, t] for 
the field satisfies the eq uation of motion 

- - + cir V x B 0 - - V x Eo - = 0 (103) 1 of f { of OF} 
c at oE oR' 

while G, the functional Fourier transform, satisfies the 
equation 

I oG f { oG oG - - + dr V x E1 0 - - V X Bl 0 - = 0 
c at oRl oE l 

(104) 

which is exactly the same as Eq. (103) with B -+ El 
and E --+ B1. Since the initial-value problem for the 
free electromagnetic field can be solved, Eqs. (103) 
and (104) can be solved. To this end we introduce in 
Eq. (104) the complex field F1 = Bl + iEl' Fi = 
B1 - iE l . Then Eq. (104) becomes 

-- -, r x Flo- - X Fl 0- = O. 1 oG 'fci {V oC V . * OG} 
c at oFl of: 

Equation (l05) may be sotved directiy16 to yield 

G[F1' Ft, t] = exp {ictfdr[ V x Flo O~l 

(105) 

- V x Fi 0 ~J}G["Fl' Ft, 0] 
oFi 

= G[eictVXF1, e-ictVXFi, 0]. (106) 

The solution (106) corresponds to the fact that the 

characteristic equation for F 1 is of 1/ at = - icV X F 1, 
A A 

which has the solution FlU) = e-ictVXF1(0). Thus, 
Eq. (106) is an example of the general result (11). 

The subsidiary conditions (V 0 E)F = (V 0 B)F = 0 
mean that we may consider the arguments E, B of 
F[E, B, t] as being transverse. Further, since S El(r) 0 

E(r) dr projects out the transverse part of E1(r), we 
may consider G[E1(r), Bl(r), t] to be a functional of 
the transverse parts ofE1, B1 • That is, we may consider 
as arguments of G, only those E1, Bl for which 
V 0 El = V 0 Bl = O. 
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A A 

The solution F1(t) = e-ictVXFl(O) may be expressed in terms of 

simply in terms of the Pauli" D" function: <E(rDE(r~) ... E(r;)B(r;_ll) ... B(r'»o, s = 0, ... 1, 

A (1 a 
F (r t) = - - - iV x 
1, l e at 

}J D{r - r', t}Fl(r', 0) dr', 

(107) 
with28 

D(r, t) == - exp (ik • r) dk, (108) 
1 f sin (e Ikl t) 

(27T? IkJ 
and V· FI(r, 0) = O. The function D may also be 
expressedasD(r, t) = (47Tr)-I{b(et - r) - beet + r)}, 
which shows that the fields E 1 , Bl propagate with 
velocity e and then are mixed: 

(109) 

- 10 -, -
E1(t) = - - DtEl(O) - V x Dt B1(0), (110) 

eat 

where D{F(r) == S D(r - r', t)F(r') dr'. Equations (109) 
and (110) correspond to the propagation of the free 
electromagnetic field expressed by 

(E(r, t) + iB(r, t» 
= C :t - iV x ) f D(r - r', t)(Eo(r') + iBo(r'» dr' 

(111) 
or 

and 

(112) 

The functional G[El' BIt] tnus may be written 

G[EI' BI , t] = G[-!~ D_tEI - V x D_tBI , 
e ot 

(113) 

(114) 

since Dt = - D_ t • The functional in Eq. (114) 
represents the most general statistical situation for the 
free (classical) electromagnetic field. From it one may 
directly obtain expressions for the correlations 

-
E(rrJE(r 2) .•. E(r.,)B(rk+1) ... B(r,»t 

,. S. T. Ma, Phys. Rev. 68, 166 (1945). 

since the correlations are functional derivatives of G 
evaluated at EI = Bl = 0 [cf. Eq. (59)]. For example, 

(E(r»t = I -- = - - Dt(E)o + V x Dt(B)o . bG I 1 0 
bE1(r) E"B1=0 e ot 

and (115) 

(B(r»t = I -. - = - - Dt(B)o - V x D/E)o . bG I 1 0 
bB1(r) 0 eat 

(116) 

as was anticipated. Another simple example is 

(E(rI)B(r2»t = i
2 c'JEI(~;~B(r2) 10 (117) 

or 

1 0 oDl2) 
(E(r1)B(r2»i = c2 a; D t(1) ----a;- <EO(r1)Eo(r2» 

1 oDt(2) + - VI X D t(l) -- (BO(r1)Bo(r9» 
e ot -
1 a 

- -;- DtCl)V2 x Dt(2)(Eo(rl)Bo(r2» 
e ut 

- VI x DtCl)V2 x Dt(2)(Bo(rI)Eo(r2», 

(118) 

using an obvious notation. Although the results 
shown here are quite simple and could have been 
obtained by other methods, we have included them in 
order to illustrate the power and generality of our 
methods. 

VII. STATISTICAL MECHANICAL BASIS OF 
PLASMA PHYSICS 

We consider a system composed of N particles each 
having charge e and mass m29 interacting via the 
electromagnetic field. The system is described in 
terms of the electromagnetic field E, B and the exact 
classical microscopic phase-space density function f 
The quantities E, B, J are coupled through the exact 
microscopic Maxwell-Klimontovich equationsI6.23-26: 

1 oE - 47Tef .r. -- = +V x B - - pj(r, p)dp, (119) 
c ot me 

1 08 -
- - = -V x E (120) 
e at ' 

al p ~ ( -, p - ) aJ -'-- = - - . VI - e E + - x B • -, (121) ot m' me op 

V . E = 47Te fJ(r, p) dp, (122) 

29 For simplicity we consider only one species, but the multi­
component system is easily handled. 
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and 

V·B=O. (123) 

It must be stressed that! described in the above system 
of equations must be considered as an implicit function 
of the exact positions and velocities (Pi == mvi ) of all 
the particles, as well as a function of r, p: 

N 

fer, p) = ! 15(r - i\)15(p - Pk) (124) 
k=l 

and, further, that Eqs. (119)-(123) are equivalent to 
the usual microscopic Maxwell-Lorentz equations. 
The point of view which we now adopt is that these 
equations form a closed system of coupled field 
equations for the three fields E, B,f Then the general 
theory as outlined in Sec. 5 can be applied directly. 
We introduce the distribution functional F[E, B,f, t] 
for the fields E(r), B(r), fer, p). The functional F 
satisfies the following equation: 

~F +Jdr{[cv x B(r) - 41TeJdP pf(r, P)]. of 
ut m ~OO 

- cV x E(r).~} +Jdr dP{i_.t. Vf(r p~ 
15B(r) [m' J 

_ e[E(r) + ~ x B(r)] • of(r, P)} of = O. 
mc op of(r, p) 

(125) 

In addition, it must satisfy the subsidiary conditions, 

{V. E(r) - 41Te Jf(r, p) dP}F = 0, (126) 

and 
{V. B(r)}F = O. (127) 

Our goal is to obtain coupled equations of motion for 
various particle distribution functions 

(f(xl) ... f(xr» == fr(xl, ... , xr) 

and field-particle correlation functions 

(E(rl) ... E(r8)B(r~) ... B(r;)f(xl) ... f(x r». 
(Actually, we are interested in the particle distri­
butionsJr which do not contain self-correlations, but, 
as was mentioned in Sec. V, a simple transformation 
on F allows their to be found.) 

The functional Fourier transform G[El' Bl,fl] is 
introduced through 

F[E, B,f] = J exp {i[(E, El) + (B, Bl) + (j,jl)]} 

X G[El , Bl,jl] d[El] d[Bll d[fll. (128) 

The equation of motion for G is found directly from 

Eq. (125) and is expressed by 

oG J { 15G 15G -;- + dr cV x El • - + cV X Bl • -
ut 15Bl 15El 

+ 41TeJdP P • El 15G} 
m 15fl 

+Jdr dP{-.t. Vfl 15G 
m 15fl 

. (Of 1) [15 P 15 ]15G 
- t exp op • bEl + mc x 15B

l 
bfl = O. (129) 

In addition, G must satisfy the subsidiary conditions 

{V • ~ - 41TefdP l..}G = 0 
15El 15f1 

(130) 

and 
V.~G=O 

bB
l 

. 
(131) 

Equations (129)-(131) serve as a basis for the general 
statistical theory of particles interacting with the 
electromagnetic field. The resulting moment equations 
form a hierarchy similar to the usual BBKGY 
hierarchy of statistical mechanics, and are equivalent 
to the Maxwell-Lorentz theory with lack of informa­
tion built in.12.16.17 These equations differ from the 
customary equations in that the particle distribution 
functions contain self-correlations. That is, 

NXlX 2) = (f(xl)f(x2» 

'2 15
2

G I" J' = I ~if( )~if() =i2 + 15(1,2)Jlo 
u 1 Xl U 1 X 2 "=0 

where 12 has no self-correlation. 
We have shown that these equations generate the 

usual hierarchy arising from the Liouville equation. 
However, our point of view is that these functional 
equations should be considered as the basic starting 
point for the statistical theory of charged particles 
interacting via the electromagnetic field. Especially 
for situations such as those arising in turbulence, 
where the familiar truncation procedures are not 
applicable, we may expect methods based on the use 
of the functional equations to lead to new results. For 
example, the method of Lewis,30 which can be used 
to obtain closed equations for reduced distribution 
functions, can be applied directly to the functional 
Liouville equation. In this case the entropy is a 
functional of the distribution functional F: S[F] = 
-k f d[F]Fln F, which is to be maximized subject to 
constraints which require F to be a functional of those 
field quantities required for the macroscopic descrip­
tion of the system. For example, one might want to 

30 R. M. Lewis, J. Math. Phys. 8, 1448 (1967). 
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describe the macroscopic behavior of the system in 
term of (f(r, p», (E(r», (B(r», and (f(r, p)E(r». 
The results of this line of investigation will be pub­
lished later. 

APPENDIX A 

Remarks on Functionals 

A functional may be considered as a mapping which 
assigns to the function 1> (x) , a number F[1>]. The 
functions 1>(x) usually lie in some function space, 
e.g., Banach space, etc. We assume that the argument 
functions 1>(x) are elements of a real Hilbert-space Je 
with the scalar product (1), 'IjJ) = SEn 1>(X)'IjJ(X) dx, 
where En is the underlying n-dimensional Euclidean 
space of the argument x of the function 1> (x). The 
norm 111>11 of the function 1>(x) is defined by 111>112 = 
(1),1>). With the notion of the size ofa function being 
given by its norm, we may apply many of the standard 
ideas of analysis to functionals. For example, a 
functional is continuous at the argument function 1> if, 
for a given € > 0, there exists a b. such that IF(1)) -
F('IjJ) I < € for all 'IjJ for which 111> - 'ljJ11 < b •. If a 
functional F[t, 1>] is a function of t as well as a func­
tional of 1> (x) , derivatives and integrals with respect to 
t may be performed in the usual way, e.g., of/ot == 
D[t, 1>] is again a functional of 1> and a function of t. 

We now introduce the idea of differentiation of a 
functional with respect to the function 1> (x). This 
notion parallels the idea of the gradient VF(x) of a 
scalar function with vector argument. We observe 
that for such a function 

d 
d)' F(x + ).Y)I).~o = Y • V F, (Al) 

so that V F appears as vector argument in the scalar 
product Y • V F. In analogy to the above development 
we can form from the functional F[1>] the quantity 

(A2) 

whenever it exists. For our purposes we shall assume 
that the expression in Eq. (A2) is a linear bounded 
functionap1.32 of the function 'IjJ(x). Then there 
exists a function bF/b1> (x) [called the functional 
derivative of F with respect to the function 1>(x)] , 
such that 

~ F['/' +).]1 = (bF) (A3) d)'"t' 'IjJ ).~O 'IjJ, 151> . 

It is to be noted that, in general, bF/b1>(x) is a func-

tional of 1> as well as an explicit function of x. If we 
replace 'IjJ(x) by the b distribution b(x - xo), we obtain 

d bF 
- F[1> + ).'IjJ]I).~o = -. - . (A4) 
d). rp~b(",-o) bcfo(xo) 

However, one must exhibit care with such procedures 
since bF/b1>(x), as defined by Eq. (A3), is in general a 
distribution itself, and therefore its value at a given 
point x may not make sense. [For example, if 
F[1>(x)] = 1>(x) we have b1>(x)/b1>(x') = b(x - x').] 
Higher-order derivatives are defined in a similar way: 

If the nth derivatives exist, and if F[1> + )'tp] is 
analytic in ). for)' = 1, we have Taylor's theorem for 
functionals: 

F[1> + 'IjJ] = 1 ~ r ... r, dX1 ••• dx" 
11=0 n. JEn JEn 

bnF 
x b1>(Xl)' .. b1>(x

n
) tp(X1)'IjJ(X2) ... 'IjJ(xn)· (A 7) 

A functional may also be thought of as a function of 
an infinite number of variables,33 for if one introduces 
a fixed basis 1>1' 1>2' ... in the Hilbert space of the 
functions 1>(x), we have 

F[1>(x)] = F[~ an1>n(x)] == F(al' a2'" '). (AS) 

Further, since for an orthonormal basis 

an = r 1>ix)1>(x) dx, JEn 
~ = L ban of = L of 1>n(x). 
bcp(x) n bcp(x) (Jan n (Jan (A9) 

We note that (1)n' bF/b1>(x» = of/oan , which gives 
further insight into the relationship between functional 
derivative and derivative (gradient). Another way of 
looking at the functional derivative consists in splitting 
up the space En into a number of tiny cells ~Xi' i = 
1,2, 3, ... such that 

and 
31 If the quantity in Eq. (A3) exists, it is referred to as the GAteaux 

differential. If the GAteaux differential is a bounded linear functional, ~Xi n ~,x; = 0 
it is called a Fn:chet differential. See Ref, 32, 

32 E, Hille and R, S. Phillips, Fllncliona/.4na/ysis and Semigrollps 33 V. Volterra, Theory of Fllncliona/s (Blackie and Sons, Ltd., 
(American Mathematical Society, Providence, R.I., 1957), p. 109, London, 1930), 
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for i ;6 j. Then the function rp(x) may be "projected" 
00 

rp(x) ,......, I rpiE/ x), (AlO) 
i=l 

where E;(x) is the characteristic function for the cell 
~Xi and 

(All) 

(I~",.I is the volume of the cell Llxi ). 

A functional F[rp] may now be considered to be 
approximately a function of the variables rp1' rp2' ... : 

(A 12) 
We then have 

or 

(A13) 

If we now allow each ILlxil to approach zero, brpi is 
assumed to approach a smooth function brp(x) and the 
sum in Eq. (A13) becomes an integral 

bF,......,J DF[rp] orp(x) dx, 
brp(x) 

where bF[rp]/brp(x) is the limit 

lim _1_ of . 
1<1"'il-+ O ILlxil Orpi 

(A14) 

Here the functional derivative appears as a "derivative 
per unit volume" and the argument x in bF/brp(x) 
is that point upon which the volume LlXi shrinks to 
zero. 

The integration of functionals over the Hilbert 
space of functions rp(x) presents considerable mathe­
matical difficulty so we shall be content to give a 
heuristic treatment of functional integration.34 If we 
represent the functional F[rp] as a function of its real 
Fourier components an = (rpn, rp), we may define the 
integral S F[ rp] d[ rp] as the limit 

hm . . . -- ... -- F £., an'f'n, (A15 . foo foo da1 dan [~ A.. ] ) 

n-+ 00 -00 -00 ( 21Tyk (21T)! n 

3' A rigorous treatment of functional integration with physical 
applications and an extensive bibliography is given in Ref. 20. 

if it exists. The factors (21T)! are introduced in order 
to avoid infinite normalization constants in functional 
Fourier transforms. There are other methods35 of 
introducing functional integration, but the above 
procedure will be sufficient for our needs. The integral 
in Eq. (AI5) is invariant under orthogonal changes in 
basis and under fixed translation, 

f F[rp + rp1] d[rp] = f F[rp] d[rp]. (A16) 

The functional Fourier expansion may be carried out 
as follows: 

F[rp] = F[I anrpn] 

= lim fexp (i .± anbn) 
n-+ ctJ 1.=1 

db1 dbn X G[b1 ••• b ] -- ... --
11 (21T)! (21T)! 

= J ei (4).(Pt)G[ rp1] d[ rp1], (A17) 

where 
00 

rp1(X) = I bnrpnex). 
i=l 

Since 

G[b1 • •• bn ] 

=fexp (-i ± aibi ) FL~ anrpn] da1! ... dan!, 
i=l (21T) e21T) 

(A18) 
we have 

G[rpd = J e-i(4)1.4>)F[rp] d[rp]. (A19) 

In particular, the delta functional Ll [rp] appears as the 
limit 

Ll[rp] = lim f· .. Jexp (i i aibi ) db1 ... dbn 
n-+oo i==l (27T)! (27T)! 

N 

= lim II [(21T)!b(a n)] 
N-+oo n=l 

(A20) 

35 F. A. Berezin, The Method of Second Quantization (Academic 
Press Inc., New York, 1966). pp. 37-41. 
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Functional Integrals Representing Distribution Functions in 
Statistical Mechanics 
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We show how to obtain formal solutions of the chain of equations for distribution functions in classical 
statistical mechani.cs. These solutions are in the formof complex functional integrals. They are not unique, 
which fact is a fundamental property of the equations, and the different solutions are recognized by differ­
ent integration paths in the complex function space. The different manners of integration correspond to 
different phases, of which some can be identified with the possi ble physical states. The treatment of the 
integrals in some cases is also discussed. They are closely related to generalizations of the molecular 
field approach to the problem. It is also shown that the functional integrals can be written as averages over 
an external field and that essentially the same form is valid in the quantum-mechanical case. 

1. INTRODUCTION 

The problem of solving a many-body problem in 
statistical mechanics is so very complicated that it is 
worthwhile to try new mathematical methods for the 
problem. For this purpose, some authors have used 
functional integration. l By the use of such methods we 
get formal, closed expressions for the quantities of 
interest. They also give valuable information about 
simplifications and new approximation methods for 
the solution of the problem. The drawback of this 
method is, of course, that only some types of func­
tional integrals can be treated with mathematical rigor. 
In this work, we treat the integrals as limits of ordinary 
many-dimensional integrals, and merely assume that 
this limit exists. We remark that, at the moment, no 
method exists that can rigorously treat a general 
many-body problem in the thermodynamic limit. 
The functional integrals have the advantage that they 
contain in a closed form the physical facts and at 
least give hints as to how to proceed to a better 
understanding of the problem. 

Functional integrals have essentially been used to 
represent the partition function Z. As is well known, 
the structure of Z becomes extremely complicated as 
the number of particles in the system increases. The 
function does not exist in the thermodynamic limit, 
nor has it a simple asymptotic form. However, 
certain quantities, defined as quotients of functions of 
this kind, have simple asymptotic properties and 

1 Reviews of such attempts are found in: M. Kac, Probability and 
Related Topics in Physical Sciences (lnterscience Publishers, Inc., 
New York, 1950), Chap. 4; l. M. Gel'fand and A. M. Yaglom, 
Uspekhi Mat. Nauk 9, 77 (1956); [English transl.: J. Math. Phys. 1, 
48 (1960)]. 

Among the works which use these or similar methods, the 
following can be mentioned: R. P. Feynman, Rev. Mod. Phys. 20, 
367 (1948); S. F. Edwards and R. E. Peierls, Proc. Phys. Soc. 
(Lo-ndon) A224, 24 (1954); l. M. Gel'fand and R. A. Minlos, Dokl. 
Akad. Nauk (SSSR) 97, 209 (1954); R. Scalettar, Ann. Phys. (N.Y.) 
38,238 (1966); S. F. Edwards and D. Sherrington, Proc. Phys. Soc. 
(London) 90, 3 (1967). 

can be well defined in the limit. It is also known that 
these limiting quantities are not unique analytic 
functions, but correspond to different analytic 
functions in different regions of its parameters (e.g., 
temperature, chemical potential). 

For this reason, a method has been developed by 
the author,2 in a paper which is referred to as I, where 
distribution functions with well-defined limits are 
represented by functional integrals. These expressions 
are in fact the solutions of a chain of equations, 
rewritten as functional differential equations by the 
use of generating functionals. These equations were 
first derived by Bogoliubov.3 The mentioned non­
uniqueness of the limiting procedure shows up here 
in a non uniqueness of the solutions of the equations. 
We get, in fact, a very large number of solutions, each 
characterized by its mode of integration.4 We briefly 
recall the results of I in Sec. 2, where the equations 
and the solutions are presented. We also discuss the 
solutions of a much simpler equation which, in fact, 
has much in common with the general one and which 
gives valuable information about the more compli­
cated integrals. We further discuss these solutions in 
Sec. 3 and also show how we get the equations of 
a molecular field theory by integrating over a saddle 
point. The integrals were defined in I for regular 
interaction potentials, but in Sec. 4, we show how to 
treat cases with a hard-core potential, especially a 
lattice gas (where the hard core is necessary). As 
problems of these kinds are the only ones which can 
be exactly solved by any methods, they are valuable to 

2 C. Blomberg, Acta Polytechnica Scandinavica, Ph 49, 1967. 
3 N. N. Bogoliubov, Zh. Fiz. (SSSR) 19, 256 (1946) [English 

transl.: Studies ill Statistical Mechanics I, edited by Uhlenbeck de 
Boer (North-Holland Publishing Company, Amsterdam, 1962)]. 

• We note that similar results are the aim in quite another approach 
to the problem: the algebraic method for treating infinitely large 
many-body systems. This method is, for example, developed in: 
H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963); G. Emch 
and M. Guenin, J. Math. Phys. 7, 915 (1966); E. J. Verboven, 
Physica 32, 2081 (1966). 
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study with this method. We also discuss the connection 
with Wiener integrals in Sec. 5. As these integrals are 
the only ones which are mathematically studied, this 
is very important. In some cases, particularly for the 
one-dimensional Coulomb field, it is easy to formulate 
the problem in terms of such integrals. However, in 
most cases it is not possible. Finally, in Sec. 6, we 
show briefly that the functional integrals can be 
written in a very general form, including the corre­
sponding integrals in quantum-mechanical problems. 
In this form the distribution functions (or the corre­
sponding quantities) are written as simple independent­
particle solutions in an external field, averaged over all 
possible external fields with a certain measure. 

2. GENERATING FUNCTIONALS FOR DISTRI­
BUTION FUNCTIONS 

In this section we first state the problem and the 
conventions which are used in this work. We assume a 
system of particles acted on by an external potential 
U(r) and an interaction potential f{J(r - r') between 
pairs of particles. We assume that f{J(r) is everywhere 
finite. In some cases it is convenient to assume that the 
Fourier transform of f{J exists. This means, among 
other things, that J f{J(r) d3r is finite. None of these 
assumptions is fulfilled among physical potentials. 
Nevertheless, they are convenient to use in formal 
analysis and it seems improbable that they should 
imply any special properties of physical interest in a 
continuous system. In a discrete system such as the 
lattice gas, it is more important to assume a hard core, 
i.e., it must not be possible to have more than one 
particle at each point. 

For convenience, we use a grand canonical en­
semble throughout this paper. We also put IjkT = {J 
and ex = ftjkT, where ft is the chemical potential. 

A general distribution function is defined as 

F,,(rl"", rn) 

= I N! 
N'~n (N - n)! 

where 

x r . J d3r n+l •.• d3rNP(N; r1, ... ,rN)' 

v l' 

p(N; r1 •.. r;v) 

= (27TmkT)~NeNa 
Z'N! 

(I) 

x exp {-{J[t; f{J(rk - r i ) + t U(rk)]}. (2) 

Z is the partition function, necessary to normalize the 
density function p. 

The simplest way of writing the chain of equations 
is by introducing the generating functional 

.1'[u] = 1 +! 1. I·· 'Id3
r!'" d3rn 

n~l n! 
v v 

x F n(r1 , ••• , rn)u(r1) ••• u(rn). (3) 

The following equation was derived for a slightly 
different functional by Bogoliubov5 : 

!5.1'[u] = exp {ex - {JU(r') - no} 
!5u(r') 

x .1'[(u(r) + 1) exp {-{Jf(J(r - r')} - 1], (4) 
where 

no = -I log (27TmkT). (5) 

It was shown in I that (4) is a more restrictive 
equation than the chain of equations derived by 
Kirkwood and others.6 That chain of equations is the 
most extensively used. It can be derived from (4), 
but the opposite is not possible. 

The solution of (4) is greatly simplified if we first 
consider the following equation, treated in I: 

df(x) = e1({x + 1}e-b - O. (6) 
dx 

This is, of course, a very simplified, but far from 
trivial version of (4). The general solution can be 
written as 

J(x, b, d, c) = const x Lexp g: + (x + l)eHd
} dt 

= constl x Icexp {b;2 + (x + l)eb.+d} ds. 

(7) 

Here d = a + b/2. In I, only the first form was used. 
Equation (7) was derived by using an integral-trans­
formation method in (6). C is a path in the complex 
s- (or t-) space such that the value of the integral is not 
changed by a translation parallel to the real axis. 
This means that C starts in some direction at infinity 
where the integrand is zero and ends in another, 
nonequivalent direction. We can always start or end 
in a "channel" parallel to the positive real axis at a 
distance of an odd number times 7T from it in the (­
space. In these channels the double exponential part of 
(7) becomes zero. If b > 0, we can also move parallel 
to the imaginary axis, and if b < 0, we can move 
parallel to the negative real axis. Some symmetrical 

5 See Ref. 3. 
6 This chain of equation was first derived by: J. G. Kirkwood, J. 

Chern. Phys. 3, 300 (1935); J. Yvon, Actualitt!s sCientijiqul's et 
industrielles (Hermann et Cie., Paris, 1935). Since then, it has been 
used by a number of authors, e.g., N. N. BogoJiubov (Ref. 3). 
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paths and their nomenclature used in I are shown in 
Fig. 1. 

The solutions of (6) with the conditionf(O) = I are: 

written as a vector: fer) -- {fl = f(r l )J2 , ... JM}' 
Instead of (4) we get a system of partial differential 
equations 

f(x) = lex, b, d, C)/1(0, b, d, C). (8) of[u1,''', UMJ 

In particular, we want to know the derivatives at 
x=O: 

j<nl(O) = en(d-b'2)1(0, b, d - nb, C)/I(O, b, d, C). (9) 

The solutions of (4) can be obtained by the same 
methods. As we aim at the most possible mathematical 
rigor, we first solve the equation in a discrete case 
where the continuous volume is divided into a finite 
number M of cells around points r l ,' .• ,rM' These 
cells have volumes AI"'" AM' Any function is 

Q. 

,,,"'" >,.."" 

II. 

"""""'" " 
'~:!I~~~~ 

~" 
c. ... "-"-"-"-........ ~. 

,,," "" "" "" "" "-
~ 
"'''',''''' <I' 

l::.::.::.:a l,~::t; ~l~ 

~~ 
d. ,-"",,,",,, ,,,,-,-,,,,-,,-,,, 

-'" """-~"~ 

7i~ 

5 ill/< 

3in/l 

i';I! 

""",,) 

\ \\\\ \ \ \\\ \\\ 

f. 

\\ \ \ \ \ \ \ \ \ 

\\\\\\\\\\\ 

\\\\i\\\\' 
"H\\\\\\\\\ 

Fig, I, Some paths for the 
integral in (7) are shown. 
Paths a-d are suitable when 
b > ° (together with a path 
along the imaginary axis = 
Co); e-g are suitable when 
b < 0, We name them as 
follows: 

(a) (a path, symmetrical 
with respect to the imaginary 
axis, starting and ending in 
the first channels) C.H+); 

(b) (antisymmetrical with 
respect to the imaginary 
axis) CH+); 

(c) C:{+); 
(d) q(+); 
(e) (valid for b < 0, and 

symmetrical with respect to 
the reat axis) C;(-); 

(f) q(-); 
(g) C;(-). 

OUn 

= exp (IX - no + log An - f3 Un) 
X F[(u1 + l)e-P'I'ln - 1, 

(U2 + 1)e-P'I'2n - 1,' .. ,(UM + 1)e-P'I'M" - 1], 

(10) 
whose solutions are 

IM(UI,"', UM; SM) 

= const x r exp {~SnSn' f3q;nn' AnAn' J8M n,n 2 

n 

X exp (~ f3q;nn,sn,An, + Bn) } dSI .•• ds M' (11) 

Here 

Bn = a; - no - f3Un - q;nn' 

In the continuous limit we get 

J[u(r); S] = lim IM[u 1 '" UM; SM] 
M .... oo 

allA ...... O 

(12) 

= const X ( <I>[u, sJ II ds(r), (13) 
~8 r 

where <l> is the functional 

<l>[u(r), s(r)] 

= exp {ffs(r)s(r') f3q;(r 2- r') d3r dSr' + f [u(r) + 1] 

x exp (f f3q;(r - r')s(r') d3r' + B(r») d3r}; (14) 

B(r) = a; - no - f3U(r) - q;(0). (15) 

The conditions upon the paths S M are very much the 
same as these of the paths C in (7). In fact, they must 
be composed of the paths shown in Fig. 1. Each 
variable is integrated along a combination of these 
paths. 

We always consider the functional integral as the 
limit (13). In this way, it is not necessary that the 
limits of the integrals exist, but that the limits of 
certain quotients exist. We always write the formal 
functional expressions and understand them as the 
respective limits. From a physical point of view, this 
is completely satisfactory. It also seems to be probable, 
although no mathematical proof has been obtained, 
that only functions with a finite (or possibly an 
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enumerable) number of discontinuities contribute to 
the physical properties. If this is the case, the integrals 
in (14) are proper Riemann integrals. (If it were not 
the case, the actual division of the space, which has no 
physical meaning, would be crucial.) 

To get the generating functional, we require that 

3'[0] = 1, (16) 

and for the distribution functions we get 

Fir1' ... , rn) 

[ 
b(n)j<[lI] ] 

= bll(r1)'" bll(r,,) ,,~O 

=L <1>,,[0, s; r 1 , •.. ,rn ] II ds(r) / fs<1>[O, s] II ds(r), 

where (17) 

= exp (11(CX - no) - {3k~l U(r,,) - {3 t~~ ep(rk - r i )} 

X exp {ffs(r)s(r') ~ ep(r - r') dar d3r' 

+ f [lI(r) + 1] exp [f {3ep(r - r')s(r') d3r' 

+ Bn(r; r 1 , ••• ,rn)] dar}. (18) 

}Iere n 

B(r; r 1 , ••• , rn) = B(r) - f3 L ep(r - rk)' (19) 
k=l 

B is the same function as in (15). 

3. SOME PROPERTIES OF THE INTEGRALS 

One obvious way to try to calculate (14) [or the 
simpler integral (7)] is to develop the double expo­
nential factor in the integrand into a power series. Then 
each term gives an integral over a Gaussian function 
which can be calculated. The series corresponds di­
rectly to the Ursell-Mayer series. 7 It is, however, easy 
to understand that this series can give a correct answer 
only in those cases where the Gaussian factor deter­
mines the behavior at infinity. This means that it can 
only be an asymptotic series for integrals parallel to 
the real axis. In particular, this series does not make 
any difference between the various channels and it is 
probably always divergent when the quadratic form 

f s(r)q;{r - r')s(r') d3r dar' 

is not positively definite. 

7 Series expansions of this type were derived by: H. D. Ursell. 
Proc. Cambridge Phil. Soc. 23, 685 (1927); J. E. Mayer and M. G. 
Mayer, Statistical Mechanics (John Wiley & Sons, Inc., New York, 
1940). 

Another way to get an approximation ofthe integral 
is to look for saddle points of the integrand. In fact, 
we find those for the function s(r) , obeying the 
equation 

so(r) + [lI(r) + 1] 

x exp [{3 f ep(r - r')so(r') d3r' + B(r) ] = 0. (20) 

If we put u = ° and s(r) = - per), this becomes a 
molecular-field equation for an average density per), 
as the second term gives the Bolzmann distribution 
from a potential S ep(r - r')p(r') dar' arising from this 
density.s If we expand the integral around the saddle 
point, we again obtain a Gaussian form, which repre­
sents the total integral if its range is small. In particular, 
its width must be smaller than the periods of trigono­
metric functions, arising from the complex values of 
the functions. 

In order to get an easy understanding of the proce­
dure, we first examine the simple integral (7). We use 
the second form and get a saddle point when 

so(x) + (x + 1)ebSo
(X)+d = O. (21) 

The derivative of sex) is given by 

s~(x) = _ebso(x)+d/[1 + b(x + 1)eb8o(x)+d] 

so(x)/(1 + x) 
(22) 

1 - bso(x) 

In the neighborhood of so(x), the integrand of (7) 
becomes 

<1>(0', x) R::i exp ro;X) [bso(x) - 2)} 

x exp {b;2 [1 - bSo(X)]}, (23) 

where s = so(x) + 0'. If this expression is used in (7) 
and (8), we get 

f(x) R::i exp {~ [so(x) - so(O)][so(X) + so(O) - n} 
x 11 - bso(x) I~. (24) 

1 - bso(O) 

The derivative offat x = 0 is then obtained from (22) 
and (24): 

1'(0) = -so(O) + ~ so(O)[1 - bsO(0)]-2. (25) 
2 

8 A general review of such approaches to various problems is 
found in R. Brout, Phase Transitions (W. A. Benjamin, Inc., New 
York, 1965). 
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An interesting case arises when b is negative 
(= -fJ). Then (21) has two real solutions if 

d + log {fJ(x + I)} 

is less than one. One of these solutions is between 0 
and -1/ fJ, the other is smaller than 1/ fJ. If ed is much 
smaller than 1 and fJ not too large, this is fulfilled and 
the saddle-point method gives an accurate result. We 
get the following solutions: 

(1) so(x) ~ -(x + l)ed
, 

(2) so(x) ~ -ldl/(3 - 1/(3 log {ldl/(3(x + I)}. (26) 

For /'(0) this gives 

(1) /,(0) ~ ed(l + fJ/2) + O(e2d), 

(2) /'(0) ~ Idl/fJ + 1/(3 log {ldl/(3}. (27) 

We also see that (25) has a pole if bso(O) = 1. This 
merely expresses the fact that the width of the Gaus­
sian approximation in (23) is large and that this 
method, strictly speaking, is inapplicable. The pole 
has no direct meaning, although it indicates an 
approximate site of a possible phase transition. 

We treat the functional integrals in the same way. 
Before writing down the formal expressions, we draw 
some conclusions from (27) which are immediately 
applicable in the physical case. We get such expressions 
if we have a negative interaction and a small value of 
exp {d}. The latter quantity is essentially the fugacity. 
The first expression in (27) for the derivatives of the 
generating functional gives the density, and we find 
that it is small for the first type of solutions; in fact, 
it is proportional to the fugacity, as it should be. 
The second solution, however, gives a very large 
density which increases with the fugacity. This is, of 
course, physically impossible. (It would mean that the 
pressure is negative.) Therefore, only the first solution 
is physically possible, which means that we have 
symmetrical paths of the type Cs( -) in Fig. 1. The 
second type of solution, corresponding to antisym­
metrical paths of the type Cae -), is not possible for 
small values of the fugacity. However, for larger 
values of the fugacity, it behaves in the same way as 
the first solution and can represent a physically pos­
sible state. It seems possible that this indeed is the 
liquid state. A rough estimate, made in I, shows that 
the transition to the liquid state really occurs in a 
region where the two solutions are equally possible. 

The corresponding relations for the multidimen­
sional case can be written in a formula similar to (24). 
We do it for the discrete case and use (11) for the 
integrand. The saddle point obeys the equation 

s~(u) + (un + 1) exp {fJ ! tpnn,s~,(u)~n' + Bn} = O. 
(28) 

Then (11) gives 

F[u l ••• UM] ~ exp {!! [s~(u) - sZ(O)]} 
n n' 

X {! ~ tpnn'[s~,(u) + s~,(o)]~n' - I} 
n' 2 

X exp {-t log [det F(u)/det F(o)]}. 

(29) 
Here Fis the matrix {Fnn ,}: 

F nn' = .8/2 [ tpnn' - (3 ~ tpnn"tpn'n"S~"(U)~n'l (30) 

The quotient of the determinants can, of course, be 
written as the quotients of the products of the eigen­
values when the logarithm gives a sum which, in the 
continuous limit, becomes an integral. 

From (28) we can now evaluate derivatives bs~(u)/ 
bu(r) which are used to get the distribution functions 
from (30). 

4. THE PROBLEM OF HARD CORES 

In the formulas (13)-(15), it has been necessary to 
assume that tp(r) is always finite. This is probably not 
fulfilled for real potentials, but, as has already been 
mentioned, the actual behavior for small r is usually 
immaterial in physical problems. 

As in earlier problems, we first study the behavior 
of formula (7) when b is very large. This will show the 
general method. If we integrate along the imaginary 
axis, we can use the aforementioned series in powers 
of ed

: 

lex) = const X i exp (b;) [1 + (x + 1)ebs+aH/2 

+ !(x + 1)2e2ba+2aH + ... ] 

= const xl {exp (h;) 
+ (x + 1)ea • exp [b(S : 1)] 
+ te2a exp [b(S : 2)2 _ 3:J + ... } ds. (31) 

When b -+ 00, we get the following relation from (8) 
when we integrate along the entire imaginary axis: 

lim/ex) = 1 + X 
b-+oo 1 + e-a 

(32) 

If we integrate along an allowed channel parallel to tire 
real axis, the integrand becomes 

<lJ(x,O') = exp [b;2 + i(2n + 1)1T0' 

- (2n +b 1)21T2 - (x + l)e bCJ+a+bI2} (33) 
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Here s = (J + i(2n + 1}T1'. It is easy to see that it is a 
monotonically decreasing function of (J. When (J is 
finite, it is certainly zero if b is infinitely large. There­
fore, for the paths ofthe type Ca( +) or C.( +) in Fig. 
1, the integrals along the parts parallel to the real axis 
are zero. We thus have to consider only parts along the 
imaginary axis where (31) is valid. 

We now consider two important cases. The first one 
is the discrete lattice gas, for which (11) is immediately 
valid with all ~n = 1. However, we must have 
CPnn = 00, as otherwise we would allow several 
particles at the same point. We can do the same 
expansion as in (31). It is easy to see that the result 
(32), when integrating along the entire imaginary axis 
for all variables, is equivalent to 

IM(U 1 ,"', uM; Co) 

= const X r exp (I SnSm {3CPnm) II {I + (un + 1) Jo n,m 2 n 

X exp [~{3CPnmSm + B~J} 1] dsn· (34) 

In formula (34), all CPnn = 0, and B~ is given by (12) 
without CPnn' Co means that all sn are integrated along 
the same path. Formula (34) is in fact equivalent to 
the one derived by Siegert for the partition function.9 

In principle, we can use this method to treat singular 
potentials with infinite cp(O) or an infinite hard core. 
We can use the same formula, (34), when the hard core 
is taken away. This is, as before, only valid for paths 
parallel to the imaginary axis. We get, in the discrete 
case, 

11\I(u l ' •• uM; Co) 

= const X { exp { I SnSm {3CPnm} Jo n,m 2 

X 1] [1 + Oiu n + 1) exp {~{3CPnmSm + B~}] ds". 

(35) 

In (35) CPnm is chosen in such a way that it is zero 
inside the hard core. On is an operator, which obeys 
the following rules: 

On' Om = 0, if nand m are inside the same core, 
= 1, otherwise. 

5. CONNECTION WITH WIENER INTEGRALS 

The only type of functional integral which is 
extensively studied is the Wiener integral, which can 

• A. J. Siegert, in Statistical Physics; 1962 Brandeis Lectures 
(W. A. Benjamin, Inc., New York, 1963), Vol. 3. 

be written as 

b 

J 1· I I ['" (sn+l - Sn)2] = 1m ... exp - 7 Ll
n 

n 

Such an integral can be properly defined.lo 

Formally, it can be written as 

b 

J = r . J exp -{I [d;~X)r dX}F[S] 1] ds(x). (37) 

a 

Our integrals cannot, in general, be written in this 
way. However, in the cases where all s-variables are 
integrated along the imaginary axis, it can be trans­
formed to this form, when a and b are allowed to go 
to infinity. One obvious way is the case of an one­
dimensional Coulomb potential which obeys the 
equation 

We make the following substitution in (14): 

d2 

sex) = i dx2 t(x). 

The Gaussian factor is then 

(38) 

(39) 

I s(x)cp(x - X')s(x')dx dx' = - I [d~~)r dx. (40) 

The complete integral is 

J(u) = const xI exp { - f [d~~)rdX 
+ f [u(x) + 1] exp [it(x) + B(x) dX]} 1] leX), 

(41) 

where cp(O) = 0, which is why it causes no difficulty 
here. B(x) would include a background change distri­
bution. Equation (41) is a true Wiener integral, 
written in a formal way, and is equivalent to the 
integral derived by Lenard and Edwards.n 

In fact, an integral of the type (41) can be written 
down for all positive-definite integrals. We note that 
the quadratic form can be written (here, for the sake 

10 See, for instance, the first two works of Ref. I. This type of 
integral was first treated in the papers by: N. Wiener, J. Math. & 
Phys. 2, 131 (1923); N. Wiener, Proc. London Math. Soc., SeT. 2, 
22, 454 (1924). 

11 S. F. Edwards and A. Lenard, J. Math. Phys. 3, 778 (1962). 
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of simplicity, we consider the one-dimensional case): 

f s(x)q;(x - x')s(x') dx dx' 

=f[s!(k) + s~(k)]q;(k) dk 
21T 

= - f[t!(k) + t~(k)]k2~~ = f -[d~~)rdX. (42) 

Here 

s+(k) = f sex) cos kx dx, s_(k) = f sex) sin kx dx 

(43) 
and 

(44) 

This transformation gives the following integral: 

J(u) = const X f exp {- [d~~)rdX 

+ f [u(x) + t] exp [ - if :x q;t(x - x')t(x') dx' 

+ B(X)J dX} II dt(x). (45) 

q;!(x) is the Fourier transform of q;!(k), which is a 
well-defined function. 

6. THE EXTERNAL FIELD AVERAGE 

The fact that the integrals are so closely related to 
the molecular-field approach suggests that the func­
tional integral can be interpreted as an averaging 
procedure over possible external, complex densities. 
In fact, this appears to be a valuable approach, 
because a number of different physical problems can 
evidently be written by functional integrals in essen­
tially the same way. 

We first consider Eq. (4) without an interaction 
potential, but with an external density p: 

b3'o[u; p] = exp [oc - (1U(r') 
bu(r') 

- (1 f q;(r' - r")p(r") dar" - QoJ3'[U, pl. 

(46) 
This equation has the solution 

3'o[u; p] = exp {f dar u(r) 

X exp [ -(1 f q;(r - r')p(r') d3r' + B(r)J}, 

(47) 

where B is the same as in (15). This means that (14) 

can be written in the following form: 

3'[U] = const X f exp [f s(r)s(r')q;(r - r') d3r dar'J 

X ..'To[u + 1, -s]IIds(r). (48) 
r 

This is, of course, an averaging over the external 
field s(r). 

We immediately see that the integral (34) is of the 
same type, since a nonnormalized generating func­
tional for an external density Pm is 

IO[u l · .. UM; PI ... PM] 

= II {t + (Un + 1) exp [-~ (1q;nmPm + B~n. (49) 
n 

We can also get the same expression in the quantum­
mechanical case. There, instead of distribution 
functions, we use the Green's functions 

At the beginning we assume that the particles obey 
Bose statistics. As in the classical case, we use a 
generating functional here: 

3'[u, v] 

= 1 + i_l- f·· ·fG (r t ···r t . r't'·· ·r't') 
I (n !)2 nIl n n' I Inn 

X U(rltl) ... u(rntn) 

X v(r~tD ... v(r~t~) d3rl dtl ... d3r~ dt~. (51) 

We thus obtain a chain of equations for the Green's 
functions, which can be written in terms of..'T asI2 

I-+-V [
. 0 /j2 "'2J b..'T[u, v] 
ot 2m bu(r, t) 

15:1' 
= v(r, t)..'T + U(r, t) --

bu(r, t) 

+ i q;(r - r') . f b3..'T 

bu(r', t)bv(r't)bu(r, t) 
(52) 

By using an integral transformation in the function 
space, a formal solution of (52) was obtained in I in 
the form of a functional integral: 

3'[u, v] = Ie exp (J [per, t)u(r, t) + q(r, t)v(r, t)] dar dt} 

X .f[p, q] dp dq. (53) 

12 This equation was first derived in P. C. Martin and J. Schwinger, 
Phys. Rev. 115, 1342 (1959). 
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C is a suitable path in the complex function space, and 

.1' = const x exp [ - I q(r, t) (i :t + 2~ '\7 2
) per, t) d

3
rdt 

+ fJ I U(r)p(r, t)q(r, t) d3r dt 

+ ~ I per, t)q(r, t)qJ(r - r') 

X p(r't)q(r't) d3r d3r' dt} 

We can rewrite (54) by using 

I II ds exp {- ~ I [s(r, t) - per, t)q(r, t)] 

(54) 

x qJ(r - r')[s(r', t) - per', t)q(r', t)] dt d3r d3r'} 

= const l x = In ds exp {- i: f [s(r, t)qJ(r - r')s(r't) 

+ 2s(r, t)qJ(r - r')p(r't)q(r't)] d3r d3r' dt} 

x exp {- ~ f per, t)q(r, t) 

X qJ(r - r')p(r', t)q(r't) d3r d3r' dt}. (55) 

As in the classical case, we regard the functional 
integrals as limits of multidimensional integrals, in 

the sense that all expressions except those with 
physical meaning are purely formal. From (57), we 
see that the solution in the presence of an external 
density, but without interaction potential, is 

.1'o[p, q; p] 

= const2 x exp {-f q(r, t) (i :t + 21i~ '\7
2
) pert) d

3
r dt 

+ fJ I[ U(r, t) + f qJ(r - r')p(r', t) dSr'] 

x per, t)q(r, t) d3r dt}. (56) 

By the use of (55), (56) can be rewritten as 

3f[p, q] = consts J exp {- ~ 

x f s(r, t)qJ(r - r')s(r', t) d3r d3r' dt} 

x J'o[p,q; -is] II ds. (57) 

Together with (56), this expression is essentially the 
same as (48); an averaging over an external density. 

In I, the form (53) was used only for Bose systems. 
It would be applicable to a system of fermions if the 
variables, u, v, p, and q were not ordinary functions, 
but belonged to an antic om muting algebra. This 
seems to be a complicated task, although the expres­
sions have a formal meaning. However, (57) can 
be used directly for a Fermi system if 3'0 is the inde­
pendent particle solution in an external field. 
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The operators of Elliott are extended in such a way that they also describe an SU3 algebra in the mixed­
s?ell space . .AI.,", where "11.,.* is g!ven as the direct sum of two spaces .At,(Op) and .At,(Od, Is) spanned by the 
SIngle-particle wavefunctlOns In the (Op) and (Od, Is) shells of a harmonic-oscillator potential. The 
representation of SU3 in th~s space .At, * is investigated in detail by the aid of the weight diagram in a way 
anal?gous to that ?f B~nerJee and Levinson. The basis is expressed in an explicit manner using the one­
particle wavefunctlOns In the usual shell model. The states arising from two- and three-particle systems 
are classified according to the irreducible representations in this extended space. . 

1. INTRODUCTION 

The SUa-coupling scheme of Elliottl has made it 
possible to reveal the rotational character of some 
nuclear levels on the basis of single-particle shell 
model in a harmonic-oscillator potential, especially 
for the (Od, Is) nuclei with remarkable success. The 
structure and the representation of the SUa algebra, 
which constitute the mathematical foundation of the 
Elliott scheme, have been investigated by several 
authors2- 4 for the purpose of wider application to the 
theory of nuclear structure. Banerjee and Levinson2 

have established a formalism to treat the residual 
interactions within this scheme, while Moshinskya 
and his collaborators have developed another for­
malism to construct the irreducible state-vectors in 
polynomial forms of creation operators, which is 
applicable not only in the SUa scheme but also 
in the seniority scheme, and then applied it to the 
analysis of the (Od, Is) nuclei. 

Physically speaking, the operators of Elliott are 
composed of the transport operators which carry a 
nucleon from a state (nlm) to another state (n'l'm') 
in a same energy shell; that is to say, the acting space 
of these operators is limited to the shell space of a 
definite energy. On the other hand, if one attempts to 
apply this scheme to the configurations extending over 
different shells, (Op)a(Od, Is)b for example, one makes 
the direct product5 •6 of the SUa-irreducible state­
vectors belonging to each configuration (Op)a or 
(Od, Is)b, and then decomposes it by the Clebsch-

1 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128, 562 (1958); 
A272, 557 (1963). 

2 K. M. Banerjee and C. A. Levinson, Phys. Rev. 130, 1036 (1963). 
3 M. Moshinsky, "Group theory and the many body problem" in 

Physics of Many Particle Systems, E. Meeron Ed. (Gordon and 
Breach, Science Publishers, New York, 1964). 

• R. E. Behrends, J. DreitIein, C. FronsdaI, and W. Lee, Rev. Mod. 
Phys. 34, I (1962). 

6 B. J. Verhaar, Nuc!. Phys. 21, 508 (1969). 
8 H. Horie and T. Yokozawa, Phys. Letters 7, 145 (1963). 

Gordan coefficients of the SUa group. The irreducible 
components thus formed are assumed as the eigen­
states of the compound configuration in the Elliott 
scheme. 

In such formulation, however, the operators of 
Elliott are reduced to simple sums of two kinds of the 
transport operators belonging to the (Op) and (Od, Is) 
shell, respectively. As the result, the nucleons are 
carried separately in each shell by these operators, 
while the transport of nucleons into another shell does 
not take place at all. Because the effective interaction 
between nucleons should be derived from the second­
order invariant (Casimir operator) constructed from 
the operators of Elliott, the matrix elements of the 
above interaction involve the direct integrals only but 
no exchange integrals between the states of different 
shells. Moreover, one meets with the same situation 
for the analysis of the particle-hole systems; if one 
applies the direct-product procedure to the configura­
tion (Op)-n(Od, Is)n, for example, one cannot expect 
any contribution from the exchange integrals between 
particle and hole, which are usually considered in­
dispensable7•8 for the evaluation of energy of the 
collective states in the particle-hole systems. 

Thus, one way of amending the above failure in the 
direct-product procedure within the framework of the 
SUa scheme, would be to construct the generators of 
SUa algebra in the nine-dimensional mixed-shell 
space .A(,*(Op,Od, Is) as linear combinations of the 
transport operators acting not only within one shell 
but also over different shells. If it were achieved, the 
matrix elements of the Casimir operator would 
certainly involve the exchange integrals and, thus, a 
more satisfactory SUa scheme would be obtained also 
for the particle-hole systems. 

7 L. S. Kisslinger and R. A. Sorensen, Kg!. Danske Videnskab. 
Selskab, Mat.-Fys. Medd. 32, No.9 (1960). 

8 M. Baranger, Phys. Rev. 120, 957 (1960). 
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In this article, we verify the existence of the genera­
tors of SUa algebra in the mixed-shell space .A(,* by 
extending the operators of Elliott and then proceed 
to investigate its representations in .A(, * following 
Banerjee and Levinson. It should be noticed, however, 
that the generators and the Casimir operator in our 
scheme do not conserve the parity, because they 
involve the transport operators carrying nucleons 
from one shell to another. Thus, the basis of the 
irreducible representations of our scheme cannot be 
expected to give the realistic physical states immedi­
ately; some procedures must be performed in order 
to project this basis into the states with definite 
parity. 

In Sec. 2, we define nine operators v~tl (t = 0, 1,2; 
q = t, t - 1, ... , -t) as linear combinations of the 
transport operators in the mixed-shell space by 
modifying the forms of the operators of Elliott. The 
commutators among eight of these, v~t> (t = 1, 2), 
are shown to close among themselves, so that these 
eight operators may be considered as generators of a 
Lie algebra. Moreover, because the structure constants 
appearing in these commutation relations are iden­
tical with those of Elliott, one may conclude that this 
algebra should be SUa. In Sec. 3, the weight diagram 
for this algebra is investigated in comparison with 
those of Banerjee and Levinson. The basis of our 
scheme is expressed in terms of one-body oscillator 
wavefunctions in the usual shell model. In Sec. 4, the 
states arising from two- and three-particle systems are 
classified according to the irreducible representations 
in.A(,* for the chain of sub algebras Un:::> SUa:::> Ra. 

2. GENERATORS OF SUa ALGEBRA 

Before introducing our new operators, we summa­
rize briefly the outline of the formalism of Elliott. 
As is well known, the quantum states of a single 
particle moving in a harmonic-oscillator potential are 
classified into energy shells &(N) corresponding to the 
energy values of Iiw(N + i), where w is the frequency 
of the oscillator and N is any positive integer or zero. 
Each energy shell &(N) consists of degenerate orbital 
states (nlm) with definite parity, where I = N, N - 2, 
... , 1,0, and n = teN - I). Thus, the wavefunctions 
~(nlm) of a single particle in &(N) span an s-dimen­
sional vector space .A(,., where s = 21 (2[ + 1). 
Hereafter, for the sake of simplicity, we designate by 
fl a set of quantum numbers (nlm) of a single nucleon 
in a harmonic-oscillator potential. 

At first, one introduces the transport operators E{ 
by the following expression: 

(1) 

where a~, and all are the creation and annihilation 
operators of a single nucleon, obeying the commuta­
tion relations: 

fa;;', all ]+ = bll'Il' [a;;', atl+ = [all" all l+ = O. (2) 

If one restricts the states fl to those belonging to 
&(N), all the operators E;' commute with the Hamil­
tonian Je = /iW(LIl atall + i). Thus, physically speak­
ing, the nucleons are carried by these operators 
among the states within a definite energy shell. The 
commutation relations of E;' are calculated by the 
use of (2), giving the following result: 

[Elll' EIl2'] = E"2'b/ l ' _ E"l'bIl2' 
Ill' 112 III 112 III Ill' 

fll , fl~ , !t2 , fl~ E &( N). (3) 

As is seen from the above formula, the commutators 
of E;' are expressed again in terms of linear combina­
tions of E:'; that is to say, they are closed among 
themselves with respect to the commutator product, 
so that these S2 operators constitute3 the generators 
of the unitary algebra Us. The same holds also for an 
equivalent set of operators u~tJ which were introduced 
by Elliottl in the forms of the irreducible tensors of 
rank t with respect to the three-dimensional rotation 
group Rs: 

u~t) = (21 + 1)-l I (/'tm'g !/'tlm)E::', 
m,m' 

t = I + I', I + l' - 1, ... , II - 1'1; 
q = t, t - 1, ... ,-t. (4) 

The commutation relations among the u~t) are 
expressed as followsl : 

[u~t)(ll'), u~s)(kk')l 

= I (2r + 1)*(tsqp! tsrv) 
r,v 

x {( -1)t+B-f'b(l'k)W(tslk'; rl')u~r)(lk') 

- b(Ik')W(tsl'k; rk')ut')(kI')}. (5) 

Next, the operators of Elliott which describe the 
SUs algebra are introduced in terms of u~t) or, equiva­
lently, in terms of the transport operators E;' acting 
in .A(,s' They are defined as follows: 

La = 2 [1(1 + 1)(21 + 1)]*u~l)(ll), q = 1,0, -1, 
I 

Q = I [-(2N + 3){1(l + 1)(2/ + 1)}*u<2)(1l) 
a I (21 - 1)(21 + 3) a 

{
6(1 + 1)(1 + 2)(N - l)(N + I + 3)}* 

+ (21 + 3) 

X {U~2)(l, 1 + 2) + U~2)(l + 2, I)}]. 
q = 2, 1, ... ,-2. (6) 
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For the sake of later convenience, we write down the 
operators Lq and Qq for the (Op) and (Od, Is) shells: 

{
LiOP) = (6lu~1)(pp), 

]V = 1 (7) 
Qq(Op) = -(30)!U~2)(pp), 

J I 

(

LiOd' Is) = (30)!U~1)(dd), 
N = 2 QiOd, Is) = -(70)2u~2)(dd) + (40)2 (8) 

x {u~2)(ds) + u~2)(sd)}. 
All these operators (6) commute with the Hamiltonian 
:Ie and satisfy the following commutation relations 
which are verified by the use of (4): 

[Lq , Lq,] = -(2)!(Uqq' 1111q + q')Lq+q" 

[Qq, La'] = -(6)!(2Iqq' 1212q + q')Qq+q" (9) 

[Qq, Qq'] = (90)!(22qq' I 221q + q')Lq+q'. 

As is seen from (9), the commutators of these eight 
operators, Lq and Qq, are closed among themselves, 
thus forming generators of a Lie algebra which was 
proved by Elliott! to be SUa. .. 

We now introduce our new operators In the dIrect­
sum space .M,(Op EEl .M,(Od, Is). As stated above, the 
spaces .M,(Op) and .M,(Od, Is) are already the repre­
sentation spaces of the SUa algebra generated by the 
operators of Elliott [Eqs. (7) and (8), respectively]. 
We define anew nine operators v~tJ as follows: 

v(O) = I (21 + t)!u(O)(nl, nl), 
I 

v~t) = Hv~t)(Op) + v~t)(Od, Is) + w~tJ(Op, Od, Is)], 

t=I,2, (10) 

where v~t) (Op) and v~tJ (Od, Is) are identical with ~he 
operators of Elliott [Eqs. (7) and (8)] except the sIgn 
of U~2) (Op,Op), while the coupling operators w~tJ 
(Op,Od, Is) are defined as follows: 

w~l)(Op, Od, ls) = i(10)!u~l)[Op, Od] + i(8)!U~1)[Op, Is], 

W~2)(Op, Od, Is) = -i(90)!U~2)[Op, Od], (11) 

with the abbreviation 

u~t)[nl, n'l'] = u~t)(nl, n'/) + u~t)(n'l', nl). 

The commutation relations among the operators 
v~tJ (t = I, 2), give the following results (see Appen­
dix): 

[V~l), v~~)] = -(2)!(1l qq' 1111q + q')v~~q" 
[V~2), v~~)] = -(6)!(21qq' 1212q + q')v~~q" (12) 

[V~2), v~~)] = (90)!(22qq' 1221q + q')v~~q'. 
Comparing (12) with (9), we find that the eight 
operators v~tJ defined above are closed among them-

·1 
----~--------~--------~----K 

·2 

·1 a 

c 

FIG. I. Weight diagram of SUa in vI(,* 

selves with respect to the commutator product, thus 
forming generators of a Lie algebra in the space ,A<,*. 

Moreover, we may conclude that our operators (10) 
generate an SUa algebra in the sum space .M,*, because 
the structure constants involved in (12) are identical 
with those of (9). In addition, the following remarks 
should be noticed: (i) The commutation relations (12) 
are not changed if we take the following antisymmetric 
combinations, instead of symmetric ones: 

u~tJ{nl, n'l'} = u~t)(nl, n'l') - u~t)(n'l', nl). (13) 

It is necessary, however, to adopt the symmetric 
ones in order that the Hermiticity of v~tJ is assured. 
(ii) v(O) is the number operator, which commutes with 
everyone of v~tJ (t = 1, 2), but does not play any role 
as a generator of the algebra. 

3. REPRESENTATION IN THE MIXED­
SHELL SPACE: 

A. Weight Diagram of SUa in .~l* 

As the SUa algebra is a Lie algebra of rank two, there 
exist two generators which commute with each other.9 
In our case, these commuting generators are v~lJ 

and V~2). If we write their eigenvalues as K and &, 
respectively, they are represented by a set of points 
on the K& plane, which is called the weight diagram. 
The weight diagram for our SUa representation in 
.M,* is shown in Fig. l. For the sake of comparison, 
we have shown also the weight diagram of the rep­
resentation (10) and (01) in the scheme of Elliott, in 
Fig. 2, corresponding to one particle and one hole 
state in (Op) shell. Although the triangle abc in Fig. 1 

9 G. Racah, "Group Theory and Spectroscopy," Institute for 
Advanced Study, Lecture notes, Princeton, New Jersey, 1951. 
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FIG. 2. Weight diagram in coupling scheme of Elliott. 

is identical with that of ABC in Fig. 2, the former 
gives a three-fold degenerate representation. 

In the following, the eigenstates corresponding to 
each point of the weight diagram are expressed by the 
single-particle wavefunctions of an oscillator in the 
usual shell model: 

CPl = d2, CP2 = d_2, 

CPa = 2-!(dl + ipl)' CP4 = 2-!(dl - ip1)' 

CP5 = 2-!(d_ l + ip-I)' CP6 = 2-!(d_ I - ip_I), 

4>7 = 6-!(do - 2fso - 3f ipo), 

CPs = 6-!(do - 2iso + 3!po), 

CPo = 3-!(2tdo + so), 

(14) 

where the abbreviation d2 , for example, expresses the 
normalized wavefunction of a nucleon with I = 2, 
rn = 2 in an oscillator potential. 

B. Representation in Many-Body Space 

We now proceed to deal with a many-body system 
consisting of n nucleons in the (Op, Od, Is) shell. The 
wavefunctions for this system form a complete set of 
antisymmetrical tensors of rank n in the space .;I(,s 

spanned by the single-particle wavefunctions, so that 
they are classified by the aids of the irreducible 
representations of SUa algebra in the n-fold direct­

product space J{; = .;1(,* x .;1(,* x ... x .;1(,*. 

According to the representation theory, 9 the irre­
ducible representation of the SUa algebra is character­
ized by the highest weight, a two-dimensional vector, 
while the highest weight is expressed in terms of two 
fundamental vectors in the weight space, which are 
called the fundamental dominant weight (f.d.w.). 
The f.d.w. for the SUa algebra corresponds to the two 

points on the weight diagram, C (€ = 2, K = 0) and 
A' (€ = I, K = 1) in Fig. 2. We express them as two­
dimensional vectors as follows: 

(15) 

Then, the highest weight M of an irreducible repre­
sentation is given by the following formula: 

M = A1M(1l + A2M(2) = (2)'1 + A2 , A2), (16) 

w here Al and A2 are assured to be nonnegative integers. 9 

Thus, the integers (AI' A2) are available in order to 
characterize the irreducible representations and also 
to classify the many-body states. 

The irreducible representations may be specified 
also by the eigenvalues of Casimir operator which is 
defined by the second-order invariant derived from the 
generators. We define first the many-body operators 
V';tl as follows: 

tt 

V~t) = 1 v~tl(i). (17) 
i=l 

The fundamental properties of v~tl concerning to the 
commutation relations derived in the previous section 
are shared also by the many-body operators. Then, we 
define the Casimir operator for our system as follows: 

C = 3(V(l) . V(ll) + (V(2) • V(2». (18) 

The eigenvalues of C with respect to the SU3-irreduc­
ible states (AI' A2) are given by the following relation: 

C(A1' A2) = 4{(A1 + )..2)(A1 + A2 + 3) - A1A2}· (19) 

This operator C is taken as the effective interaction 
between nucleons which gives rise to the SUa coup­
ling scheme. 

C. Classification of the Many-Body States 

We are now ready to classify the states arising from 
the configurations (Op, Od, Is)n by the aids of the 
irreducible representations of the SUa algebra. 
Table I shows the possible values of the Casimir 

TABLE I. Values of the Casimir 
operator and SU.-irreducible 
states for n-partic\e configura-

tions. 

n (A., A.) (c) 

(10) 16 

2 (20) 40 
(to) 16 

(30) 72 
3 (11) 36 

(00) 0 
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TABLE II. Classification of states arising from (Op, Od, Is)n. 

n [f) dim. (AI, A.) dim. L 

[1] 9 (10)3 9 0,1,2 

(20)6 36 0',1,23,3,4 
[2] 45 

(10)3 9 0,1,2 
2 

(20)3 18 12,2,3 
[11] 36 

(10)6 18 12,2,3 

(30)10 100 0',12,2',33,43,5,6 

[3] 165 (11)6 64 0', 1',24,33,4 

(00)1 0 

(30)8 80 0, P, 2',33,4",5 

3 [21]" 480 (11)19 152 03 , 18, 29 , 36, 43, 5 

(00)8 8 1,2 

(30)1 10 1,3 

[111] 84 (11)8 64 0', 1', 24 , 33, 4 

(00)10 10 1,3 

operator as well as (AI, A2) arising from one-, two-, 
and three-particles configurations. 

Moreover, the generators of the unitary algebra Us 
defined by (4) may be extended to the mixed-shell 
space and, then, also to the many-body space in an 
analogous way as above. Thus, the states are classified 
by the irreducible representations of the chain of 
subalgebras; Us, SU3 , and R3 • The final results of 
classification are given in Table II. 

4. CONCLUDING REMARKS 

The SU3 scheme, which we have developed in the 
mixed-shell space (Op, Od, Is), is expected to be useful 
for the analysis of the levels of nuclei in the neighbor­
hood of 0 16, because the excitation of the core should 
be taken into account in this region so that one must 
treat them as many-body systems in the mixed-shell 
space . .A(,*. 

The purpose of extending the SU3 scheme to the 
mixed-:-shell space was to take into account the ex­
change integrals which are indispensable in order to 
reveal the collective character of nuclear levels on the 
basis of the shell model. Although the first aim has 
been achieved in our scheme, one is met with another 
difficulty: the nonconservation of parity. In order to 
obtain a realistic physical result, one must project 
the above-obtained irreducible states into those with a 
definite parity. We shall discuss this problem in 

detail in a forthcoming paper together with the 
reformulation of our scheme which is more adequate 
for the treatment of particle-hole systems. 

APPENDIX A 
In order to derive the commutation relations, 

which may be applied to arbitrary operators given as 
linear combinations of u~t), we consider the operators 
of the following form: 

v~tl = ! a(l)u~tl(ll) + ! b(ll'){u~t)(ll') + u~t)(l'l)} 
I I!' 

where a(l) and bell') are arbitrary constants. The 
commutation relations are derived by successive 
application of (5), giving the following results: 

(I) Among the operators of the same rank t: 

[vw vw] 
(l' P 

= ! (- )2(2r + l)!(ttQp I ttrv) 
r odd 

x [! A~r)u~r)(ll) + ! B1~! {u~r)(ll') + U~r)(/'l)}] 
I II' 

(AI) 
where 

A~r) = a2(l) W(ttll; rl) + ! b2(/l') W(ttll; rl '), 
II' 

B~;! = b(Il'){a(l)W(ttll'; rl) + a(l')W(ttll'; rl')} 

+ ! b(ll")b(I"l')W(ttll'; rl"). (AI') 
I" 

(II) Among the operators of different ranks t and s: 

[v~t), v~s)] = ! (2r + l)!(tsqp I tsrv) 

where 

r 

X [! A~r)u~r)(ll) + ! B~rJ 
I II' 

X {(_)'~-lu~r)(ll') + ll~r)(I'/)}J. (A2) 

A~r) = {(_)A - l}{a(l)C(l)W(tsll; rl) 

+ t b(Il')d(ll')W(tsll; rl')}, 

B:~! = ( -){ d(ll')a(l) W(tsll'; rl) 

+ (-)A-1d(ll')a(/')W(tsl'l; rl') 

+ (-)A-1b(1l')c(1)W(tsl'l; rl) 

+ b(Il')c(/') W(tsll'; rl')} 

- ! {b(ll")d(I"l')W(tsll'; rl") 
I" 

+ (- )A-1b(l'l")d(/"l)W(tsl'l; rl")}, 

/). = t + s - r. 

These formulas are conveniently used in deriving the 
commutation relations (9) and (12). 

Although the summation with respect to the index 
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r in (AI) and (A2) is extended over the values limited 
by the triangular condition among the indices (t, s, r), 
the operators U~3) and U~4) do not appear in (9). This is 
the most important features of the operators Lq and 
Qq or v~I) and V~2) in order that they may close among 
themselves with respect to the commutator product. 

JOURNAL OF MATHEMATICAL PHYSICS 

This peculiar character owes partly to the accidental 
vanishing of the corresponding Racah coefficients. 
Similar situation was found also in deriving the 
subgroup G2 in the classification of the states arising 
from the configurations jn of electrons.1o 

10 G. Racah, Phys. Rev. 76, 1352 (1949). 
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.Scattering .of electroma&netic wave~ by an extended underdense plasma is studied. The analysis begins 
wIth expreSSIons for multiple scattering of waves. An explicit account of coherent scatterings leads to 
modified equations. These modified equations are used to derive a transport equation for the intensity 
(a tensor expressed in polarization components). It is shown that this transport equation may be applied 
to the calculation of radar backscatter. 

1. INTRODUCTION 

An extensive literature is available for the descrip­
tion of electromagnetic wave scattering from a plasma, 
calculated in the first Born approximation. The 
elementary phenomenological theory expresses this 
in terms of the plasma density correlation function.1-4 

More detailed theories have taken account from first 
principles of plasma tluctuations.3•s- 7 

Extension of the theory beyond the first Born 
approximation has not proven simple, although 
conditions for the validity of this approximation may 
be given in some detail.s For certain applications, a 
tluctuating dielectric constant, having assigned statis­
tical properties, may be used in Maxwell's equations.9 

Except when simplifying conditions obtain, the 
solution of these equations is apt to be formidable. 
Also, relating the dielectric constant to the plasma 
properties is not generally trivial. 

• Presently on leave from the Department of Physics, University 
of California, Berkeley. 

1 H. G. Booker, J. Geophys. Res. 64, 2164 (\959). 
2 A. D. Wheel on, J. Res. Natl. Bur. Std. 63D, 205 (1959). 
3 E. E. Sal peter, Phys. Rev. 120, 1528 (1960). 
4 L. Van Hove [Phys. Rev. 95, 249 (1954») seems to have given the 

first derivation using the time-dependent correlation function. 
Van Hove's derivation is quantum mechanical, so of course includes 
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r in (AI) and (A2) is extended over the values limited 
by the triangular condition among the indices (t, s, r), 
the operators U~3) and U~4) do not appear in (9). This is 
the most important features of the operators Lq and 
Qq or v~I) and V~2) in order that they may close among 
themselves with respect to the commutator product. 

JOURNAL OF MATHEMATICAL PHYSICS 

This peculiar character owes partly to the accidental 
vanishing of the corresponding Racah coefficients. 
Similar situation was found also in deriving the 
subgroup G2 in the classification of the states arising 
from the configurations jn of electrons.1o 

10 G. Racah, Phys. Rev. 76, 1352 (1949). 
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.Scattering .of electroma&netic wave~ by an extended underdense plasma is studied. The analysis begins 
wIth expreSSIons for multiple scattering of waves. An explicit account of coherent scatterings leads to 
modified equations. These modified equations are used to derive a transport equation for the intensity 
(a tensor expressed in polarization components). It is shown that this transport equation may be applied 
to the calculation of radar backscatter. 

1. INTRODUCTION 

An extensive literature is available for the descrip­
tion of electromagnetic wave scattering from a plasma, 
calculated in the first Born approximation. The 
elementary phenomenological theory expresses this 
in terms of the plasma density correlation function.1-4 

More detailed theories have taken account from first 
principles of plasma tluctuations.3•s- 7 

Extension of the theory beyond the first Born 
approximation has not proven simple, although 
conditions for the validity of this approximation may 
be given in some detail.s For certain applications, a 
tluctuating dielectric constant, having assigned statis­
tical properties, may be used in Maxwell's equations.9 

Except when simplifying conditions obtain, the 
solution of these equations is apt to be formidable. 
Also, relating the dielectric constant to the plasma 
properties is not generally trivial. 

• Presently on leave from the Department of Physics, University 
of California, Berkeley. 
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scattering developed by the author.lt.12 This was used ! 
to derive a transport equation for the description of 
incoherent scattering.13 Since classical mechanics 
represents a limiting case in quantum mechanics, the 
above theories could, in principle, be applied to our 
present problem.14 We choose not to do this, but to 
give a direct derivation within the framework of 
classical mechanics. The derivation given here is 
much simpler and more satisfying to the physical 
intuition than the corresponding quantum-mechanical 
development, with its reliance on formal operator 
algebra. 

k 

FIG. I. Ray paths for single scattering. 

In the next section we define our problem and 
introduce some of the notation to be used. The 
multiple-scattering equations and their coherent­
incoherent decomposition will be given in Sec. 3, 
followed by a brief discussion of these in Sec. 4. The 
transport equation is derived in Sec. 5. Some comments 
on the use of this are made in Sec. 6. The special 
problem associated with radar backscatter is described 
in Sec. 7, where the appropriate transport theory is 
given. 

2. DESCRIPTION OF THE PROBLEM 

We suppose a plane-polarized electromagnetic wave 
to be incident on a plasma, whose properties are 
described below. At some point r the electric-field 
vector associated with this incident wave is expressed 
as 

EI(r) = e(l)EI(r), 

EI(r) = Eoeik .r • (2.1) 

Here k is 27T times the wavenumber vector and e(1) 
is the polarization vector of this incident wave. IS 

If the wave (2.1) were scattered by a single electron 
at a point z, the scattered field vector (in the wave 
zone) would be 

2 

Eslr) = ! ep(j)ERCU), 
i=1 

Esc(j) = R-l eikRj;1(P, k)E I(Z), 

(2.2a) 

(2.2b) 

Here R == r - z, P is a unit vector parallel to R, 
and k = kjk, etc. Unit vectors ejl(!) and ejl(2) are de­
fined as follows: 

e'(2) _ p x k 
II -Ip x kl' 

ep(1) = ep(2) x k. (2.3a) 
11 K. M. Watson, Phys. Rev. 89, 575 (1953); 105, 1388 (1957). 
1. A review of the quantum theory of scattering from composite 

systems is given by M. L. Goldberger and K. M. Watson, Collision 
Theory (John Wiley & Sons, Inc., New York, 1964). 

13 K. M. Watson, Phys. Rev. 118, 886 (1960). 
14 An illustration of this is given on p. 772 of Ref. 12. 
15 The description for circularly and elliptically polarized waves 

may, of course, be obtained from a superposition of plane-polarized 
waves. The theory for elliptic polarization is given in Sec. 6. 

The Thomson scattering amplitude is 

(2.3b) 

where '0 = e2 jmc2 = 2.8 X 10-13 cm is the classical 
electron radius. 

If the wave (2.1) illuminates a plasma containing N 
electrons at respective positions ZI' ..• , ZN, the field 
Esc(r) will contain wavelets scattered from all of these. 
In the first Born approximation the rescattering of 
once-scattered waves is neglected, and, instead of 
(2.2b), we have 

.VeikRa 

E"~(j) =! - jil(P, k)Eiza). 
a=1 R~ 

(2.3c) 

Here r and the za's are measured from a point (') in the 
plasma (as illustrated in Fig. I), Ra == r - Za' and p is 
taken parallel to r. We have assumed here that r » Rs , 

the "size" of the plasma. (Scattering from the positive 
ions is neglected in our analysis.) 

When the first Born approximation is not valid, we 
must replace Eiza) in Eq. (2.3) by the total field 
(incident plus scattered) impinging on electron IX. 

We do this explicitly in the next section. 
To calculate average scattered power we must 

specify the statistical properties of the plasma. We 
do this heuristically as follows. First, we assume the 
plasma properties to be stationary. The probability 
that the N electrons are at ZI" •• ,ZN within the 
volume elements d3z1 , ••• , d3zN is written as 

The single-electron distribution function is 

P1(ZI) = f Ps d3z 2 ••• d3zS ' (2.4) 

We suppose that Pl(ZI) vanishes for ZI» Rs , a 
characteristic plasma dimension. The pair-distribution 
function is 

P2(ZI, Z2) = f P N d3z3 ••. d3zN • (2.5) 
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1t is convenient to re-express this in terms of the pair­
correlation function g(Zl, zJ: 

P2(Zl' Z2) = Pl (ZI)Pl (Z2)[1 + g(Zl, Z2)]' (2.6) 

We shall suppose that g(ZI' Z2) is characterized by a 
parameter Rc ' called the "correlation range," such 
that g vanishes when IZI - z21 » Rc. (For studying 
turbulent flow, the use of a "correlation range" may 
be artificial. In such cases a "correlation range" 
Rc ~ k-1 is selected by the scattering process.) 

Continuing the process of reduction begun with 
Eqs. (2.4)-(2.6), we can define Pa , P4 • •• and a 
corresponding hierarchy of correlation functions. 
For example, we can write 

Pa(Zl, Z2' Z3) = Pl (Zl)Pl (Z2)Pl (Za){1 + g(Zl' Z2) 

+ g(Z2' za) + g(za, Zl) + ga(Zl' Z2' za)}, (2.7) 

where ga is the triple-correlation function which we 
assume to vanish unless Zl , Z2, and Za are all separated 
by distances not much greater than Rc. 

F or calculating averages it is convenient to introd uce 
a set of conditional probabilities with the equations 

PX(Zl"", Zs) == Pl(ZI)P~~I(Z2"'" ZS; ZI) 

== P 2(ZI , Z2)P~~~2(Z3' ... , Zs; ZI' Z2) 

(2.8) 

] n terms of these we adopt the following notation for 
averages of some function A(ZI' ... , Zs): 

(2.9a) 

f 
,y 

<A)~p == II d
3
z" 

"("~.P)~l 

X AP~~2(Zl' ... , za-l , za+1' ... , ZP_l , 

Zp+l' ... , Zx; Za' Zp), (2.9b) 

etc. Thus, for example, 

(A) == r PNA d3z1 ••• d3zS 

= J (A)apP2(Za, Zp) d3za dazp. (2.9c) 

The description of "Doppler shifts" in the scattered 
frequencies would require the introduction of time­
dependent correlation functions. We shall not consider 
this generalization in the present paper. 

To prepare for and illustrate the notation to be used 
later, we now write down the expression for the 
scattered power in first Born approximation. If a 

receiver is placed at a large distance r from the 
plasma and detects waves with a plane polarization e, 
the received power per unit area isI6 

." _ lie. E HC(r)1
2

\ 

.Irl"; - (\ 81T / 

= ;f~ If(e)1 2 i feiAk'(Z~-ZP) P2(za, zp) d3Z~ d 3zp . 
r ~.fJ~1 

(2.10) 

Here:To = (C/81T) IEol2 is the incident power flux, 

~k == P - k, (2.11) 
where p = kp, and 

2 

fee) == L e . ep(j)fjI( p, i{). (2.12) 
j~1 

If we assume that N» 1 and write 

(2.13) 

for the electron density, we can use Eq. (2.6) to 
express (2.10) in the form 

:f",·c = ~ If(e)12
\ J p(z)e

iAk
'
Z 

d
3

z r 
+ :r~ If(eW fd3z d3z' p(z)p(z')g(z, z')eiAk.(Z-Z'), 

r • 
(2.14) 

where we have neglected the terms corresponding to 
iJ. = fJ in Eq. (2.10). The first term above represents 
the coherently scattered power. It may also be ex­
pressed as17 

(2.15) 

The second term in Eq. (2.14) then represents the 
incoherent scattering, or 

The incoherent differential scattering cross section 
is seen from (2.14) to be1s 

a(p, i{) = If(e)12 f d3z d3z' p(z)p(z')g(z, z')eiAk'(Z-Z'). 

(2.17a) 

lOin MKS units, the constant c in Eq. (2.10) is c = 47T(€oll'o)1. 
In unrationalized Gaussian units, c is the velocity of light. 

17 An excellent review of coherence and incoherence in the 
scattering of waves has been given by M. Lax. Rev. Mod. Phys.13, 
289 (1951). 

18 We define differential scattering cross section as scattered 
power per unit solid angle per unit flux. The total cross section 
is the integral of u over all solid angles. The conventional radar 
backscatter cross section is then 41TU( - '". k) in the notation of Eq. 
(2.17a). 
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We may characterize the order of magnitude of this as 

(2.17b) 

The neglected terms corresponding to a = {J in Eq. 
(2.10) would give a contribution 

(2.18) 

to the incoherent scattering.19 This is evidently negli­
gible when 

R~p » 1. (2.19) 

We are now ready to impose certain restrictions 
on the plasma which will let us make corresponding 
simplifying assumptions in our analysis. Certain of 
these that are basic to our analysis are described first. 
Others that could be relaxed at the cost of some 
added complexity are then given. 

The "basic" assumptions made in this work are: 

(Bl): N»l, where N is the total number of 
electrons. This condition is so well satisfied in practice 
that it is not worth keeping corrections, which would 
amount to bookkeeping on individual electrons. 

(B2): Ik» I, where / is the scattering mean free 
path [defined in Eq. (2.23) below]. We interpret this 
to mean that a rescattering always occurs in the 
wave zone of a previous scattering. Although our 
multiple scattering equations and coherent decom­
position can easily be written down without this 
assumption,20 the simple intuitive interpretation of 
our equations would be modified and the equations 
themselves would be more cumbersome to handle. 

(B3): The plasma is underdense. Again, our formal 
theory may even be applied to the overdense case. 
The treatment of overdense scattering is so different 
from that of underdense scattering that separate 
discussion of these two cases is warranted. 

(B4): kRs » 1, where Rs is a parameter character­
izing the size of the plasma. This means that we can 
neglect coherent scattering outside the diffraction 
cone, which has an angular aperture of order (kR,}-l. 
We shall actually interpret this condition as implying 
that coherent scattering occurs only in the forward 
direction (that is, parallel to k). 

]f the condition (B4) were violated, our discussion 
would be trivial. From (82) we have kR.» RBI/. 
If kRs were of order unity, we would have I» Rs 
and a valid first Born approximation. 

,. Sometimes the terms "quasicoherent" and "strictly incoher­
ent" are applied to respective contributions (2.17) and (2.18), to the 
scattering. Since we shall neglect the "strictly incoherent" scattering, 
we can apply the term "incoherent" to (2.16), etc., without con­
fusion. 

20 The derivation of the Lorentz-Lorenz formula on p. 772 of 
Ref. 12 was given without the introduction of assumption (B2). 

(85): /» Rc, where Rc is the "correlation range." 
This condition implies that subsequent rescatterings 
will tend to occur in regions of plasma uncorrelated 
to regions of previous scatterings. Thus, expansions 
in successively higher orders of correlation functions 
can be made. 

(B6): IV In nl «k, where n(r) is the refractive 
index of the plasma at a point r. This condition 
implies that we can use the eikonal approximation 
for the coherent propagation of a wave between 
incoherent scatterings. Expressed in more physical 
terms, this means that the waves will propagate along 
ray paths, as is assumed in geometrical optics. 

The following assumptions are made for "con­
venience." They permit us to make analytical simpli­
fications in our equations, but could be relaxed with 
only minor changes in our analysis. 

(CI): Rc IV In pi « 1. This permits us to treat the 
mean electron density p as a constant over the 
correlation range. We also assume that the above 
inequality holds when p is replaced by other plasma 
parameters, such as temperature. 

(C2): The correlation function g(z, z') is a spher­
ically symmetric function of (z - z'). Thus 

g(z, z') == g(z; Iz - z'l) ~ g(z'; Iz - z'J), (2.20) 

where in the last form we have made use of (Cl). This 
condition implies that the refractive index n(r) 
depends on position only and not on the direction of 
propagation. 

Relaxation of the conditions (Cl) and (C2) requires 
only a trivial generalization of our treatment. 

(C3): In - 11 «1. This condition will be inter­
preted as implying that we can replace eikonal ray 
paths by straight line paths. There is no great complica­
tion of our formal analysis if this restriction is dropped. 
The principal simplification resulting from condition 
(C3) (other than the obvious geometrical one) is that 
no rotation of the polarization vector occurs along 
ray paths. This means that the Green's function 
describing coherent propagation is a scalar rather 
than a tensor quantity. 

(C4): When IZa' - zal = O(Rr ), we assume that 

S(a', {J) == (Za'n(x) ds 
Jzp 

~ Sea, {J) + n(za)RaP • (za' - za), 

where RaP = IZa - zpl = 0(1) [see Eq. (3.23) etc.]. 
The restriction (C4) permits us to simplify certain 
exponential phases. 
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(C5): We assume that the inequality (2.19) is valid. 
It seems that this condition will usually be met and it 
saves carrying a few extra terms in our equations.21 

The assumptions listed above permit us to simplify 
the incoherent scattering cross section (2.l7a) and to 
obtain a simple expression for the mean free path l. 
First, let us average over initial and sum over final 
polarization directions to obtain the Thomson 
differential cross section: 

= tr~[l + (p . i{)2]. (2.21) 

Then, using Eq. (2.20), Eq. (2.l7a) becomes 

a = J d3 Zp2(Z) J d3 Rg(z; R)eiAk-RaT(p • i{), (2.22) 

on summing and averaging our polarizations, as 
indicated. The mean free path is the reciprocal of the 
total scattering cross section per unit volume, which 
from (2.22) is seen to be expressed as 

where dQ& is an element of solid angle about the 
direction of p. A more accurate expression for I will 
be obtained with Eq. (4.5). From (2.23) we obtain the 
estimate 

(2.24) 

where bp2 is the mean-square electron density 
fluctuation. 

3. MULTIPLE SCATTERING 

We turn now to the task of correcting the first Born 
approximation (2.2) for the scattered field Esc. The 
electric field vector for a wave arriving at a point z .. 
will be the sum of the incident field plus that for the 
waves scattered from all the electrons. Thus we can 
write this in the form 

N 2 

E(za)=Elza)+ ! !cap(j)Fap(za,j). (3.1) 
P( "a)=1 ;=1 

To explain this equation we first recall that E[ is just 
the incident field (2.1). The polarization vectors are 
defined as follows: 

A i{aP x i{ 
eaP(2) = t"- l'_' 

IKaP X KI 
cail) = caP(2) X i{aP , (3.2) 

21 Assumption (C5) was not made in Ref. 13. 

where 

i{aP = .Za - Zp . (3.3) 
IZa - zpl 

The quantity F .. /z .. ,j) == Faij) represents the com­
ponent along ca/j) of the electric field vector of that 
wave scattered from an electron at zp to the point Za. 
The quantity za in (3.1) will sometimes be taken to 
represent just a point in space and sometimes to 
represent an electron coordinate. In the former case 
the restriction fJ ¥= <X represents no real restriction on 
the summation, since the sum then runs over all 
electron coordinates. In the latter case we omit the 
wave scattered by electron <x, so E(za) represents the 
field incident on electron <X. In any case, this restriction 
can be ignored when we replace the sums by integrals 
in performing averages such as those of Eqs. (2.9) 
[because of assumption (Bl)]. 

To obtain the total scattered radiation we set 
Za = r, a point far from the plasma. 

We of course require equations to determine the 
Fap. It is intuitively evident that these are 

Fap(za' i) = G~p/;IC<xfJ, fJO)E[Czp) 

Here 

with 

and 

N 2 

+ ! ! G~p/;j(<xfJ, fJa)FPa(zp, j). 
a("p)=1 ;=1 

(3.4) 

(3.5) 

(3.6) 

h;(<xfJ~ fJa) = -roeap(i)· epa(j) (3.7) 

is the Thomson scattering amplitude for scattering a 
wave from the direction j{pa to i{ap. Finally, 

h1(<xfJ,0) = -roeap(i) • eel), (3.8) 

describing the first scatterings of the incident wave. 
Equation (3.4) represents the fundamental relation 

for studying the multiple scattering of waves. Expres­
sions of this type seem to have been first proposed by 
Foldy22 for study of the scattering of sound waves. 
Various applications were discussed by LaxY A 
precise derivation from the wave equation was given 
by Watson.H Here it was shown that equations 
having the structure of Eqs. (3.4) represent exact 
solutions to the wave equation (in our case, Maxwell's 
equations for scattering by N electrons). Two approxi­
mations are made, however, in the form given by 
Eqs. (3.4). First, corrections to the Thomson ampli­
tudes h; obtained from quantum electrodynamics are 

•• L. L. Foldy, Phys. Rev. 67,107 (1945). 
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z 
~a 

k 

FIG. 2. Graphical illustration of terms in Eq. (3.9). 

omitted. For our applications these are very small 
and justifiably neglected. Second, we have used 
assumption (B2) to treat each scattering as occurring 
in the wave zone of a previous scattering. This lets us 
use the Thomson amplitude and the scalar Green's 
function (3.5) rather than the exact tensor Green's 
function of Maxwell's equations. We emphasize that 
correct equations which include near-zone scattering 
are known11. 12 and have the form of Eqs. (3.4), but 
with the use of the exact Green's function. At the cost 
of some added algebraic complexity, the applications 
of this paper can be carried through for these correctt:d 
equations. 

The structure of Eqs. (3.1) and (3.4) can perhaps be 
seen more clearly if we sequentially substitute the 
right-hand side into the left-hand side of (3.4) to 
obtain the series 

x 2 

E(za) -= Ez(z~) + P(;"~~l L~leap(j)G~pfj/O(fJ, fJO)Eizp) 

2 .Y 2 

+ ~ eap(j) ~ ~ G~pfj;(O(fJ, fJa) 
j=1 ,,( ;"Pl=1 ;=1 

X G~(1fil(fJa, aO)Ez(z,,) + .. -}- (3.9) 

The first term, of course, represents just the incident 
wave, while the second represents once-scattered 

waves. The third term describes twice-scattered waves, 
etc. These terms are illustrated graphically in Fig. 2. 

For our applications a modified form ofEq. (3.4) 
will prove convenient. This modification results from a 
separate treatment of coherent and incoherent 
scatterings. In the quantum theory this is done with 
certain projection operators. In the present classical 
theory we accomplish this with a careful ordering of 
statistical averages, as in Eqs. (2.15) and (2.l6). 

What we wish ultimately to calculate is the power 
flux at some point r, that is, 

> (e 0 E*(r)e 0 E(r» 
~J ror = C , (3.10) 

87T 

where the notation of Eqs. (2.9) for the statistical 
average has been used. Now, each factor of e 0 E in 
(3.10) can be thought to consist of a sum of terms 
describing sequences of scatterings, as in (3.9). Thus 
e 0 E has the form 

oc 

eoE(r)=! ! Qn(r;z~l'···'z.). 
n=Oal," ",tIn 

A typical term in Eq. (3.10) will thus have the form 

:J'mn == (Q~(r; zp" ... , zp,JQm(r; za, ... za.» 

= r Pm+nQ~Qn d3z(Jl··· dSza". (3.11) 

Our assumptions (Bl) and (C5) let us suppose that 
the za's are all distinct from the zp's. 

The probability distribution PN may be developed 
in a series of correlation functions following the 
procedure of Eqs. (2.4)-(2.7). Because of assumption 
(B5) we expect the principal contributions to come 
from low-order correlations. For any given term of 
thi~ series the Z(JI ••• zan will be grouped into clusters 
of correlated coordinates, there being no correlation 
between z's of different clusters. 

The simplest example of this is provided by Eqs. 
(2.10)-(2.16) for the first Born terms. The next 
simplest example is given by the interference term 
resulting from a first times a second Born contribution. 
Reference to (3.9) shows that the resulting expression 
(3. I I) is of the form 

(3.12) 

The expression (2.7) for P3 lets us write this as 

:T12 = f P 1(Zl)P1(Z2)P1(Z3)gaCZl, Z2' zs) 

X QtQ2 d3z1 d
Sz2 d

3zs + (Qi>(Q2) 

+ f dSz1 d
Sz2 P 1(Zl)Pl(Z2)g2(Zl, z2)Qi(r; Zl) 

X [f dSza P 1(zS)Q2(r; Z2, zs) ] 

+ ["2" replaced by "3" in g2]. (3.13) 



                                                                                                                                    

694 KENNETH M. WATSON 

The first term above corresponds to scattering with 
all three electrons within one correlation range of 
each other. According to assumption (B5), we expect 
this to be relatively small. The second term represents 
a contribution to the coherent scattering, which, by 
assumption (B2), is important only in the forward 
direction. The third and fourth terms are of the form 
which will be of principal interest to us, containing 
both coherent and incoherent contributions. For 
example, the average over za in the third term will be 
called a coherent part of the scattering, since Za is 
uncorrelated with Zl' The average over Zl and Z2 
will be called cross correlated, since it involves a 
correlation between coordinates in both Q's. 

This classification can be applied to any term in 
(3.11). For example, an average over a correlated 
cluster z«a ... Z«b in Qn' and thus not correlated with 
any of the coordinates zp , ... zPm of Qm, will be called 
a "coherent part" of the average. An average over a 
correlated cluster z«a ... Z«b invoking coordinates of 
both Q's will be called "cross correlated." Evidently, 
each average over a correlated cluster of coordinates 
will fall into one or the other of these classifications. 

Our technique of separating coherent from in­
coherent contributions is first to evaluate all the 
coherent parts contributing to F«p directly from 
Eqs. (3.4). This will lead to a modified set of 
multiple-scattering equations. In evaluating (3.10) 
we must then, of course, keep only cross-correlated 
averages. 

As a first step in doing this, we note that coher­
ent parts give rise to forward scattering only. This 
follows from assumptions (B4), (B6), and (C3).23 For 
example, 

f Pl(zp)G~p/;irxfJ, fJa)FPa(zp, j) d3zp 

~ bidof Pl(zp)G~pFpizp,j) d3
zp, (3.14) 

where 

fo = fii(rxfJ, rxfJ) = -ro (3.15) 

is the Thomson amplitude for forward scattering. The 
result (3.14) follows since the straight line path from 
za to z« represents the path of stationary phase for the 
exponential 

exp [ik(R«p + Rpa)], 

as is illustrated in Fig. 3. The verification of (3.14) 
may also be seen from our conclusion with Eq. (3.21) 
that the coherent parts give rise to the eikonal ray 

23 As noted earlier, assumption (C3) is not necessary, but permits 
us to neglect rotation of the polarization vector along a ray path. 

paths, which do not show deflections at individual 
scatterings. 

As a first approximation, let us consider a sum over 
coherent parts in (3.4), neglecting any correlations 
between electrons. For propagation from za to z« we 
obtain the series 

G~~) == G~a + fo t fG~pG~aPl(Zp) d3
zp 

+ f~ L fG~P,G~,p2G~2aPl(Zp,) 
P,.P. 

x P1(zp.) d3zP1 d
3zp• + . . . . (3.16) 

This may be summed into the form of an integral 
equation for G~~): 

G~~) = G~11 + fo t f G~pGV~Pl(ZP) d3zp, 

or 

G~~) = G~a + fo f G~pGV~P(zfl) d3zp, (3.17) 

where we have introduced the electron density P 
defined by Eq. (2.13). We have also used assumption 
(Bl) to neglect the restrictions implied by Eqs. (3.14) 
on the sums over electron coordinates. 

To solve Eq. (3.17), we first observe that G~a 
satisfies the differential equation 

[V; + k2]G~a = -41Tb(z« - za). 

Operating on both sides of Eq. (3.17) with [V~ + k 2] 

and using this relation, we obtain 

tV; + k2n~(z«)]G~~) = -41Tb(z« - za), (3.18) 

where 
n~(z) = 1 + (41Tfo/k~p(z). (3.19) 

Thus, G~~ satisfies the wave equation in a medium of 
refractive index n1(z). Assumption (B6) permits us 
to write G~~ in the eikonal form 

(3.20) 

where the eikonal is 

l
z« 

S«a = n1(x) ds, 
z" 

(3.21) 

and the integral is taken from za to z« along a ray 

z 
-~ 

. .~. 
-.. -.-.-.-.-.-.-.-.-~-.-.-.-.-.-.-.-.-.. a a 

FIG. 3. Integration path for Eq. (3.14). 
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path.24.25 Our assumption (C3) lets us take this ray 
path as a straight line. This conclusion provides a 
justification for Eq. (3.14). 

We may evidently generalize Eq. (3.16) keeping 
pair correlations, etc. From the structure of the series 
(3.4) we see that this leads to the Green's function 

Gau = G~u + 10 t f G~pGpuPl(Zp) d3
zp 

+ i L JG~PI/;lrx.{31' {31(32)GPIP. 
j~l PI.P. 

X lii({31{32, (32a)G P."p bp)P l(ZP.) 

X g(ZPI' Zp2) d 3z PI d3zP2 + ... , (3.22) 

where " ... " refers to contributions from higher-order 
correlations. In writing this equation we have antici­
pated [as in Eq. (3.14)] that RaPI and Rp2U will be 
parallel, since coherent parts give rise to forward 
scattering only. (This may again be justified by direct 
calculation or from our final result.) Since there is no 
change of direction for the two scatterings, there will 
be no change of polarization. It is for this reason that 
the initial and final polarization indices "i" are taken 
to be the same [the isotropy assumption (e2) for the 
medium has also been invoked here]. 

We now address ourselves to the solution of Eq. 
(3.22), dropping the contribution of "higher-order­
than-pair" correlations. To anticipate our final 
result, Gaq will again have the form (3.20) and (3.21), 
except with a more accurate approximation to the 
refractive index. Given this anticipation and the fact 
that zP

I 
and zP. are correlated (and thus separated by a 

distance comparable to Re), we have 

and 
Gp,P. = (l/RpIP.) exp [in1(zp)kRpIP.]' (3.24) 

Here we have used the notation of Eqs. (3.3) and (3.6) 
and have set kp,u == k1{P

l
u' We have also used assump­

tions (el) and (e4) to simplify the eikonal phases. 
Finally, we have replaced the exact refractive index n 
by its first approximation n1 , the relative error being 
of order (Re/f) [see Eq. (4.7)]. 

The approximations (3.23) and (3.24) permit us to 
rewrite Eq. (3.22) in the form 

(3.25) 

2' See, for example, M. Born and E. Wolf, Principles of Optics 
(The Macmillan Company, New York, 1964). 

2. For ray paths which are sufficiently curved, the factor R;; 
in (3.20) must be modified. For the correct expression, see J. Chen 
and K. M. Watson, Phys. Rev. 174, 152 (1968). 

where 

y(z) = lop(z) + p(z) f d3x p(x)g(z, x) 

inl(z)kR A 2 

X e e-inl(z)kq.R L [Iii(it qW. (3.26a) 
R i~l 

Here we have introduced the unit vector 

q == RpIU!RpIU' 

written R == z - x, and have returned to the notation 
(2.4) for the Thomson amplitude. Approximations 
(el) and (e2) allow us to rewrite y(z) as 

y(z) = lop(z) + p2(Z) f d3R g(z; R) 

X .! exp [inl(z)(kR - kq • R)] 
R 
2 

X L [jii(R, q)]2. 
i~l 

(3.26b) 

This expression is independent of the vector q and the 
polarization index i. 

On following the steps which led from Eq. (3.17) 
to (3.18), we see that Ga" satisfies the equation 

where 
n2(z) = 1 + (41T/k 2)y(z). (3.28) 

Therefore, in the eikonal approximation we have 

Gau = (l/Rau)eikSau, 

f.
za 

Sau == S(za, zu) = n(x) ds = Sau, 
Zu 

(3.29) 

as in Eqs. (3.20) and (3.21). Were we to drop the 
restriction (e3), the path integral here 'Yould, in 
general, follow a curved ray path and Gau would be 
a tensor in the polarization indices. 

Making use of our assumption (e3) that n ~ 1 and 
our conclusion that (3.26b) does not depend on the 
polarization index i, we can re-express (3.28) in the 
form 

n(z);::: 1 + (21Tlo/ k2)p(Z) 

+ (21T/k 2)l(z) f d3R g(z; R)aT(R. q) 

X O/R) exp [inl(z)k(R - q. R)], (3.30) 

where aT is defined by Eq. (2.21). 
The procedure used to derive Eqs. (3.29) and (3.30) 

can evidently be generalized to include the contri­
bution from higher-order correlations in the refractive 
index. We do not do this explicitly here. 
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We are now ready to rewrite Eqs. (3.1) and (3.4), 
taking due account of contributions from "coherent 
parts." The new equations are 

N 2 

E(z,,) = Ec(z,,) + L LC"p(j)E"p(j) (3.31) 
P( ;"")~l i~l 

and 

E"p(i) = G"plil(CI.{3, (3a)EcCzp) 
N 2 

+ L I G"phlCl.{3, (3a)Ep,,(j). (3.32) 
O'(;"/l)~l ;~l 

The coherent wave Ec(z,,) is defined by the relation 
[we consider z" as not being an electron coordinate 
in the defining Eq. (3.33)]: 

Ec(z,,) == (E(z,,» == (E(z"»,, 

= eikS"Eoc(1) == c(1)EcCz,,), 

where the eikonal is 

(3.33) 

S" == S(z,,) = f: [n(x) - 1] ds + fl. z", (3.34) 

with the path integral taken along a straight line 
parallel to fl and terminating at z". The constant of 
integration in (3.34) is chosen to be consistent with 
that of Eq. (2.1). 

In using these equations to calculate a power flux, 
etc., as in Eq. (3.10), we must of course keep only 
cross correlations-and not twice take account of 
coherent parts. 

Let us first verify Eq. (3.33). Using Eqs. (3.1) and 
(3.4), we have 

Ee(z,,) = Eiz,,) ~ 10 t f Pl(zp)G~pEI(ZP) d3
zp 

+ I l~fpbpl)Pbpl)G~PlG~lP' 
PloP. 

X Eizp.) d3zP1 d
3zPa + ... 

= Eiz,,) + f G"Py(zp)Eizp) d3zp. (3.35) 

Use of Eqs. (2.1) and (3.27) shows that Ee satisfies 
the equation 

(3.36) 

This and the boundary condition implied by Eq. (2.1) 
lead to Eqs. (3.33) and (3.34). 

To derive Eqs. (3.32), we return to Eqs. (3.4). 
Let Z" and zp be coordinates at which two successive 
incoherent (i.e., to be cross correlated) scatterings 
occur. We sum over all possible coherent scatterings 
between these two points to obtain the series (3.22), 
and thus obtain G"p as the Green's function describing 

propagation between these two scatterings. When all 
scatterings in the series (except that at zp) are coherent, 
we obtain the first term on the right-hand side of 
Eq. (3.32). 

4. APPLICATIONS OF THE MULTIPLE­
SCATTERING EQUATIONS 

In Sec. 5 we shall derive a transport equation for 
the scattered intensity from Eqs. (3.31) and (3.32). 
In this section we describe only the simplest applica­
tion of the multiple-scattering equations. 

Relatively little effort has been made to solve Eqs. 
(3.1) and (3.4) or (3.31) and (3.32) directly, except 
when the number N of scatterers is small. Available 
variational principles probably have only a very 
limited applicability, but do not seem to have been 
explored. Approximations in which the "scatterers" 
are volume cells or correlation cells chosen so that N 
is effectively small are possible, but also not explored. 
Restriction to a finite set of possible ray paths suggests 
another class of approximations to the multiple­
scattering equations. 

We make no attempt to explore methods for 
solving the multiple-scattering equations here. To 
illustrate the difference between the set (3.1)-(3.4) 
and the set (3.31)-(3.33), we shall discuss the single­
scattering approximation to the latter. In the quantum 
theory of scattering this is usually called the "distorted­
wave Born approximation" (or DWBA). The DWBA 
expression is obtained by substituting the first term 
on the right-hand side of Eq. (3.32) into (3.31). This 
gives the incoherently scattered field at a large distance 
r as 

2 

EscCr) = LCp(j)Esc(j), 
i~l 

. :V L . 
Esc(j) = L - exp {lk[S(r, z,,) + S(Z,,)]}lil(P, fl)Eo, 

"~l r 
(4.1) 

where the notation of Eqs. (2.2) and (2.3) has been 
used. The expression for the received power flux is 
now 

'J' _ Ilc . E sc(r)1
2

\ 

• rcc - \ 81T / 

= (~J'o/r2)a, 

where the scattering cross section in the DWBA is 

a = I/(C)12f d3z1 d
3z2 P(Zl)P(Z2)g(Zl, Z2) 

X exp {ik[S(r, Zl) - S*(r, Z2) + S(Zl) - S*(Z2)]}' 

(4.2) 
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When the refractive index is unity, this, of course, 
reduces to Eq. (2.17a). 

Assumptions (CI) and (C4) permit us to write 

S(r, Z2) "'-J S(r, Zl) + n1(zJft· R, 

S(Z2) "'-J S(Zl) - n1(zl)i{ • R, (4.3) 

where R == Zl - Z2' This lets us write 

(f = I/(e)12f d3z p2(Z) 

X exp {-2k[lm S(r, z) + 1m S(z)]} 

x d3R g(z; R) exp {in1(z)(p - k). R}. (4.4) 

If we sum this over final polarizations e and scattering 
directions ft, and average over initial polarizations 
e(I), for the scattering per unit volume we obtain 

_1_ = p2(Z)fdn~fd3Rg(Z; R) 
l(z) 

x exp {in1(Z)(P - k) • R} x (fT(P • i{). (4.5) 

This differs from the expression (2.23) only by the 
appearance of n1(z) in the exponential. Equation (4.5) 
provides the expression for the scattering mean-free­
path in the DWBA. 

The expression above may be compared with the 
quantity 2k 1m n(z) obtained from Eq. (3.30). This is 

2k 1m n(z) = 47Tp2(Z) f d3Rg(z; R)(fT(R • 4) 

x sin n1kR e-inlR'4, (4.6) 
kR 

since (fl.(R. 4) is even in R. Now because we have 
assumed successive scatterings to lie in the wave 
zone, we have 

47T sin n1kR ("" A) fdO inlP·R (A II) (fT K' q:::: u~ e (fT l' .... 
n1kR 

Recalling that n1 ~ 1, we may use this to rewrite (4.6) 
as 

2k 1m n(z) "'-J p2(Z) f dn~ f d3 Rg(z; R)(fT(P • 4) 

X exp [in1(P - k4)' R] = 1/1(z), (4.7) 

where fez) is given by Eq. (4.5). This result is, of 
course, expected from more general considerations. 

The relation (4.7) lets us put (4.4) into an intuitively 
more plausible form: 

(f = I/(e) 12fd3 Zp2(Z) exp [-IZ !!!... - [r!!!...] 
-'YJ lex) • Z lex) 

X f d3 Rg(z; R)lilP-k)'Rn1(Z), (4.8) 

where the path integrals are taken along the incident 
and outgoing ray paths. This shows that scattering 
in the interior of the plasma is reduced by absorption 
of the incident beam. The simple incoherent scattering 
cross section is further reduced by absorption of the 
outgoing beam. This latter reduction would, of course, 
be compensated if we were to include more than one 
incoherent scattering.26 

5. USE OF A TRANSPORT EQUATION 

Instead of attempting to solve the multiple scattering 
equations (3.1) and (3.4) [or (33.1) and (3.32)] directly, 
one can use these to derive a transport equation for 
the power flux. In the present section we show how 
to do this. The simplifying assumptions of Sec. 2 is 
accepted, so no attempt at great generality is made at 
present. 

We first introduce the energy density27 

V( . A) _ lie. E(z .. W\ 
z .. ' e = \ I 

87T I .. 
and the coherent density 

(5.1) 

Here z .. is considered to be some point in space, 
rather than an electron coordinate. If we take z .. = r, 
a point far from the plasma, then eU(r, e) is the 
scattered point flux received at r with linear polariza­
tion e. (We recall that when z .. is not an electron 
coordinate, we need not distinguish between the 
averages ( ... ) .. and ( ... ).) 

Substitution of Eq. (3.31) into (5.1) gives 

V(z .. ; e) = V.(z .. ; e) 

+ ~ ~ I A A (')A A (.) [E:pCi)E .. /I.(j))\ 
"" .. "" \e . e .. /I Ie' e .. /I' ] /.' 

/1./1 '.1=1 87T .. 

(5.3) 

where the cross terms vanish. That is, 

(5.4) 

because E .. /I' must contain cross correlations. [This 
particular conclusion (5.4) is obvious from the 

.1 It is shown in Ref. 12 that the term m ds/l(x)] in the exponent in 
Eq. (4.8) does not occur when one calculates the total scattering in 
the OWBA. 

27 The units chosen for Eqs. (5.1), (5.2), etc., are irrelevant, since 
our final equations are homogeneous in either energy density or in 
power flux. We have taken the normalization to be consistent with 
unrationalized Gaussian units, which are usually encountered in 
atomic physics. The photon density might also seem natural in a 
transport theory. Also, instead of the expressions (5.1) and (5.2), 
one might prefer to develop the theory of this section for the full 
energy momentum and stress tensor. 
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definition (3.33) of Ec.] The second term in Eq. (5.3) 
can be written in the form 

To understand the above equation we first note 
that the averages above must contain no coherent 
parts. The "one" term in [1 + g(zp , zp')] was dropped 
because this corresponds to a coherent part, except 
for possible higher-order correlations involving zp , zP' , 
and at least one other electron coordinate. Such 
higher-order correlations may be neglected because of 
assumption (B5).28 To see this, we note that the 
leading one of these neglected terms is of the form 
[here use set z" = r, a distant point, and replace the 

f's in Eq. (3.32) by ro]: 

X [ro eikRp'rt roei(k'Za-P'zP')] 
Rp'rt 

""'" (:ro/r2)[r~(pR~)N] X [roR~p]. 

In obtaining this, we have set all oscillating exponen­
tials equal to unity, which in general provides a gross 
overestimate. The inequality (2.24) shows that this is 
less than the "leading terms," as characterized by 
Eqs. (2.14) and (2.17), by a factor of O(Rcll)!-or 
smaller, if the neglected exponentials are included. 

We have also replaced e"p,(j) by e"p(j) in Eq. (5.5). 
This follows from assumption (B5), since for our 
applications R"p = O(l), while RfJ'fJ = O(Rc)' 

The form of Eq. (5.5) suggests that we define 

Ui ,((1.., (3) = f d3z1, d
3za b[t(zy + za) - zp] 

/ E:y(i)E"a(J) \ 
x p(Zy)p(z,,)g(Zy, Za)\ / , (5.6) 

8rr / "Y" 

where zp is now considered to be a point in space 
rather than an electron coordinate. When this is 

28 An exception occurs for the singular case of radar backscatter. 
This actually causes no difficulty, as is shown in Sec. 7. 

inserted into (5.5) and then into (5.3), we get 

U(z,,; e) = ub,,; e) 

+i,tl f d3zpe. e"p(i)e' e"p(j) x Uii«(1.., (3). 

(5.7a) 

Thus, the integrand in the second term above repre­
sents the density of energy at z,,' having polarization 
e, arriving from within a unit volume at zp. 

We can convert this into a flux as follows: let p 
be a fixed unit vector and let 

Iij(z", p) == Ib,,)bi1 bil bd + cJ ,R;p dR"pUi l(1.., (3). 
-P 

(5.8a) 
Here we have introduced 

Ic(z,,) = cUe(z,,), 

the flux of coherent power, and the Dirac delta 
function bl(,i\ = b",I(, defined by 

f dQ"A(p)bl(,p = A(k), 

where A(p) is some function of the unit vector p 
continuous at t{ = p.29 The integral in (5.8a) is taken 
along the straight line defined by -p = Rp"/R,,p' 

Equation (5.8a) can be written more concisely as 
the matrix equation 

f(z" , p) = Ie(z,,)bl(.r, + c Jr, R;p dR"p U«(1.., (3), (5.8b) 

where we consider I, Ie' and U to be column matrices 
with four elements. 

On comparing Eqs. (5.7a) and (5.8a), we see that 

U(z,,; e) = ! fdQp ± e • e"p(i)e • e"p(j)fij(z", p). 
c i.l=1 

(5.7b) 
Evidently, 

represents the power per unit area of radiation having 
polarization "i" and propagating parallel to p, 
within the cone of solid angle dQII' 

We are now ready to derive an equation for the 
flux I(z, p). When Ra'a = O(Re) and R"p = O(l), 
assumptions (C1) and (C4) imply that, as in Eq. (3.23), 

G",p ""-' exp [inl(z")k,,p • R",,,] X GaP' (5.9a) 

where k"p = kk"p [Eq. (3.3)] and we have again 
replaced n by n1 • On the other hand, when Rp'p = 
O(Rc) and R"p = 19(1), we have 

G"p' ""-' exp [-inl(zp)k"p' RfJ'fJ] X G"p' (5.9b) 

29 In spherical coordinates b(k - p) = (l/k 2)b(k - p)t5fi p. A 
representation for b~,~ is given on p. 346 of Ref. 12. ' 
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Use of these expressions in Eqs. (3.32) and (3.33) matrix: 

permits us to conclude that when Ra'a = O(Rc)' WI M(oc{3, (3a) Itt') == [ht(oc{3, (3a)fjt'(oc{3, (3a)] 

Ea'/J(i) "-' exp [inl(Za)ka/J' Ra ,,,] x Ea/J(i). (5. lOa) 

When RfJ'fJ = O(Rc)' we have instead 

Eap,(j) "-' exp [in 1(zp)(k - k"p) • R,J'P] 

x Ga/Jf;1(oc{3, (3a)EcCzp) 
.V 2 

+ I I exp [inizp)(kpa - k aP) • RfJ'fJ] 
a(*p)=l t=1 

x Gap fit(oc{3, (3a)EPa(t). (S.10b) 

Here we have used assumption (B5) to set 

We have also appropriately replaced the restriction 
a :F {3' by a :F (3 when R;J' was replaced by R;] in G. 

Now, let us substitute the right-hand side of Eq. 
(3.32) for each factor of E in (5.6). If we make use of 
Eqs. (5.10), we have 

Uiloc, (3) = J d3
zy d3

zy, b[t(zy + Zy') - zp] 

x p(Zy)p(Zy,)g(Zy, Zy') IGap l2 

x {[hl(OC{3, (30)f;1(oc(3, (3o)]UcCzp) 

x exp [inl(zp)(kaP - k) • (Ryp - Ry'fJ)] 

+t,tl J d3za d
3za, p(za)p(za,)g(za, za') 

x [fijoc{3, (3a)fit,(oc{3, (3a)] 

X exp [inl(zp)(kaP - k pa) • Ryy '] 

x jE;a(t)EpAn\ + cross terms} 
\ 87T ~aa' ' 

where the "cross terms" are 

J... fd3
Z y d3

z y, b[t(zy + Zy') - zp] 
87T 

X p(Zy)p(Zy,)g(Zy, ZY') I E:(zy) 
a,t 

(5.11) 

x G:Pay'hl(oc{3, (30)(fit(oc{3, (3a)EY'a(t»ayy' 

+ complex conjugate. (5.12) 

According to assumption (B5), we expect za to be 
uncorrelated with Zy' or Zy' The average above thus 
contains "coherent parts." We thus omit the "cross 
terms" from Eq. (5.11). 

To simplify Eq. (5.11) let us define the 4 x 4 

x J d3zy d
3zy, b[t(zy + Zy') - zp] 

x p(Zy)p(Zy,)g(Zy, Zy') 

x exp [inl(zp)(kap - k pa)' RYl,,]. (5.13) 

This and the expression (5.6) allow us to write (5.11) as 

Ui;(oc, (3) = IGap l2 {WI M(oc{3, (3o) I I1)UcCzp)} 

+t,tl J d
3
za WI M(oc{3, (3a) Itt')Utt,({3, a). 

(5.14a) 

In the more compact matrix notation of Eq. (5.8b) 
this is 

U(oc, (3) = IGal e M(oc{3, (3o)lcCzp) 

-+ J d3za M(oc{3, (3a)U({3, a)}. (5.14b) 

To express (5.14) in terms of the more convenient 
flux I of Eq. (5.8), we introduce two unit vectors 

p = Rap/RaP' 

p' = Rpa/ Rpa . (5.15) 

Then, on multiplying both sides of Eq. (5.14b) by 
cR~p dRap and integrating along the line parallel to 
(-p), we obtain (after some simplification) 

I(za, p) = IA(,ji + r R~p dRap IGal 
1<-&) 

x J dQ&, M(p, p')I(z, p'). (5.16) 

Here we have set 

M(oc,B, ,Ba) == M(p, p'), (5.17) 

an obvious change in notation in view of Eqs. (5.15). 
At this point it is convenient to drop the oc and (3 

labels in Eq. (5.16), replacing (say) Za by x and zp by z. 
We may also use Eqs. (3.29) and (4.7) to set 

2 1 [J.x ds' ] 
IGapl = R2 exp - z lex') , (5.18) 

where the path integral is taken along the straight line 
from z to x. The final form of our integral equation 
is then seen to be 

I(x, p) = IcCx)br.,p + r dR exp [-J.x ds: ] 
)(-&) z l(x) 

x J dQp' M(p, p')I(z, in, (5.19) 



                                                                                                                                    

700 KENNETH M. WATSON 

where P is parallel to (x - z) and the R integral is 
taken along the line through x extending in the 
direction of ( -P). 

6. DISCUSSION AND EXTENSION TO THE 
CASE OF ELLIPTICAL POLARIZATION 

The derivation of the transport equation (5.19) 
has been one of the principal objectives of this paper. 
We shall not discuss here the most obvious generaliza­
tions of this equation, which include the use of 
curved ray paths and a series of higher-order correla­
tions in n(x) and M(P, P'). 

Differentiation of Eq. (5.19) along a path element 
~s parallel to p leads to the integro-differential equa­
tion 

dI (x, il) = __ 1_ I +Jdnv' M(p, p')I(x, p'). (6.1) 
ds l(x) 

This has the form of the familiar radiation transport 
equation,30 except for the specific quantities I(x) and 
M(il, il'). The advantage of our derivation from the 
wave equation lies in the inclusion of some wave 
interference effects through the structure of M and I 
and in the ease of generalizing Eq. (6.1). 

Approximations (Cl) and (C2) permit us to 
simplify Eq. (5.13) for M: 

(ijl M(il, il') 1st) 

= ~ O'T[P(z)]2[ef>(i) • ef>,(s)e,,(j) • ell.(t)] 
81T 

X J d3Rg (z; R) exp [in1(z)k(p' - p) • R], (6.2) 

where we have returned to the notation of Eqs. (2.2) 
and (2.3) for the e's and 

is the Thomson cross section. We note from Eq. (6.2) 
that M is real and that 

(ijl M(P, P') 1st) = (jil M@, il') Its). (6.3) 

In terms of M we can write the "scattering cross 
section of a correlation cell" as 

! (p. p') = 1. ! (iii M(P, p') Itt) 
2p i.t 

= P(Z)O'T(P' il') J d3Rg (z; R) 

where O'T(il • il') is defined by Eq. (2.21). Comparison 
with Eq. (4.7) shows that 

p(Z)Jdnll , ! (P • p') = _1_ , (6.5) 
l(z) 

as is to be expected. Indeed, this result shows us that 
Eq. (6.1) is satisfied by a uniform distribution of 
randomly polarized light. That is, 

I;;(x, p) = i~i;Io, 

where 10 is a constant, provides a solution to the 
transport equation in the absence of a source. (Had we 
allowed for energy dissipation in the plasma, this 
conclusion would not, of course, be valid.) 

Equation (5.19) is easily generalized to describe the 
incident radiation that has circular or elliptical 
polarization. To see this, let us introduce the unit 
vector e(2), which is perpendicular to both 1( and 
e(l). Then, instead of Eq. (2.1), we write 

e(j). Ej(r) = Eo(j)e1k
'
r , j = 1,2. (6.6) 

Instead of Eq. (3.33), we have now 

e(j) • Ec(x) = Eo(j)eikS(X). (6.7) 

The coherent intensity tensor is thus 

ICilx) = e-2k 1m S(x) Et(~:o(j) 

= e-2klmS(x)](0) 
- ii' 

where before we had li~O) = ~il~il~O' Evidently, 

[ ](O)]* _ ](0) 
ii - ii' 

(6.8) 

(6.9) 

For the special case that e(1) and e(2) are parallel to 
the principal axes of the polarization ellipse, the 
phases of Eo(1) and Eo(2) differ by 1T/~. In this case 
I~~) is pure imaginary. 

Because M is real, Eq. (5.19) consists in general of 
four coupled real equations, even though our Li/S 
are complex. It follows from Eqs. (6.9) and (6.3) that 

[/ij(x, P)]* = Iu(x, il). (6.10) 

Thus, four real quantities are required fully to specify 
the radiation. A common choice are the Stokes 
parameters,31 defined as 

I == III + 122 , 

Q == III - 122 , 

i(U - iV) == In. 

(6.11) 

X exp [inl(z)k(P' - P) • R], (6.4) (For the case discussed originally of plane polarized 

10 See, for example, S. Chandrasekhar, Radiative Transfer II See, for example, Chap. I of Ref. 30 for a description of these 
(Dover Publications, Inc., New York, 1960). four parameters. 
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FIG. 4. Example of coherently interfering terms for backscatter. 

light, 112 is real and V = 0.) Evidently, Eq. (5.19) 
can be written as four coupled, real equations for the 
four Stokes parameters. 

Since Eq. (5.19) is a linear integral equation with 
real kernel, we can express its solutions in terms of a 
real transfer matrix [or resolvent kernel] WI Tlst): 

2 

Iij(x, p) = ! WI T Ist)I!~). 
•• t=l 

It follows from Eqs. (6.9) and (6.10) that 

WI T 1st) = (jil Tits). 

(6.12) 

(6.13) 

It is evident that in the single-scattering approxima­
tion to Eq. (5.19), in which I(z, pi) is replaced by 
IA<,,,' within the integrand,the scattering is given in the 
DWBA, and the expression (4.8) is again obtained 
for the scattering cross section. 

7. RADAR BACKSCATTER 

For the calculation of radar backscatter using the 
transport equation (5.19), a difficulty is encountered.32 

To see how this arises and how it is to be resolved 
we must return to the original multiple scattering, 
Eqs. (3.32). 

We first note that, for our definition of the polariza­
tion vectors, 

e_G(j) = (-I)i-leG(j), j = 1,2. (7.1) 

From this it follows that [see Eq. (3.7)] 

(7.2) 

To illustrate our problem, we consider the double­
scattering approximation to the radar backscatter, 
using Eqs. (3.31) and (3.32). The source and receiver 
are supposed to be colocated at a large distance r 
from the plasma, and scattering takes place from 
electrons Zl and Z2' Figure 4 illustrates two ~equences 

12 I am indebted to Dr. R. Ruffine for pointing out this difficulty 
to me. 

of scatterings that contribute. For initial polarization 
component s and final polarization component t, 
these are 

eikBr. A eikSu A . 

Q2(t, s) = ! -fti( -'-, t) -fiit, '-)e,kS1, (7.3a) 
i r R21 

and 
_ eikB'1 A eikSu A • 

Q2(t, s) = ! -foe - '-, -t) -liS( -t: '-)e,kS.,. 
i r R12 

(7.3b) 

Here, for convenience, we have chosen the eikonal 
for the incident wave to vanish at the source [absorbing 
a phase factor into Eo(s)] and have taken the incident 
amplitude equal to unity. Evidently Q2 and Q2 differ 
only by a reversal of propagation vectors. 

On making use of Eq. (7.2), we see from the above 
that 

Now, on referring to Fig. 5, we see that, for a 
sequence of n scatterings, there again exists a second 
set obtained by reversing all propagation vectors 
(only for backscatter can this be done). The corre­
sponding contributions, corresponding to Eqs. (7.3), 
are 

eikSrn A A. 

= L --ftiO_1( -'-, tn_i) ... 111.(t1, '-)e,kS1,; 
110" • '10 -1 r 

(7.5a) 

Qit, s) 
eikS'1 A 

'" -j,. (-'- -t.) ... "" t'1' 1 it.··· i O -1 r 
X I' (~ t")eikSo, Jin_1 8 -ltn-l, K • (7.5b) 

Again, using (7.2), we see that 

Qn(t, s) = (-I)t+"Q,,(s, t). (7.6) 

Evidently for the single scattering approximation, 
the two sequences of paths giving Ql and Ql are not 

3 3 

I u -t-l .... .. ' 

k k -'k 

FIG. 5. Illustration of Eqs. (7.Sa) and (7.Sb). 
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distinct. For all higher sequences of scatterings, 
however, Qn and Qn are distinct. 

Now, to obtain the backscattered intensity at large 
distance r, we introduce the backscatter transfer 
matrix b: 

Iilr, -t{) = I (ijl b Ist)I!~). (7.7) 
8. t 

Reference to Eqs. (3.10) and (3.11) shows that 

(ijl b 1st) 
<Xl 

= ! I N 2n([Qn(i, s) + Qn(i, s)]*[Qn(j, t) + Qn (j, t)]) 
n=2 

+ N 2(Qt(i, S)Ql(j, t», (7.8) 

disregarding numerical factors and suppressing refer­
ence to electron coordinates. [Note that cross terms 
of the form Q:Qn appearing in Eq. (3.11) do not 
contribute, since the Q's now refer to Eqs. (3.32) 
rather than (3.4).] The factor of one-half appears in 
(7.8) because, on integrating over all coordinates 
and keeping both sets of paired graphs [as in Fig. (5)], 
we count every scattering twice. Also, in Eq. (7.8) 
we have explicitly taken account of the observation 
that, for one scattering only, the duplicate graph does 
not occur. 

The transfer matrix T of Eq. (6.13) (defined for 
other than backscatter) is evidently expressed as 

<Xl 

(ijl T 1st) = I N 2n(Q!(i, s)Qn(j, t». (7.9) 
n=l 

This and the relations (7.6) let us write (7.8) in the 
form 

(ijl b 1st) = (ijl TlSl) + H( -1)i+B(sjl T lit) 
+ (-I)1+t(ill Tlsj)] 

- H( _1)i+8(sjl T(s.c.) lit) 

+ (-I)1+t(ill T(s.c.) Isj)]. (7.10) 

Here T(s.c.) is the expression for T in the approxima-

tion that only a single scattering is kept. From Eq. 
(5.19) we see that this is (for backscatter) 

T(s.c.) = r dR exp [-2f.r ds' ] X M( -t{, t{). (7.11) Jr. z lex') 

For calculating radar backscatter we must use the 
transfer matrix b of Eq. (7.10). For calculating 
scattered radiation in all directions, except within the 
cone with axis parallel to t{ and cone angle of order 
(kRc)-1, we use the transfer matrix (6.12). For non­
backscatter within this excluded cone, Eq. (7.10) 
must be modified by certain diffraction form factors. 

The use of curved-ray paths and the extension to 
higher-order correlations will be described in sub­
sequent publications. 

Before concluding, we note the work of Keller33 on 
wave propagation in media having a fluctuating 
refractive index. The fluctuations are assumed to have 
amplitudes characterized by a small parameter, and 
ensemble averages are formed to calculate both the 
wave amplitude and two-point correlation function. 
A transport equation is derived for the latter. 
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This paper considers the determination of N-representability (for diagonal elements) of p-density 
matrices restricted to certain finite-dimensional subspaces of 12 of the configuration space of N identical 
antisymmetric particles. In particular, an arbitrary set of N + P spin orbitals is selected and one considers 
the (N;P)-dimensional subspace generated by all possible Slater determinants of the spin orbitals being 
considered. Applying a combinatorial approach to the problem, a necessary and sufficient set of condi­
tions is determined; previous work has dealt only with necessary conditions, except in the I-matrix case. 
The paper concludes by presenting a probabilistic interpretation of these conditions which seems of 
particular interest for the 2-matrix case. The conditions presented here in combination with the Pauli 
principle give a probabilistic view of the expected occupation of p-tuples of spin orbitals in terms of the 
expected occupations of lower-order-tuples of spin orbitals. 

I. INTRODUCTION 

According to well-known physical theory, 1 given a 
system of N identical antisymmetric particles with 
coordinates Xl' X2' •.. , XN' where each Xi is a combi­
nation of a space coordinate ri from R3 and a spin 
coordinate Si from Z2, the system's physical situation 
is described by the wavefunction 

'Y(Xl' X2, X3,'" ,xN). 

This function is anti symmetric and normalizable. 
If Oop is a Hermitian operator representing a 

physical quantity associated with the system, it may 
be expanded as 

Oop = 0(0) + ! 0; + 1. !' Oij + 1. !' O;jk + ... , 
i 2! ij 3! ilk 

(1) 

where the nth term is an (n - I)-particle operator and 
the prime on the summation indicates that only terms 
in which all indices are distinct are summed. 

In order to determine the average value of this 
quantity (Oop)av, in the situation given by a normal­
ized wavefunction 'Y, density matrices may be intro­
duced. The p-density matrix or, more simply, the 
p matrix, is defined by 

r(p)(x{x; ..• x~ I XIX2 ... xp) 

= (;) f'Y*(X{, x~,"', x;, xp+!,"', XN) 

X 'Y(XI' ... , xN) dxp+! ... dx.v. (2) 
Then, 

(Ooj»av = 0(0) + f Olr(l)(x~ I Xl) dXI 

+ f Ol2r (2)(X{X21 XIX2) dXl dX2 + .. '. (3) 

1 For a more detailed discussion of thi~, see P.-O. Uiwdin, 
Phys. Rev. 97, 1474 (1955). 

By expanding the operator in this way, we can greatly 
simplify a computation of an approximation of its 
value. 

In general, density matrices are bounded linear 
operators, of trace class, which satisfy the following 
conditions: 

(i) they are Hermitian; 
(ii) they are anti symmetric ; 

(iii) they satisfy the equation 

r(p-I)(X'X' ... x' I x x ... x ) = P 
I 2 p-l 1 2 p-l 

N+l-p 

x f r(p)(X~X2 ... X;"'lXp I X 1X 2 .•• Xp-lX p) dxp. (4) 

However, in order for the expansion given by (3) to 
have physical significance, the matrices used in the 
computation must, in addition, satisfy the condition 
of N-representability.2.3 The purpose of this paper is 
to derive complete conditions for the N-representa­
bility of the diagonal elements of projections of p 
matrices into certain finite-dimensional subspaces of 
12 of the configuration space of a fermion system. 

II. N-REPRESENTABILITY 

A P matrix r(p)(x~x; ... x~ I XIX2 ... xp) is said to 
be N-representable if there exists some normalized 
anti symmetric wavefunction 'Y of N particles, such 
that rand 'Y satisfy Eq. (2). 

As several authors have described,1.3.4 in order to 
facilitate an investigation of density matrices, a 
countable set of single particle functions j;(x), i = 
1, 2, 3, ... , may be selected. This set is complete, 
orthonormal, and is such that any normalizable 

2 C. Garrod and J. Perc us, J. Math. Phys. 5, 1756 (1964). 
3 E. B. Wilson and F. Weinhold, J. Chern. Phys. 47, 2298 (1967). 
4 E. B. Wilson and F. Weinhold, J. Chern. Phys. 46, 2752 (1967). 
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single-particle functionf(x) may be expanded as 

f(x) = th(x)ci, Ci = f f(Xl)fNxl) dXl' 

Using these "spin orbitals," as such functions are 
called, any normalizable wavefunction for N particles 
'Y(xl , X2,'" , XN) may be written as 

'Y = I CKDK , (5) 
K 

where K runs over all possible sets of N indices chosen 
from the natural numbers and, when K = {kl , k 2 , ••• , 

kN}' 

CK = f 'Y(Xl, X2"", XN) 

x f:JXl)' .. fk~(XN) dXl dX2 ... dXN (6) 

and DK is the Slater determinant 

fkl (Xl) fkl (X2) 

(N!)-l 

In addition, the normalization condition 

~ ICK I2 = fl'Y12 dXl dX2' .. dXN 

is satisfied. 

(7) 

For purposes of actually carrying,out a computation 
as in (3), it is usually necessary to select a finite set of 
M spin orbitals. Lowdin 1 discusses the problem of 
choosing the set of M spin orbitals which make the 
expression given by (5) best approximate the full 
expansion of the wavefunction, where the sets K 
are now restricted to the indices of the functions 
selected. 

If h, i = 1, 2, 3, ... , M, is the set of spin orbitals 
chosen, then the N-representability problem can be 
asked for p matrices and wavefunctions expanded 
only on the subspace of 12 of the configuration space 
spanned by all possible Slater determinants of these 
finitely many functions. From the defining properties 
of density matrices (4), they may actually be written 
as matrices on such finite-dimensional subspaces. 
For a p matrix r CP), Lowdin6 considers the diagonal 
elements 

L iltl • .. t. = f g~ ••• ipr (P)gil'" tp dXl ... dxp dx~ ... dx~ , 
(8) 

I In LOwdin's notation, Lil • •• I. is denoted by r(il' ••• , i p). 

where gil'" i1> is the p x p Slater determinant of the 
spin orbitals hI' ... ,h

p 
and the variables Xl' ... , xp. 

He shows that, if'Y is an N-particle wavefunction, 
expanded as in (5), satisfying (6) and (7), and r is the 
p matrix associated with'Y by Eq. (2), then 

(9) 

Conversely, given a p matrix r, if one could choose a 
set of C K such that for all iI' ... , i p , condition (9) 
is satisfied and, in addition, the normalization con­
dition 

IICK I2 = 1 
K 

(10) 

holds, then the diagonal elements of r and the 
wavefunction'Y constructed from these CK using -(5) 
should satisfy (2). Thus, the N-representability 
problem for diagonal elements is to find a set of C K 

satisfying (9) and (10). 

III. COMBINATORIAL FORMULATIONS OF 
N-REPRESENTABILITY 

One may now consider the following combinatorial 
problem: 

Let K be an arbitrary subset of N distinct indices 
{il,' .. ,iN} chosen from {I, 2, 3, ... ,M}. Let the 
constants 

Yil" 'i1> ~ 0, for all 1 ~ i l < ;2 < ... < ill ::;; M, 

and 

be given. Under what conditions do the equations 

I t K = Yil'" i. ' 1::;; i l < ... < ip ::;; M 
K(il,··· ,i.eK) (12) 

have a nonnegative solution for the t K ? 
By setting 

and 

(
Nfl 

tK = pJ ICK I
2
, (13) 

it is clear that this problem is equivalent to the 
problem of the N-representability of diagonal elements 
as presented at the end of the last section. 

There are several other combinatorial problems 
which are equivalent to the solvability problem 
presented above.' However, this formulation was 
chosen because of its comparative ease of solution. 

, For other equivalent formulations and additional discussion of 
the I-matrix case, see H. W. Kuhn, Proc. Sym. Appl. Math. 10, 
141 (1960). 
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IV. A SOLUTION FOR THE SOLVABILITY 
PROBLEM 

In this section, necessary and sufficient conditions 
will be given for the solvability problem with M = 
N + p. In order to find these conditions, we use the 
theorem that a system of linear equations either has a 
nonnegative solution or there is a vector in the polar 
cone of the cone generated by the system which makes 
a positive inner product with the vector of values of 
the original system of equations. 7 

For the problem at hand, this may be stated as: 
Either the system of equations (12) has a non­

negative solution, or there exists a vector W = 
(Wil"'i),1 :::;; il < ... < ip:::;; M, such that 

! Wil .. 'i. :::;; 0, for all K, (14) 
it," ·,i'PEK 

and 

The system of (~) inequalities given by (14), 
defined on the (~p variables Wi . .. i ,defines a cone C. 

1 • 

If we can find, for each of these inequalities, a vector 
WK that satisfies that inequality strictly and the other 
inequalities as equations, then these are a complete 
set of extreme rays for the cone. 

In the following, IKI denotes the order of the set K. 

Lemma: If 
i-I 

Wj>-j = (_I)i+l(p - j)! II (M - 2p + k), 
k=O 

for j = 0, 1, ... ,p, (16) 

then if 0:::;; h :::;; q < p, 

A( _1)"-I(1-fi\M - 2p - j)(q - 1) IT (M - 2p + k) 
1=0 h - 2 k=1 

~ (M - p - q) (q) + ~ wj>-; 
i-1I-l P - i j 

=A(-I)"II(M -2p-j) q II(M-2p+k) 
q-1I ( _ 1) h-l 

1=0 h - 1 k=l 

+ i (M - p -: q) (:)Wj>-i' 
i-1I p - I I 

where 
j>-q-l 

A = II (M - p - q -r). 
r-O 

1 For one proof of this, see D. Gale, The Theory of Linear Eco­
nomic Models (McGraw-Hili Book Co., New York, 1960), Chap. 2. 

Proo/" The expression on the left above is equal to 

A(_l)h-l II (M - 2p-j) q - IT(M - 2p + k) 
(l-h+l (1) h-2 

j=O h - 2 k=l 

+ (: ~ : ; :) (h ~ I)WP-(h-l) 

+ i (M - P -: q) (:)WV- i 
i=h p - , I 

= A[( _l)h-l(1-fi\M _ 2p _ j)(q - 1) 
i=O h - 2 

h-2 

X II (M - 2p + k) 
k=l 

+ (_1)h IT (M - 2p - j)( q ) 
j=O h - 1 

x n (M - 2p + k)] 

+ i (M - p -: q) (:)Wj>-i 
i=h p - , I 

q-h 

= A(_1)h II (M - 2p - j) 
j=O 

x( -'-" q~-------,1 );.0..( q:....-_2-,-)_ .. _. -'-'( q'-.-_h_+:........<2) 
(h - I)! 

"-2 
X II (M - 2p + k) 

k=l 

x {q(M - 2p) - (h - 1)[M - 2p - (q - h + I)]} 

+ i (M - P -: q) (:)Wj>-i, 
i=h p - I I 

which is equal to the expression on the right in the 
statement of the lemma. Q.E.D. 

Theorem 1: If W p_j is defined as in (16), then the 
extreme rays of C are given by WK = (wf. .. i ), 

1 :::;; il < ... < ip :::;; M, where 1 P 

W{f."i.=Wj>-j if l{i1 ,···,ip }nKI=p-j. (17) 

Proof: Let K' be an arbitrary set of N indices. Then, 
if K' = K, 

! w{f. "ip = (M - P) w
1
) il"",i"eK' P 

= _(M; P)(P!) < O. 

If K' 7': K, then, IK' n KI = M - P - q where 
q > O. Taking the sum we have 
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But, by applying the lemma q times, we have 

I Wf"ip = A(-1)q(M - 2p) 
iJ,'" ,il1EK' 

x n (M - 2p + k) + (M ; ~ ; q) W p-q 

= A[( -1)q(M - 2p) n (M - 2p + k) 

+ (-1)q+1g(M - 2p + k)] = O. 

Thus, for each WK, 

I Wf"i p < 0 
ib'" ,ipEK 

and, for all K' ¥= K, 
~ K 
k Wi,···i. = O. 

itt'" ,ipEK' 

Therefore, the WK are a complete set of extreme rays. 
Q.E.D. 

Since the WK are a complete set of extreme rays 
for C, we have 

C = {w I w = ~ aKW
K

, where GK ~ o}. 
Then, for a vector Y = (Yi, ... i), I ::::;; i1 < ... < 
i:o::::;;M, and Yi, ... i:O~O, for all i1 ,"',i:o, then 
WY ::::;; 0 for all WEe if and only if WKy ::::;; 0 for all 
K. So we have the following: 

Theorem 2: With K as in the statement of the 
solvability problem in Sec. III and Y satisfying (11), 
the system of equations (12) has a nonnegative 
solution if and only if 

I wt··· ipYi,··· ip ::::;; 0, for all K, (18) 
l:Sil < ... <ip:S ... lf 

where wf .. i
p 

is defined as in (17). 

Proof: By the theorem quoted at the beginning of 
this section, the system of equations given by (12) has 
a nonnegative solution if and only if for all WEe, 
WY::::;; O. But, this is if and only if WKY::::;; 0 for all 
K, which is the condition given by (18). Q.E.D. 

V. CONCLUSIONS 

We may now return to the N-representability 
problem as it is formulated at the end of Sec. II and 
apply the results obtained in Sec. IV. By applying (13), 
given a p matrix rep), and applying (8), if M = 
N + p, then the diagonal elements of rep) are N­
representable if and only if the following conditions 
hold: 

I wt···ipLi' ... i~::::;;O, forallK, (19a) 
1:$i1 < ... <ip:fM 

(N) I Li, ... i p = , 
1:Si,< ... <i.:SM p 

(19b) 

where wf .. i
p 

is as in (17). 
This provides a complete solution for the N­

representability of the diagonal elements of a p­
density matrix restricted to an (N;:O)-dimensional 
subspace of 12 of the configuration space of the 
particles. These subspaces are those generated by an 
arbitrary set of N + P spin orbitals. 

One interpretation of conditions (19) can be given 
in terms of particles filling spin orbitals. From this 
point of view, for a p matrix, there are N particles 
and N + p positions, each of which can hold one 
particle. Then, L i , ... ip is viewed as the product of the 
total number of p-tuples of particles and the proba­
bility that the spin orbitals i1 , ••• , i:o are all filled by 
a particular p-tuple of particles. More simply, L i , ... i. 

is just the expected number of p-tuples of particles 
which lie in the p-tuple of spin orbitals i1 , ••• , i:o. 
The Pauli principle states that this value lies between 
zero and one. 

As an example of the form that conditions (19) now 
take, we consider the 2-matrix case (i.e., p = 2). 
Then (19b) becomes 

I L i,i• = , (N) 
1:Si, <i.:SN+2 2 

which simply states that the sum, over all pairs of 
spin orbitals, of the expected number of pairs of 
particles lying in a pair of spin orbitals is equal to the 
total number of pairs of particles. 

By applying (19b), and (iii) of Sec. J [Eq. (4)], 
condition (19a) may be written as 

for all i1 , i 2 • That is, the expected number of pairs of 
particles lying in a pair of spin orbitals is greater than 
or equal to the sum of the expected number of 
particles in each separate spin orbital minus one. This 
condition means that if both members of a pair have 
a large expectation of being filled by individual 
particles, then the pair of spin orbitals has a large 
expectation of being filled by a pair of particles. 
Similar interpretations in terms of expected occupancy 
can be derived for all p matrices. 

If one chooses N + k spin orbitals, where 0 ::::;; k < 
p, and asks the N-representability question for a 
p matrix, some results have already been obtained. 
The full solution for these cases seems well within 
reach using the techniques applied to the case M = 
N + p. We plan to present a detailed solution to all 
of these cases in the near future. 
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The level density of a degenerate Fermi system is modified by the perturbation in the position of a 
single-particle level. To study this effect, miscellaneous exact relations between the level densities of the 
perturoed and unperturbed system are derived. For the special case of the perturbed uniform model, 
these connections become a set of recursion relations which lead to a complete solution of the problem. 
Results are also obtained in the saddle-point approximation, and these have a simple interpretation in 
terms of the usual Fermi occupation probabilities. If a single-particle level is deleted from the scheme, 
the resultant diminution in the level density persists indefinitely with increasing excitation energy. Infor­
mation about the adequacy of the saddle-point approximation is obtained by comparison with some 
exact solutions. 

t. INTRODUCTION 

Out of Bethe'sl original estimate of the nuclear 
level density on the basis of the Fermi-gas model 
arose a now classical problem in mathematical 
physics which in its simplest form may be characterized 
as follows: Given a set of single-particle levels EO, 
El' E2 , ••• , which may be called the "structure" of 
the system, how does the density of levels depend 
upon the details of this structure? 

Van Lier and Uhlenbeck2 showed that asymptot­
ically the most important parameter pertaining to the 
structure is the average density of single-particle 
levels in the vicinity of the Fermi energy. The most 
comprehensive treatment of the problem is in the 
work of Bloch,3 where it is shown that the saddle­
point approximation is quite adequate for deriving 
the dependence of the level density on finer details 
of the structure, and many interesting results are 
obtained on the basis of a level scheme of consider­
able generality. 

A useful supplement to Bloch's study has been to 
consider more specialized energy-level schemes for 
which the saddle-point approximation yields results in 
a closed form. 4- 6 Occasionally the study of these 
schematic models has led to at least a partial under-

• Research supported by the Weizmann Memorial Foundation, 
the U.S. Atomic Energy Commission, and the National Science 
Foundation. A preliminary account of this work was contained 
in contributed paper 8.125 at the International Conference in 
Nuclear Structure, Tokyo, 7-13 September 1967. 

t Senior Weizmann Fellow 1967-68. 
1 H. Bethe, Phys. Rev. 50, 332 (1936). 
2 C. van Lier and G. E. Uhlenbeck, Physica 4, 531 (1937). 
8 C. Bloch, Phys. Rev. 93, 104 (1954). 
, N. Rosenzweig, Phys. Rev. 108, 817 (1957). 
• N. Rosenzweig, Nuovo Cimento 43, 227 (1966). 
• P. B. Kahn and N. Rosenzweig, Phys. Letters 22, 307 (1966). 

standing of the effects arising from various distinctive 
features of the independent-particle model of the 
nucleus, such as shell structure, gaps, etc.7- 10 

One class of models for which a particularly neat 
result could be obtained consists of the "periodic" 
single-particle level schemes, i.e., schemes in which 
the pattern of levels repeats over and over again.6 

If a periodic pattern is modified in such a way that 
the resulting level scheme is again periodic with the 
density of single-particle levels kept fixed, then the 
net effect on the level density of the system merely 
amounts to an additive correction to the excitation 
energy in the standard formulas. As a result, the 
dependence of the level density on the details of the 
periodic pattern, while significant up to considerable 
energies, eventually disappears asymptotically. 

In this paper we illustrate the effects of a non­
periodic perturbation of a single-particle level scheme. 
For this purpose it is sufficient to study in detail the 
effects produced by the shift in the position of one 
single-particle level, although the methods are applic­
able also in more general cases. We find that the 
effects produced by a nonperiodic perturbation usually 
go beyond producing merely an additive correction to 
the energy. Furthermore, the resultant modifications 
in the level may persist indefinitely with increasing 
excitation energy. 

7 N. Rosenzweig, L. M. Bollinger, L. L. Lee, and J. P. Schiffer, 
Proceedings of the Second United Nations International Conference 
on Peaceful Uses of Atomic Energy (United Nations, Geneva, 1958). 

8 H. W. Newton and J. H. Gibbons, in Fast Neutron Physics, 
J. B. Marion and J. L. Fowler, Eds. (Interscience Publishers, Inc., 
New York, 1963), Part II. 

e M. Blann and G. Merkel, Nucl. Phys. 52, 673 (1964). 
10 A. Chatterjee, Phys. Rev. 134, B374 (1964); Nucl. Phys. 60, 

273 (1964). 
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In Sec. 2 we derive some exact relations between 
the level densities for the unperturbed and perturbed 
level schemes. In the case of the perturbed uniform 
model, these considerations lead to an exact solution 
of the problem by means of recursion relations. In 
Sec. 3 the level density is discussed in the usual saddle­
point approximation, the adequacy of which may be 
judged by comparison with the exact results obtained 
for the perturbed uniform model. Section 4 deals 
with a generalization in which the independent­
particle levels may be occupied by more than one 
particle. Concluding remarks are contained in Sec. 5. 

2. EXACT RELATIONS 
A. Definitions and Notation 

We introduce an unperturbed (reference) system 
consisting of N independent fermions which occupy 
the single-particle level scheme 100' 101' 102' • • •• The 
Fermi level is given by ION-I' the zero-point energy is 
denoted by Eo, an arbitrary energy value of the com­
bined system of particles by E, and the excitation 
energy Q == E - Eo. Let the number of states of 
energy E be denoted by C(N, E). 

Next we define a perturbed system in which the N 
independent fermions occupy a level scheme that 
differs from the above reference scheme in that one 
single-particle level, say lOt, is shifted to an arbitrary 
position 10. (which mayor may not coincide with a 
level of the reference scheme). It should be noted 
that the Fermi level and the value of the zero-point 
energy will only in certain special cases remain the 
same as in the reference system. This dependence on 
the details of the perturbation 10; -- 10. will play a 
considerable role in what follows. In the perturbed­
level scheme of the N-particle system, let C(N, E; lOt, 10.) 

denote the number of states of energy E. 
A particular case of a level shift of the above type 

is one in which a level of the reference scheme is 
deleted altogether. Such a deletion creates a gap in the 
reference scheme. The number of states for this case 
is denoted by C(N, E; 10;, 00). Another situation is 
one in which a level is added to the reference scheme, 
and the number of states is denoted by C(N, E; 00, E.). 

B. Arbitrary Single-Particle Schemes 

We now develop connections between the density of 
states in the reference system and that in the perturbed 
system. The results facilitate discussion of a variety of 
schemes. We use the method of generating functions 
to enumerate the number of states; explicitly for the 
reference system, one has1 

~ C(N', E')X""yE' = II (1 + xy'I). (1) 
N',E' j 

Similarly for the perturbed system, the number of 
states is given by 

~ C(N', E'; €i' €.)XN'yE' 

N',E' (1 + ') 
= II (1 + xy'l) . xy • (2) 

i (1 + xy") 
and 

"" C(N' E' ) N' E' £., ,; €i' 00 X Y 
N'.E' 1 

= II (1 + xy'S) . (3) 
; (1 + xy") 

Then one can establish connections between the 
various systems by, for example, multiplying Eq. (3) 
through by (1 + xy'i), comparing like terms, and 
observing that 

C(N, E; €i' 00) + C(N - 1, E - Ei , Ei , 00) 

= C(N, E). (4) 

Similarly, multiplying Eq. (3) by (1 + xy") yields 

C(N, E; E;, 00) + C(N - 1, E - E.; E;, 00) 

= C(N, E; lOt, 10.). (5) 

C. Degenerate Systems 

For the remainder of this work we restrict our 
discussion to degenerate systems, i.e., to excitation 
energies Q < I€N-l - 1001. For a degenerate system, 
a little reflection shows that the density of states for 
a given level scheme can depend only on the position 
of the Fermi level in the scheme and on the excitation 
energy. We express this property of degenerate 
systems, for example for the reference system, by 
introducing the function (J defined by 

(J(€N-l, Q) = C(N, E). (6) 

A similar relationship holds, of course, for the 
perturbed system, and we write 

(J(EF' Q; 10;, 10.) = C(N, E; lOt> E,). (7) 

In the above, EF and Q denote respectively the Fermi 
level and excitation energy of the perturbed system 
which correspond to the values of Nand E. Let Eo 
denote the zero-point energy of the perturbed system; 
then Q == E - Eo. 

We shall now illustrate how Eq. (4) of Sec. 2B may, 
for degenerate systems, be written in terms of the (J 

function. Careful attention must be paid to the 
dependence of €F and Eo on 10; and E •• Consider, for 
example, the transcription of Eq. (4) for the case 
€i ~ EN-I' E. = 00. For a system perturbed by the 
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deletion of one single-particle level, 

number of states = C(N, E; E., 00), 
Fermi level = EN, 

zero-point energy = Eo + EN - E" 

excitation energy = (Q + Eo) - (Eo + EN - E.) 

=Q-EN+Ei' 

For the system of N - 1 particles, 

numberofstates = C(N-I,E- Et;Ei , 00), 
Fermi level = EN-I' 
zero-point energy = Eo - Ei' 

excitation energy = (Q + Eo - Ei ) - (Eo - Ei ) 

=Q. 

For the reference system, 

number of states = C(N, E), 
Fermi level = EN-I' 
zero-point energy = Eo, 
excitation energy = Q. 

In view ofEqs. (6) and (7) and the above information, 
Eq. (4) may be written 

O'(EN' Q - EN + EI; EI , 00) + O'(EN_I, Q; EI, 00) 

= O'(Es_l' Q), Ej ~ EN-I' (8) 

Similarly, one can show that 

O'(EN_l' Q; Et, 00) + O'(EN_2, Q + EN-I - Et; EI , 00) 

= O'(EN_l, Q), Ej > EN-I' (9) 

Many other relations of this kind may be obtained in 
a similar fashion. 

D. Perturbed Uniform Model 

Let us now consider a further specialization in 
which the reference system consists of the uniform 
scheme of single-particle levels 0, 1,2, .... For such 
a degenerate system, the density of states can be shown 
to be independent of the position of the Fermi level 
and depends only on the excitation energy. That is, 
we have the translational invariance 

O'o(EN-l, Q) = O'o(EN-1 - D, Q) (10) 

in which D is an integer and the subscript zero serves 
as a reminder that one is dealing with the uniform 
scheme. 

Similarly, if we consider a perturbation of the 
uniform model, the density of states can depend only 
on the excitation energy and on relative displacements 
of Ei and E. from the Fermi level. That is, one has the 
translational invariance 

O'(iF' {l; EI' Ea) = O'(iF - D, {l; E. - D, E, - D). 

(11) 

(0) (b) 

a-o 

f f 
4---

3--- s-] 
2---

1--- 1------
0 __ EF --+- €F 

-1 __ 
--+-

-2 --+- --+-
-3 __ 

--+-
I , 

FIG. I. Illustration of the single-particle level schemes used in the 
derivation of the density of states. Part (a) illustrates the "uniform 
model" in which we have a sequence of equally spaced levels, which 
at zero excitation energy are occupied to the Fermi level Ep. Part 
(b) illustrates the "perturbed uniform model" in which the uniform 
model has been altered by shifting a level from position E, of the 
uniform scheme to a new position £" which mayor may not coincide 
with an existing level. The position of its Fermi level will be al­
tered, for example, if E, < £p and £, > £p. 

In what follows, it is convenient to redefine the single­
particle energy-level scheme so that the Fermi level 
always has the value zero. Thus, as shown in Fig. 1, 
energy levels below the Fermi level are dtmoted by 
the negative integers, whereas the levels above the 
Fermi level consist of the positive integers. At this 
point we introduce the symbol p to represent the 
density with this standardization: 

p(Q; 00, 00) = Po(Q) == uo(O, Q), 

p(Q; i, s) == 0'(0, Q; Ei , e.), (12) 

where p(Q; i, s) == ° for Q :5: 0. 
With the help of the translational invariance 

expressed by (10) and (11) and the definitions (12), 
the relations (8) and (9) of Sec. 2C become 

Po(Q) = p(Q + i-I; i-I, 00) + p(Q; i, 00), 

for i < 0, (13) 

Po(Q) = p(Q - i; i + 1,00) + p(Q; i, 00), 

for i > 0, (14) 

Po(Q) = p(Q - 1; -1, 00) + p(Q; 1, 00). (IS) 

One must be careful to ensure that the excitation 
energy Q and the gap at i are measured relative to 
the same zero value. For example, on the left-hand 
side of Eq. (8) one term has its Fermi level at EN and 
the other at eN-I' After a shift of the position of the 
Fermi level to zero, the missing level at position i-I 
in the N-particle term is to be compared with a 
missing level at position i in the (N - I)-particle 
term, and the excitation energy Q - I is to be com­
pared with an excitation energy Q. 

One can now enumerate all the recursion formulas 
necessary to cover shifts, gaps, and extra levels. One 
uses as basic quantities Po(Q), the values of which are 
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tabulatedll and the values of p(Q; 1, 00) which we 
have calculated for 1 ~ Q ~ 50 (Table I). The 
analysis for all cases proceeds in parallel to the transi­
tion from Eqs. (8) and (9) to Eqs. (13) to (15). The 
level densities for systems with shifted levels are related 
by means ofEq. (5) to the level density for the uniform 
model and the level density for a system with a gap. 
All systems with a gap are related to the uniform 
model as indicated by Eqs. (13) to (15), then recur­
sively to Po(Q) and Po(Q; 1, 00). Proceeding in an 
exactly analogous manner to Eq. (3) the level density 
for system with an additional level can be related 
to the uniform model. In summary, therefore, one 
has explicitly the following relationships: 

p{Q, i, s) = p{Q; i, (0) + p{Q - s; i + 1, 00), 

for i, s;;::: 1, (16) 

Po(Q) = p(Q; 00, s) - p(Q - lsi - 08 ; 00, 00), 

0=1, for s~o, 
8 0, for s > 0, (17) 

p(Q; -1,s) = p(Q - s; 1, (0) + p(Q; -1, (0), 

for s > 0, (18) 

p(Q; i, s) = p(Q; i, (0) + p(Q - s; i + 1, (0), 

for i<-I,s;;:::l, (19) 

p(Q; i,s) = p(Q; i, 00) + p(Q + s - 1; i-I, (0), 

for i, s ~ 0, (20) 

TABLE I. The exact-counting values of p(Q; +1, 00), the den-
sity of states when a gap is produced by deleting the state 

immediately above the Fermi level €F' 

Q p(Q; +1,00) Q p(Q; +1, 00) Q p(Q; +1,00) 

3 2 19 260 35 7808 
4 3 20 334 36 9432 
5 4 21 420 37 11338 
6 6 22 532 38 13631 
7 8 23 664 39 16326 
8 12 24 835 40 19544 
9 16 25 1034 41 23316 

10 23 26 1288 42 27806 
11 30 27 1588 43 33054 
12 42 28 1962 44 39273 
13 54 29 2404 45 46534 
14 73 30 2953 46 55096 
15 94 31 3598 47 65076 
16 124 32 4392 48 76808 
17 158 33 5328 49 90446 
18 206 34 6466 50 106426 

The integrand has one and only one saddle point 
on the positive real axes. If one introduces the 
exponential transformation 

x = ea
, y = e-P (25) 

and performs the integrations in the usual way, the 
resulting asymptotic density of states is 

(26) 

p(Q; i, s) = p(Q - 1 + s; i-I, (0) + p(Q; i, (0), where 

for i > 1, s < 0, (21) 

p(Q; 1, s) = p(Q; 1, (0) + p(Q - 2 + s; 2, (0), 

for s < 0, (22) 

p(Q; 2, (0) == p(Q; -1, (0). (23) 

These relationships can be used to measure the ade­
quacy of the saddle-point approximation, as it is 
discussed in Sec. 3D. 

3. LEVEL DENSITIES IN THE SADDLE­
POINT APPROXIMATION 

A. Asymptotic Formulas for Degenerate Systems 

By means of the Darwin-Fowler integral, we write 
the density of states for the perturbed uniform model 
as 

C(N, E; lEi' "8) 

1 ff ro (1 + xyJ) (1 + xy<·) 
= -- IT ' dx dy, 

(217i)2 i=O XA+lyE+l (1 + xli) 
(24) 

where the product is taken over all integers. 

11 M. Gupta -'Partitions;' Royal Society of London-Mathematical 
Tables (Cambridge University Press, London, 1958), Vol. 4. 

ro 

f(a., (3) = Ef3 - Na. + .L In (1 + eae-PJ) 
j=O 

- In (1 + eae-P<i) + In (1 + eae-P"). (27) 

All of the quantities in formula (27) must be evaluated 
at the saddle point (exo, Po) which is determined by the 
solution of the simultaneous equations 

fa. =/p = 0. 

Use of the Euler-MacLaurin expansion4•12 to evaluate 
the sums in (27) yields 

f(ex, (3) = Ef3 - Nex + p-l(i172 + !e(2) + ta. + 112f3 

- In (1 + eae-P<') + In (1 + eae-PE,), (28) 

where terms of order e-a and f32e-11. have been neglected. 
Accordingly one can expect accurate results only in 
the limit ex ~ 00, f3 sufficiently small (or equivalently, 
N ~ 00, Q sufficiently large). 

To facilitate discussion of the level density as it 
is obtained in the saddle-point approximation, it is 

12 K. Husimi, Proc. Phys. Soc. Japan 20, 912 (1938). 
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convenient to introduce the new quantities 

Lh == a./P - (N - i), 

Thus our saddle-point equations become 

(29) t. = 0 = dx - dX i + dxs , 

dEi == Ei - (N - I), dEs == Es - (N - I), 

dXi == {I + exp [pedE, - ! - dx)]}-t, 

(30) /f! = 0 = (-7T2/6P2) + Q + dei, s) - "2\ - t{dX)2 

- tdx + dE,dxi - dE.dxs ' (32) 

dx. == {I + exp [pedEs - t - dx)]}-t. (31) The resulting level density is then 

where 

D = 1 - P[dxi(1 - dxi ) - dx.(1 - dxs)] 

- (3p3/7T2)[dxi (1 - dxi)(dx - dE, + t)2 

- dx.(1 - dxs)(dx - dE. + t)2] - (3p4/7T2) 

X [dxi(1 - dxi)dx.(1 - dx.)(dEi - dEs)2]. 

(34) 

The expression (33) for the level density p(Q; i, s) 
is not the result of a solution of the saddle-point 
equations, but rather a very useful reduction which 
can serve as a starting point for the consideration of 
special cases, numerical solutions, etc. That is, for a 
given Q, Ei , E. one must still solve Eqs. (31) and (32) 
for the unknown quantities P, dx, dxi , dx •. 
We shall sometimes denote the level density as 
Ptrans(Q; i, s) to bring attention to the fact that the 
transcendental equation (31) must be solved to obtain 
a solution. The zero-point correction d(i, s) can be 
evaluated explicitly as 

dei, s) = b;(1 - bs) - bidE. + bA€., 

where 

I, 
b.= 

t 0, 
for iSO, b _ 1, for s S 0, 

for i > 0, • 0, for s > o. 

B. Special Cases and Linear Approximation 

(35) 

In order to analyze the general formula p(Q; i, s) 
as given by Eq. (33), we note the following limiting 
cases: 

Case (i): €. ---+ 00. Then dxs = 0 and dXsd€s = O. 
[The term In (1 + e«e-P") is effectively absent from 
Eq. (28).] One is then considering the asymptotic 
level density for a system in which the uniform model 
is perturbed by the absence of a level at position €. in 
the single-particle level scheme. In particular, if 
d€i = + I, the saddle-point equations can be solved 
explicitly, since one sees that the solution of Eq. (31) 

is dX i = t, and Eq. (32) yields P = (7T/-/6)(Q + l\)-!' 

The level density is then written 

(Q; 1, (0) = t exp {7T[i(Q + T"2)]t} . 
P . (48)!(Q + T\-)(1 - !P)t 

(36) 

Case (ii): If €; = E. or if d€i' d€s ---+ 00 so that 
dx = 0, one can again solve for the saddle point 
explicitly and obtain 

(J = (7T/~6)(Q - 2\)-t 
and 

p(Q; a, a) = p(Q; 00, (0) 

== o(Q) = exp {7T[f(Q - 2\)]t} , 
P (48)t(Q - "2\) 

(37) 

which is the known result for the uniform model.4- 6 

Case (iii): d€;, dEs« Q (linear approximation). 
One now returns to the expression for/(a., P) as given 
by Eq. (27) and retains terms only through 0(a.2) and 
O(P). One calls this approximation the linear approxi­
mation and the corresponding level density is denoted 
by Plin' One solves the appropriate saddle-point 
equations explicitly and finds 

(Q" ) _ exp [7T(iQ*)f] 
Plin ,I, S - (48)tQ* ' 

where 

Case (tv): d€.« Q, d€s ---+ 00 (linear approxima­
tion). The linear approximation is again valid if 
one omits the term In (1 + ea.rP") in Eq. (27) and 
proceeds as in (iii). Then one finds 

. (Q; i, (0) = exp [7T(iQ*)t] , 
Plm 2(48)!Q* 

(39) 

with 

and 
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If dEt = + 1, dE, -- 00, one recovers formula (36), 
except for the absence of the relatively unimportant 
factor (1 - ifJ)! in the denominator. 

Case (v): dE,« Q, dE; -- 00 (linear approxima­
tion). Proceeding exactly as above, except that one 
now has an additional level at E" one finds 

Plin(Q; 00, s) = 2 exp [7T(iQ*)!]/(48)!Q*, (40) 
with 

Q* = Q + /2 + d(oo, s) - tdE, 
and 

d( 00, s) = r5.dE,. 

In the limit of large excitation energy Q, one sees 
that the level density obtained from Eq. (39) is only 
half that for the uniform model. Similarly, the level 
density indicated by Eq. (40) is twice that for the 
uniform model. This behavior, characteristic of the 
nonperiodic nature of the perturbation, is discussed 
in the following section. 

C. llIustration of Results 

The novel feature of the nonperiodic perturbation 
is the presence of the multiplicative factor (1 - dxt)/ 

(1 - dx.) in the level-density formula (33). It is 
evident from Eq. (31) that dXt varies with dEt so as to 
become negligible when the latter becomes comparable 
to Q and becomes .......,t when dE;« Q (or when 
dE; __ 00 and dE,« Q), as shown in Fig. 2. The 
same statement holds with subscripts i and s inter­
changed. 

To study the origin of this behavior, the density of 
states for a system with a missing level will be directly 
compared with that for a system in which a particular 
level is unoccupied. A little reflection shows that the 
relation 

C(N, E; E, 00) = [1 - feE, Q)]Co(N, E), 

for E> EF, (41) 

holds exactly. Here feE, Q) denotes the fraction of all 
states of the unperturbed system for which the single­
particle level E is occupied. If the system is degenerate 
(i.e., if Q ~ EF), then (41) may also be written 

p(Q; E, 00) = [I - feE, Q)]Po(Q). (42) 

On the other hand, from Eq. (33) we infer that for 
sufficiently high excitation energy Q, the density of 
states is 

p(Q; E, 00) ~ [(1 - dx.)]Po(Q). (43) 

From (42) and (43) we may conclude that, asymptot­
ically, 

feE, Q)......., dx • ......., {I + exp [fJ(E - EF)]}-l. (44) 

2 3 4 5 6 7 a 9 10 II 12 13 

FIG. 2. Illustration of the change in the Fermi factor (1 - Llx,) 
as a function of Ll", which defines the position of the deleted level 
relative to the Fermi level. The values of Llx, indicated by circles 
and triangles were obtained by a numerical solution of the saddle­
point equations (32). with Ll". -+ 00, Llx, = o. 

Thus dx. represents (at least approximately) the 
occupation probability, and the asymptotic expression 
(44) is precisely the familiar expression from the 
theory of the ideal Fermi gas, for which case 

fJ ~ 7T(6Q)-!(kT)-1. 

This result is not restricted to the uniform model and 
is valid for any single-particle level scheme in which 
a level has been shifted from position Ei to E,. If the 
initial position of the level is below the Fermi level, 
one must relate the ground state of the perturbed 
system to that of the unperturbed system in such a 
way that a proper correspondence can be made 
between contributing configurations. 

It also follows that if n single-particle levels are 
missing in the neighborhood of the Fermi level, the 
level density will be diminished by a factor 2n relative 
to that of the corresponding unperturbed model. 
These modifications do not disappear with increasing 
excitation energy. 

D. Comparison Between Exact Counting and 
Asymptotic Solutions 

One can find an explicit value for p(Q; i, s) for any 
given Q, i, s by a numerical solution of Eqs. (31) and 
(32). This can then be compared with the results of 
exact counting-thereby ascertaining the general 
validity of the asymptotic results (Q » 1). Figures 3 
and 4 provide illustrations of typical agreement. We 
compare the ratios [p{Q; i, s)/p{Q, 00, 00)]tran8 and 
[p{Q; i, s)/PO{Q)]exact rather than Ptrans{Q; i, s) and 
Pexact(Q; i, s) directly since we want to judge the 
effectiveness of our treatment of the perturbation 
caused by the shifts Ei -- E,. A comparison of 
Ptrans(Q; 00, 00) with Pexact{Q; 00, 00) has already 
been given in Ref. 4. 

All of the recursion relations of Sec. 20 are 
approximately maintained in the saddle-point approxi­
mation as given by the numerical solution ofEqs. (31) 
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FlO. 3. The ratio 
of perturbed to un­
perturbed level density 
as a function of the 
level shift illustrated 
for two values of 
the excitation energy 
Q. The single-particle 
level originally located 
at one unit above the 
Fermi level is shifted 
to a position s units 
above the Fermi level. 
The solid lines corre­
spond to the ratio ob­
tained by a numerical 
solution of the saddle­
point equations, 
whereas the circles 
and triangles corre­
spond to the results of 
exact counting. 
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and (32). In particular, for Q ~ 5, a typical discrep­
ancy is :::;; 3 %, However, the particular identity given 
by Eq. (23), namely, 

p(Q; 2,00) = p(Q; -1, 00) 

is maintained exactly by the saddle-point treatment. 
[That is, one observes that 

and from these identical expressions for the level 
density p(Q, i, s) follow.] 

This same identity is found to hold in the linear 
approximation, as one sees immediately from Eq. 
(39), This gives one additional confidence in the 
consistency of the approximation procedures. 
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FIG.4. Same as 
Fig. 3 except that 
the single-particle 
level shift creates 
a gap one unit 
below an addi­
tionallevel s units 
above the Fermi 
level of the uni­
form level scheme. 

4. PERTURBED UNIFORM MODEL OF DEGEN­
ERACY g IN THE SADDLE-POINT 

APPROXIMATION 

A. Reduction for Degenerate Systems 

The results of Sec. 3 can be extended to the study 
of a perturbed uniform model of degeneracy g, shown 
schematically in Fig. 5. One proceeds by a develop­
ment parallel to that of Sec. 3A, so that, corresponding 
to Eq. (24), one has 

where the level at Ei has its degeneracy reduced by gi 
and the level at E. has its degeneracy enhanced by g •. 
In the general case in which gi ~ gw, one is effectively 
considering situations in which one has either shifted 
some levels to infinity or brought some additional 
levels from infinity. Corresponding to Eq. (28), we 
now have 

l(rx,{3) = E{3 - Nrx + (g/{3)(irx2 + t7T2) + g(!rx + 1]2(3) 

- gi In (1 + e"e-P<i) + g. In (1 + e"e-P<'). 

(46) 

To facilitate the discussion of the saddle-point 
equations, one now introduces the new quantities 

~x = g(rx/{3) - (N - !g), (47) 

~Ei == Ei - g-I(N - n); ~E. == E. - g-l(N - n), 

(48) 

~Xi == (1 + exp {{3[g~Ei - (n - 19) - ~xJ})-x, 

(49a) 

~x. = (1 + exp {{3[g~Es - (n - tg) - ~xnrx, 

(49b) 

where n particles occupy the Fermi level in the ground 

FIG. 5. A perturbed uniform model of 
degeneracy g = 4. One starts with a uni­
form level sequence in which one has g 
particles per level and n, = 2 particles 
occupying the Fermi level in the ground­
state configuration. The level at position 
£, has its degeneracy reduced by g" where 
0::::;; gi ::::;; g; and the level at position £. 

has its degeneracy enhanced by g,. In 
general, gi ¢. g,. 

Q=O 

s -----J:;' 
-+e--<X>-- II • F 

•••• II 
• ••• II .er. II 
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state. Then our saddle-point equations are 

fa = 0 = Ax - giAxi - g.Ax., 

f(1 = 0 = -7T2g/6(32 + Q + A(i, gi; s, g.) 

- tg-\n - tg)2 + l\-g - !g-1(Ax)2 

+ Ax(! - ng-1
) + (giAxiA€i - gsLh.A€.), (50) 

where 

A( i; gi' s; g.) == - gibiA€.; + g.b.A€s 

+ g-l(n - tg)(gibi - gA) 

+ !g-l(gibi '- g.bst (51) 

One can now write an expression for the level density, 
which like Eq. (33) does not result from a solution 
of the saddle-point equations but is rather a useful 
transposition. This expression is 

.' ., ) _ (1 - AxiY' exp (2(3Q*) 
p(Q, I, gi' S, g. - (1 _ Ax.)g. [48D]t(g7T 2/6(32) ' (52) 

with 

Q* = Q + A - tg-l(n - tg)2 + l\g 

+ tAx(i - ng-1
) + i(giAXA€; - g.Ax.A€.) 

and 

D = I - (3[giAxi(1 - Axi) 

- g.Ax8(1 - Ax.)] - (3(33f7T2g) 

x [giAxi(1 - AXi)(Ax - gA€i + n - ig)2 

- g.Ax8(1 - Ax.)(Ax - gA€s + n - ig)21 

- (3(34f7T2g2)giAxi(1 - AXi) 

x g8Ax.(1 - Ax.)(A€i - A€.)2. (53) 

B. Special Cases and the Linear Approximation 

One can find explicit solutions of the saddle-point 
equations, for two cases, corresponding to those 
considered in Cases (i) and (ii) of Sec. 3B. 

Case (a): A gap at A€i = 1, and the number of 
missing states equal to the degeneracy (n = g). Then 
for gi = g, g. = 0, A€. ~ 00, the density of states is 

. i . 0 00 =! exp {7T[ig(Q + g/12)]t} 
p(Q, ,g;, , ) 2U (48)t(Q + g/12)(1 - i(3g)t . 

(54) 

Case (b): The uniform model of degeneracy g. 
Then for gi = gs = 0, the expression is 

(Q' 0 00' 0 00) = exp {7T[ig(Q - 2\)]t} (55) 
p " " (48)t(Q - 214) 

Case (c): For the remainder of this section we 
restrict ourselves to the linear approximation. Then 

corresponding to Eq. (38), one has 

. 9p{7TrngQ*~} 
Plin(Q; I, gi; S, g.) = t 

20 ;-0'(48) Q* 
with 

Q* = Q + /2g - ig-l(n - ig)2 - ig-1[i(gi - g.)]2 

- g-l(n - ig)[t(gi - gs)] + A(i, gt; s, g.) 

+ tgiA€i - ig.A.€. (56) 

and with A as given by Eq. (51). 

Case (d): The linear approximation can also be 
used to treat the problem of a uniform model in which 
the degeneracy of the levels varies in the neighborhood 
of the Fermi level but has the constant value g every­
where else. If Ni = ~ nigi effective levels are omitted 
and N. = ~ n.g. effective levels are added, and if Pi 
of these are removed from below the Fermi level and 
q. are added below the Fermi level, then in the linear 
approximation one finds 

. [Q' N. N] _ exp [7T(igQ*)t] 
Plin , .' • - 2N;-N'(48)tQ* ' 

(57) 

The factor 2N ;-N, effectively measures the deviation 
from the uniform model with degeneracy g, since 
Q* ~ Q in the limit of large excitation energy. One 
has thereby been able to discuss a perturbed uniform 
model with degeneracy g even though the pattern in 
the neighborhood of the Fermi level has been altered 
in a most general manner. 

5. CONCLUDING REMARKS 

In this work we have studied how the level density 
was affected by perturbing the position of a level in 
an independent-particle energy-level scheme. There 
are two main conclusions: (1) we find that the cal­
culation in the saddle-point approximation constitutes 
an adequate treatment of the problem, and (2) we 
obtain the interesting result that a sizable level shift 
gives rise to effects that persist to very high excitation 
energies. An extreme example of this is given by the 
deletion of a level from the scheme, in which case the 
asymptotic level density is twice that for the unper­
turbed energy-level scheme. 

Whenever a problem of this kind is solved in the 
saddle-point approximation, one finds that some 
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properties of the exact solution are preserved whereas 
oher properties are not rigorously maintained. Well­
known examples of properties that are preserved 
include the fact that the level density is independent 
of the number of particles for a degenerate system,2 
the symmetry between particles and holes for uniform 
schemes of degeneracy g,4 and the fact that the level 
density is independent of the definition of the "phase" 
for a periodic scheme of levels.6 In this work we also 
establish certain properties of the exact solution, 
namely recursion relations (13)-(23). It turns out 

JOURNAL OF MATHEMATICAL PHYSICS 

that these connections are not maintained rigorously 
by the saddle-point solutions but only to a very good 
approximation. There is one curious exception to 
this general statement, namely relation (23) is rigor­
ously maintained in the saddle-point approximation. 

ACKNOWLEDGMENTS 

It is a pleasure to acknowledge the assistance of 
J. Abdale in connection with these calculations and 
to thank Dr. F. E. Throw for his valuable comments 
on the manuscript. 

VOLUME 10, NUMBER 4 APRIL 1969 

Sufficiency Condition for the Validity of the WKB Approximation 

F. H. NORTHOVER 

Department of Mathematics, Carleton University, Ottawa, Canada 

(Received 16 January 1968) 

In spite of the many applications-in theoretical physics and elsewhere-of this well-known method 
of approximating to solutions of the differential equation W· + fW = 0, when f is slowly varying 
through a region where f "" 0, no simple sufficient condition for its validity appears yet to have been 
given. In the present paper, such a condition is derived. Also, the connection formulas establishing the 
relation between the constants in the WKB approximation to a given solution in the various regions of 
the complex plane delineated by the "Stokes Jines," which converge on a simple zero off, are rederived, 
as existing arguments are open to criticism on at least two major grounds. Finally, a sufficient condition 
is given for the existence of a common region of validity for the approximation based on the series 
solutions of the differential equation around a zero off and the WKB approximation valid sufficiently 
far from this zero. 

1. INTRODUCTION 

Jeffrey's (WKB) method is a procedure for finding 
approximate solutions to a second-order differential 
equation of the form 

W" +f(z)W= 0 (1) 

through some region R in which fez) is analytic, 
which contains no zeros (or limit points of sets of 
zeros) of f(z), and in which fez) varies sufficiently 
slowly. (By this we mean that!, and as many of the 
subsequent derivatives as may be required have to be 
sufficiently small through R.) 

The method is of importance in many physical 
applications and the literature is quite extensive; 
a review of it and a detailed consideration of the 
problem itself can be found in Heading's book.1 How­
ever, in spite of the numerous investigations which have 
been made, there still does not seem to be available 
just what is needed most of all to give precision to the 

1 J. Heading, Phase Integral Methods (John Wiley & Sons, Inc., 
New York, 1961). 

practical applications of the method-namely, a 
simple sufficient condition for its validity with a state­
ment of the order of magnitude of the error. 

The WKB approximation fails sufficiently near a 
zero off, but, of course, the solutions of (1) can then 
be expressed as power series in z - c, where c is the 
zero. These power-series solutions converge within the 
largest circle which can be drawn round c without 
enclosing a singularity off. It can sometimes happen 
that the WKB approximation is still good and useful 
at points sufficiently near the zero c for the first few 
terms of these power series, or, less stringently, those 
containing only!'(c), to provide also a good approxi­
mation. In such a case it is obviously of interest to 
know how the WKB approximate forms connect with 
the series solutions of (1) and this problem will be 
investigated at the end of the paper. 

The WKB method is often described as an "asymp­
totic approximation valid in regions where fez) is 
sufficiently large." This is misleading; it would not, 
for example, be true for a function f such that f' Iff 
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properties of the exact solution are preserved whereas 
oher properties are not rigorously maintained. Well­
known examples of properties that are preserved 
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of the number of particles for a degenerate system,2 
the symmetry between particles and holes for uniform 
schemes of degeneracy g,4 and the fact that the level 
density is independent of the definition of the "phase" 
for a periodic scheme of levels.6 In this work we also 
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applications and the literature is quite extensive; 
a review of it and a detailed consideration of the 
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ever, in spite of the numerous investigations which have 
been made, there still does not seem to be available 
just what is needed most of all to give precision to the 
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practical applications of the method-namely, a 
simple sufficient condition for its validity with a state­
ment of the order of magnitude of the error. 

The WKB approximation fails sufficiently near a 
zero off, but, of course, the solutions of (1) can then 
be expressed as power series in z - c, where c is the 
zero. These power-series solutions converge within the 
largest circle which can be drawn round c without 
enclosing a singularity off. It can sometimes happen 
that the WKB approximation is still good and useful 
at points sufficiently near the zero c for the first few 
terms of these power series, or, less stringently, those 
containing only!'(c), to provide also a good approxi­
mation. In such a case it is obviously of interest to 
know how the WKB approximate forms connect with 
the series solutions of (1) and this problem will be 
investigated at the end of the paper. 

The WKB method is often described as an "asymp­
totic approximation valid in regions where fez) is 
sufficiently large." This is misleading; it would not, 
for example, be true for a function f such that f' Iff 
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took large values at some points in the region in 
question. The essential point is that the first two de­
rivatives of f have to be sufficiently small throughout 
the region in question, with f:;!: O. Also, it is not 
correct to refer to it as an «asymptotic approxima­
tion," for we shall see in the present paper that it is 
actually the first term of a convergent series. The 
impression seems to have arisen because of the fact 
that the WKB approximation usually agrees with the 
dominant term of asymptotic series representations of 
solutions of (1) when the latter exist. 

Although it is true in many practical cases that 
If I » 1, there is nothing to be gained mathematically 
by writing (as do some authors) f(z) = k2g(Z), where 
k is large and g(z) = 0(1) as k ---+ 00. For g(z), in 
general, contains k in some unknown fashion and so 
attempts at approximation in, say, series of inverse 
powers of k (for k large) are not likely to lead any­
where if a completely rigorous treatment is being 
insisted upon. In the special case when g(z) is inde­
pendent of k, it is possible to formally satisfy (1) by 
the expression 

exp {ik fZ(g)t d{ - i In g + f k-itt;(Z)}, 

where the first two terms in the exponent give the 
WKB approximation. The functions ttlz) in the 
higher approximation terms are determined in suc­
cession by difference-differential equations of increas­
ing complexity. But it does not seem possible to prove 
even that this series is an asymptotic series in k. 

It may prove useful, both to set the background for 
the more careful investigation to follow and to 
provide information about the method for readers not 
already familiar with it, to begin by giving a descriptive 
nonrigorous derivation of the WKB approximate 
forms for the solution of (I). 

Writing 
W= eiF, (2) 

then 
F'2 =f+ iF". (3) 

Suppose it is possible to obtain a solution of (3) 
which makes 1£"1 « If I throughout R; then, in that 
case, 

(4) 

in R [If f is complex, ft is made one-valued by an 
appropriate system of cuts leaving the zeros (if any); 
ft is then of course analytic in RJ, i.e., by integration 
over a finite domain for z in R, 

(5) 

If (4) were exact, we could differentiate to obtain 
F", but owing to the possibility that the error, even 
though always small, could vary rapidly at some 
points, it does not follow that F" : 1'12(f)t. How­
ever, assuming that the error in (4) is a sufficiently 
slowly varying function for the differentiated form of 
(4) to be also approximately true, we have F" : 
1'12(J)!: consistency with the hypothesis IF"I « If I 
then requires that 1f'lr!1 « 1. Then (3) gives 

F' : jt (1 + ~ i~'y 
: jt + iif'1f (6) 

on using the ordinary binomial theorem approxima­
tion for index i. 

And so, by (2), we then have 

(7) 
where 

(7') 

This is the Jeffrey's (WKB) approximation. 
It will be observed that the approximation (7) 

becomes exact when fez) is a nonzero constant. It 
might, therefore, be expected that the approximation 
would be a valid one in a given region R for which 
f(z) was nonvanishing and sufficiently slowly varying. 
The above rough analysis shows already that we have 
to have If' If!J «I to apply the method, with a 
further condition to ensure that the error in (4) varies 
sufficiently slowly for its differentiated form F" : 
I' /2 (f)! to be also approximately valid. The analysis 
to follow shows that this further condition is that 
If"lfl should be small compared with unity. 

We now investigate, along more rigorous lines, the 
circumstances under which the WKB formsj-!e±iF 
can provide a good approximation to a given solution 
of (1). 

Writing 
(8) 

we find, after some analysis (the details to be given in 
the author's book2), that 

W(z) = W1(z) - [j(z)]-iJ,zsin [F(z) - F({)] 
Zo 

X WW{[FWriy d{, (9) 
where 

W1(z) = {J(z)}-i{AeiFCZ ) + Be-iFCz )} (9') 

and where F(z) is, of course, given explicitly by (7'). 

• F. H. Northover. Applied Diffraction Theory (Academic Press 
Inc .• New York. to be published). 
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The function Wl(z) is the WKB approximation to 
the particular solution W(z) of (1) under considera­
tion, which now appears as the solution of a Volterra 
type of linear integral equation; the error W - Wl 

incurred by the use of the WKB approximation being 
expressed by the integral term. 

Let U(+) and UH be those fundamentaP solutions 
of (1) whose WKB approximations are f-ieiF and 
f-ie- iF , respectively. 

Then the pair of integral equations expressing 
U

C
±) in terms of their respective WKB approximations 

are obtained as special cases of (8) and may con­
veniently be summarized as 

UC±)(z) = [f(Z)]-*{ r iFCz ) - 1: sin [F(z) - F({)] 

. UC±)({){[f(m-ir d{}. (10) 

From (10), the function AU(+) + BUC_) satisfies the 
same integral equation [i.e., (9)] as does W(z). In 
reference to (9), WI(z) is, of course, a given function 
not zero and we know that the corresponding solution 
of the Volterra type linear integral equation, if one 
exists, will be unique. 

Hence, 
W(z) = AUc+)(z) + BUH(z). (11) 

Accordingly, in estimating the error between W(z) 
and its WKB approximation WI (z), it is sufficient to 
estimate the error between UC±)(z) and their respective 
WKB approximations f-ie ±iF. 

For by (9') and (11) we have 

W - WI = A(Uc+) - rieiF) + B(Uc_) - j-ie-iF). 

(12) 

2. ON THE ORDER OF MAGNITUDE OF THE 
ERROR 

A. On an Upper Bound for the Error 

We are interested in the circumstances under which 
the relative error made in using a WKB approxima­
tion can be made small; i.e., writing 

UC±) = D.c±d-ie=±iF, (13) 

we are interested in the circumstances under which 
D.U ) : 1, through some region R whereinf(z) does 
not vanish. 

Substituting in (10), we find that the equations for 
D.c ±) are summarized as 

D.c±)(z) = 1 ± ~ J,z{l _ e=±2i[F(')-F(0)]} 
2 00 

x D.c±)W[fWr1{[fWr1}" d,. (14) 

a If they were not fundamental solutions of (1), then U1+) = 
kU1_) where k is a constant, which from (9) would imply ke-iF = elF. 

Since, by hypothesis, fez) :F 0 in R and since 
F'(z) = fez) :F 0 in R, it follows that the inverse 
z(F) of the function F(z) exists in R. To proceed with 
the investigation, it is found to be highly desirable 
to change the independent variable in (14) from z to 
F and, correspondingly, in the integral therein from 
, to T, where T = F(,). However, before we can do 
this, we must first be sure that this inverse function 
z(F) is one-valued. Since this is not necessarily the 
case {e.g., z(F) will not be one-valued if R is a ring­
shaped region surrounding an isolated simple zero of 
fez), even if F(z) is made one-valued by a cut] for all 
allowable values of F [corresponding to the require­
ment that z satisfy fez) :F 0], we must, if we wish to 
make use of this transformation in (14), restrict the 
variable z to a subregion RI of the region R where 
fez) :F O. 

In applications of the WKB method we are usually 
concerned with a ring-shaped region R encircling an 
isolated simple zero c, say, of fez). Throughout such 
a region F(z) and its inverse z(F) are certainly not one­
valued, even if we make F(z) one-valued by a suitable 
cut extending from c. However, it appears (see Appen­
dix A) that we can always find a subregion RI of it, 
wherein z(F) is one-valued. Further, it will transpire 
that this restricted region RI is sufficiently extensive 
to permit, through deductive processes we now ex­
plain, a valid investigation by this means of the 
accuracy of the WKB method, for the complete 
region R. For, as will appear, the constants (A, B) 
in the WKB approximation WI(z) of W(z), take on 
different values in four wedge-shaped regions into 
which R is divided by a certain quartet of noninter­
secting curves which start out from the zero z = c 
of fez). In the discussion we have termed these four 
subregions of R the regions I, II, III, and IV. (See also 
Fig. 1.) It is found that the constants (A, B) in all the 
regions are uniquely determined once their values in 
any particular one of them are known. It proves 

FIG. 1. Stoke's regions near a zero of[(z). 
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convenient in the theory to take region I as this "basic 
reference region." It can be shown that the constants 
(A, B) for I are determined once the particular 
solution W(z) of (I), to which we wish to approximate, 
has been chosen, and then, as has been just pointed 
out, the values of (A, B) for the other regions follow 
at once. In this way, a knowledge of the WKB approxi­
mation function in the region I is sufficient to deter­
mine it in all the other regions. Furthermore, since 
this region turns out to be within the region RI for 
which the inverse function z(F) is one-valued, the 
error can be properly discussed by the proposed trans­
formation for this particular region and then the error 
is determined, by the continuation property just ex­
plained, for the other regions as well. In this way the 
error W - WI can be estimated by the proposed 
transformation, for the whole region R I , even though 
z(F) may not be one-valued therein. 

Hence, making the desired transformation of the 
independent variable in (14) from z to F and 
understanding that all analysis based thereon shall, 
in the first place, be restricted to regions where z(F) 
is one-valued, we have 

Q(±)(F) = 1 ± ~ JF[1 _ e±2iCT-F)] 

x Q(±)(T)[fWriUfWri}" d" (15) 

where F is written for F(z), T is written for F(O, but 
the primes still refer to differentiation with respect to ,. 

Before using this equation to obtain information 
about the error of the WKB approximation, it will be 
very useful to recapitulate briefly some relevant theory 
concerning the standard Volterra linear integral 
equation. This may be written as 

cp(x) = f(x) + A f' K(x, ~)cpm d~ (16) 

and we suppose that K(x, ~) andf(x) are continuous. 
The process of successive approximation (iteration) 

applied to the standard equation (16) gives the series 

Sex) = f(x) + A f' K(x, ~)fm d~ + J/mKm(x), 

(17) 
where 

Km(x) = f' f 1i h 
.. ·igm

-
1K

(X, ~I) 
X K(~I' ~2)'" K(~m-l' ~m),f(~m) d~l d~2'" d~m' 

(17') 

Writing M, M', respectively,. for the maximum 
moduli of K(x, ~) andf(x) in the range, the modulus 

of the general term of the series does not exceed 
IAlm MrnM' Ix - aim, and so the series converges uni­
formly when 

(18) 

The sum function Sex) defined by it is then a con­
tinuous function of x, and it is easy to verify, by actual 
substitution, that it satisfies the integral equation (16). 

For the application to (14), f(x) == I, A = 1 and, 
by (17), the error in approximating the solution of 
(16) by Sex) == 1, i.e., Sex) - 1, satisfies the condition 

IS(x) _ 11 < Mix - al (19) 
1 - Mix - al 

So the relative error in using the corresponding WKB 
forms of the exact solutions Uc±,(z) is summarized for 
these two cases by 

In () _ 11 Mc±)(z) IF(z)1 
uC±) z < , 

1 - MC±)(z) IF(z)1 
(20) 

where M(z) is now the maximum modulus of 

HI - e±2;(T-F)]{fCm-i {[f(m-i }" (20') 

upon the path of integration joining T = 0, , = Zo, to 
T= F" = z. 

B. The Behavior of the WKB Expression in 
the Region 14 

As already mentioned, we are usually concerned in 
applications with the problem of approximating a 
solution of (1) by this method in a ring-shaped region 
R where fez) ¥: 0 surrounding an isolated, simple 
zero of this function. Now, an arbitrary change in the 
lower limit Zo of the integral (7') defining F(z) only 
alters its value by a constant and so only changes the 
WKB functionsf-i exp (±iF) by constant multipliers 
[which can thereupon be absorbed in the arbitrary 
constants A, B of the general WKB function WI (z) of 
(9')]. 

Therefore, we say, without loss of generality, take 

(21) 

where c is an isolated simple zero of f(z) , provided, of 
course, that fez) is made one-valued by means of a _ 
suitable cut extending from the branch point c. The 
cut we have made (see Fig. 1) separates the region I 
(0 ~ arg F ~ 7T/2) from the region IV (57T/2 ~ 
arg F ~ 37T); on the region I side of it, arg F = 0 and 
on the region IV side, arg F = 37T. Also, argf in­
creases by 27T in making a counterclockwise circuit 

• The case Z -- +00, often important in applications, will be found 
to be a special case of HZ --.. 00 in region I." 
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around z = c from a point on the region I side of this 
cut to the corresponding point on the region IV side. 

The definition (21) for F(z) is the most convenient 
for analytical purposes and is therefore the one we 
adopt. Note carefully, however, that we may not 
alter the arbitrary constant Zo to a zero c of fez) in the 
integral term of integral equation (9), nor in the 
corres?ond~n~ integral terms of the equations leading 
up to It. ThiS IS because of the singularity which occurs 
in these integrands at such zeros. 

The region I can be mapped out by curves starting 
from the branch point c along which arg F = k, where 
k is a constant for which 0 ~ k ~ 71'/2. These curves 
do not intersect after leaving the branch point z = c 
and, if s denotes arc length measured from this point 
along one of them, 

[fez)]! = F'(z) = e(k-8)i(d/ds) IF(z)l, (22) 

where () is the angle made with Ox by the tangent to the 
curve at "z." 

Since!(z) :;i: 0 (except at c), d IF(z)l/ds :;i: 0 (except 
at c). Smce F(c) = 0 and, necessarily, IF(z) 1 ~ 0, it 
follows5 that 

d IF(z)l/ds > 0 (23) 
along a k curve. 

Hence, IF(z) 1 is monotonically increasing along a 
k curve and so tends to a limit or to + 00. To see 
whic~ P?ssibility is correct, we remark that in physical 
applicatIOns we are most concerned with solutions of 
(1) which exhibit oscillatory (wavelike) behavior as 
z ~ + 00. Assuming for the present that we can secure 
sufficient conditions for the validity of the WKB 
approximations in region I sufficiently far from z = c, 
we have to have z ~ + 00 implying that Re F(z) ~ 
+ 00 with 1m F(z) > 0 and bounded. Note that this 
makes the positive real axis asymptotic (from the 
region I side) to the cut arg F = (0,371'). 

Thus the possibility that F(z) tends to a limit as 
s ~ ~ along ~ .k curve is eliminated. The simplest 
suffiCient condition on f(z) to secure6 this is that 
fez) -j--7 0 as z ~ 00 in region I; and we assume that 
fez) satisfies this condition. 

To su~marize, if fez) is analytic at, and in a region 
of suffiCient extent around, a simple zero z = c and if 
fez) -j--7 0 as 2 ~ 00 in the region defined by 

• .Since .d IF(z)l/ds is a continuous function of s which never 
vall1s~es, It must necessarily either be always positive or always 
negative. 

• This is true because the limit possibility would imply d iF(z)l/ds ~ 
o as s ~ OCJ along a k c~rv:e; i.e., by (22), that fez) ~ 0 as s ....... OCJ 
along a k curve, contradlctmg the hypothesis made on fez). 

then 
1 F(z) 1 ~ 00 as z ~ 00 

in this region, and (in general) f-i eiF becomes expo­
nentially small while f-ie- iF becomes exponentially 
large. The case z ~ + 00 is an important subcase of 
this, and for it, 1m F remains bounded while Re F ~ 
+ 00. The WKB forms are, in that case, oscillatory. 

We are now in a position to examine the validity of 
the WKB approximation in region 1. 

C. Examination of the WKB Approximation in 
the Region I 

T~e general. WKB form, corresponding to any 
particular solution W(z) of (1), is W1(z), where W1(z) 
is as given by (9'). We write, therefore, 

W(z) = O(z)W1(z), (24) 

so that.O(z) - I is the relative error incurred in using 
W1(z) mstead of W(z). Then we are interested in all 
the circumstances under which O(z) - I can be small. 

Substituting in (9) to obtain the integral equation 
for O(z) and then changing the independent variable 
:rom z to F [valid where the inverse function to F(z) 
IS one-valued], we have 

O(F) = 1 - fF sin (F _ T) Ae
iT + Be-~T 

Fo Ae'F + Be-,F 

X O(T){J(m-i[{J(m-t ]" dT. (25) 

As mentioned already, this equation is valid in 
region I because the inverse function to F(z) has the 
nece.ssary one-valuedness there. The path of inte­
gratIOn must not, however, include ,= c (T = 0) 
owing tof(c) = O. 

Case 1: z -- oo,lm F -- 00: Certainly, we may here 
take 1m F(zo) < 1m F(z), IF(zo) 1 < IF(z)l, and it is 
easy to construct a path of integration for the above 
integral whereon 1m T is steadily increasing. 
. For, on a given k curve, arg T = k, ITI continually 
mcreases from 0 to + 00 as we move out on it from the 
branch point c; hence, so does 1m T (= ITI sin k). 
Thus .Im T = 1m Fo for exactly one point, X(k) say, 
of thIS k curve. As k is varied from arg F(zo) to 
ar~ F(z), X(k) goes from Zo to the corresponding single 
pomt X{arg F(z)} upon the k curve arg TW = 
arg F(z) through' = z. ' 

We now take the map of the path of integration for 
(25) on the , plane as follows: from , = Zo along 
curve 1m T = 1m Fo to its single intersection with k 
curve arg T = arg F; thence along this k curve up to 
, = z (T = F). The corresponding path in the T plane 
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is, of course, the two straight line segments 1m T = 
1m Fo, arg T = arg F, which join T = Fo to T = F. 
For the present case, 

(26) 

and, in particular, 

(27) 
so that 

. (F T) Ae
iT + Be-iT i [I 2i(F-T)] (28) SIn - . , . c::::: - - e . 

Ae'Ji + Be-,F 2 

On the part of the integration path for which 
1m T = 1m Fo• le2i(F-T) I = e- 2Im(P-Pu) and is thus 
exponentially small. On the final part (where arg T = 
arg F), e2i(F-T) is small except near T = F, where it 
approximates to unity. Then, however, the right of 
(28) is OCT - F),giving a contribution to the integral 
in question from this last-mentioned part OCT - F)2. 

Hence we shall take' 

I 
sin (F - T) Ae

iT + Be-iT I : 1 (29) 
Ae'F + Be-,F 2 

in integral (25) for the case at present under study. 
Hence, for the application of the theory of the 

Volterra integral equation-summarized from (16) to 
(19)-to the integral equation (25): 

M < £/8, (30) 
where 

£ = max (I" _ ~f'2). 
f2 4 P (31) 

Application of (20) then shows that the relative 
error O(z) - 1 in using the WKB approximation 
satisfies the inequality 

d 
IO(z) - 11 < -- , (32) 

8-d 

where I is the length of the integration path in (25) 
and the bound in (30) is taken for that path. But 
o :::;; arg T:::;; TT/2 for the integration path, since, by 
hypothesis, this is in region I and IFol < IFI; hence, 
I < 1F01 + IFI < 2 IFI· 

Hence, (32) becomes 

IO(z) - 11 < £ IFI/(4 - £ IFI). (33) 

For this to be small, say < N-t, through a subregion 
S, say, of region I, we must have, for z in S, 

4 1 £<---. 
N + 11FI 

(34) 

, The modulus of the left of (28) is actually less than unity for the 
whole path of integration. This property will be used in the dis­
cussion of the next case, namely, z -.. + co, 1m F bounded. 

Sincef' andf" are independent functions of z, it is 
desirable to have a sufficiency condition on each of 
these functions separately. Obviously that condition 
will be 

{I f''lll'l 4[ 1 J1-max f' fi } < 3 (N + 1) IFI ' (35) 

for the number on the right is the largest possible 
common upper bound for the two functions on the left 
to guarantee satisfaction of the condition (34). 

The condition (35) certainly fails sufficiently close 
to the zero c off, since f is then O(z - c) while F is 
O(z - C)~. If we go far enough away from the zero, 
we have already seen that IFI becomes as large as we 
please and so there is a possibility of the condition 
failing again then. 

However, if f is sufficiently slowly varying in a 
neighborhood of c we can guarantee the existence of 
an annular region around e where (35) will be satisfied. 

Let K(N) be the upper bound of values of z - e for 
which 

f(z) : (z - c)!'(c), 

/'(z) : f'(e), 

f"(z) : f"(c) 

(36) 

are good approximations with relative error less than 
N-l. Take z - e < K(N). 

Now, from the Taylor expansion of f'(z) about 
z = c, it is easy to see that, necessarily, Iz - el < 
IJ'(c)f["(e)l. For if not, Iz - cl > K(N). Therefore, 
(35) then becomes 

I~~ 1< t[(N +11) IFlr, (37) 

which by (36) requires that 

K(N) > Iz - cl > [l(N + 1)]f 1f'(e)I-I, (38) 

which gives a lower bound on F, so that 

IFI > i(N + 1) (39) 

and then (37) is equivalent to 

I 1'1 8 
fi > 3(N + 1)' 

(40) 

This shows that, when the WKB approximation is a 
reasonable one (N) 5, say) the ratio between the 
fundamental WKB forms exp (-2iF) can become 
quite large, since by (39) 2 IFI > HN + 1) for all 
Iz - cl > a(N + 1)}f 1f'(c)I-I. This property will be 
used in the next section to obtain continuation rela­
tions connecting the WKB approximations to a given 
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solution of (1) in the various "Stokes" regions I, II, 
III, and IV already noted, which surround the zero 
z = c. 

If 
K(N) < [I(N + I)]f 1f'(c)l-l, (41) 

validity of the WKB method can only be guaranteed 
at points (if any such exist) which satisfy simultane­
ously the conditions Iz - cl > K(N) and (35). Note 
that a necessary (but not sufficient) condition for 
the existence of annulus (38) is 

1f'(c)li/If"(c)1 > [i(N + I)]f. (42) 

Case 2: z -+ 00, 1m F Bounded: Here the forms 
/-i exp (± iF) are of the same order of magnitude so we 
may estimate the relative error involved in using 
either. 

For instance, the ratio n of the solution of (1) 
corresponding to /-i exp (-iF), to this form itself is 
given as a special case of (24) by taking A = ° and, 
hence, satisfies the equation 

n(F) = 1 _ ~ {F[1 _ e2i(F-Tl] 

2 JFo 
x n(T)[f(m-i{[fWri }" dT. (43) 

Using the same path of integration as before, we 
have thereon 

11 - e2i<F-Tl I ~ 2, (44) 

so that now, following through the same steps as be­
fore, 

In(z) - 11 ~ d/(4 - d), (45) 

where E is as defined before, and I is the length of the 
integration path. But as arg F and arg Fo are in this 
case both small, then I : IFI - 1F01 < IFI. 

Hence, we obtain exactly the same upper bound for 
In(z) - 11 as before [see (33)] and, therefore, exactly 
the same sufficiency condition. 

3. THE CONNECTION FORMULAS 

If fez) has zeros, we may, by means of suitable cuts 
starting from these zeros, make (f)l and F one-valued. 

In order to see how a cut is to be made, note that, 
e.g., near the zero c of/(z), we have 

F(z) : HJ'(c)}l(z - c)i (46) 

and so the condition that arg (z - c) is not to increase 
by 27T implies that al'g F must not increase by 37T. 

We define the cut C from z = c by requiring that, 
sufficiently near c, 

-1 arg f'(c) < arg z < 27T - i arg f'(c), (47) 

in order to have, for convenience, the values of arg F 

on each side of the cut, independent of argf'(c). We 
then have arg F = ° on one side of the cut and arg F = 
37T upon the other. 

The cut C is shown in Fig. 1 by a thickened curve. 
In Fig. 1, the continuous lines indicate where F 

is purely real and the dotted ones where F is purely 
imaginary. The arguments of F on these curves are 
marked; also the symbols "±i" against the curves 
mean that, thereon, Re F = 0, 1m F ~ 0, respectively; 
while the symbols "±" mean that, on these curves, 
1m F = 0, Re F ~ 0, respectively. 

The dotted lines, upon which F is pure imaginary, 
divide the z plane round c into regions I, II, III, and 
IV, defined by 

region I: ° < arg F < 7T/2, 
region II: 7T/2 < arg F < 37T/2, 
region Ill: 37T/2 < arg F < 57T/2, 
region IV: 57T/2 < arg F < 3?T. 

(48) 

These dotted lines are examples of what are some­
times called "Stokes lines," and it will be found that the 
constants A, B in the WKB approximation (9') to a 
given solution W(z) of (1) are different for these 
different regions, and so can be regarded as changing 
discontinuously as we cross a "Stokes line." The 
phenomenon is caused by the fact that a function 
completely analytic through R [i.e., the solution W(z) 
of (1)] is being represented by a function formula 
having a line singularity through R, namely, the cut 
C across which arg F changes discontinuously. (It is 
often loosely stated that the WKB formula is many­
valued, but this, of course, is not so in view of the 
cut.) 

Let AI' Bl ; A 2 , B2 ; Aa, Ba; and A4, B4 denote the 
values of the constants in the WKB approximation 
(9') to a given solution W(z) of (1), in the regions I, 
II, III, and IV, respectively. Then we have to 
express (A2' B2), (Aa, Ba), and (A4' B4) in terms of 
(AI' Bl ), and we proceed to derive the formulas which 
effect this. 

Let u(z) be that solution whose WKB approximation 
in region II is f-ieiF , and v(z) the solution whose 
approximation in II is f-ie- iF. 

Then u and v are independentS solutions of (1). 
Therefore, any other solution of this equation is a 
linear combination of u and v, and so, in particular, 
are those solutions whose WKB approximations in 
region I are f-ieiF , f-ie-w. 

Hence, constants AI, ~l' 1'1' 111 exist such that 

AlU(Z) + ~lV(Z) "" f-ieiF, . . I 
1'1U(Z) + 111V(Z) "" f-ie-iF, In regIOn. (49) 

8 For, by (9), u = kv implies elF = ke-'F • 
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Now by hypothesis, the expressions 

f-t(A 2e
iF + B2e-iF), in region II, 

and 
(50) 

f-!(AleiF + Ble-iF), in region I, (51) 

are the WKB approximations to the same solution of 
(1) in the regions quoted. But (50) is the approxima­
tion, in region II, of the exact solution A 2u(z) + 
B2v(z) while, from (49), (51) is the approximation, in 
region I, of 

AI[AIU(Z) + AIV(Z)] + BlLulu(z) + .uIV(Z)], 

Hence, 

AI[AIU(Z) + AIV(Z)] + BI[,uIU(Z) + .uIV(Z)] 
= A2u(z) + B2v(z), (52) 

so that, since U and v are fundamental solutions of (1), 
we have, equating coefficients 

A2 = AlAI + ,uIBI , 

B2 = AlAI + .uIBI' (53) 

[If (53) were not true, (52) would imply u/v = const.] 
Clearly, the A'S and ,u's are independent of the A's 

and B's because they were defined in the above argu­
ment before the latter constants were introduced. 

Similarly we can prove that each constant in any 
given region is linearly dependent on the pair for any 
other. 

The Determination of the Constants in the Connection 
Relations 

Consider the transition across the first Stokes line 
(the I-II boundary line, arg F = tl7) at distances 
sufficiently far from the zero Z = c of/(z) to be in the 
region of validity for these WKB approximations, and 
also sufficiently far from c to make IFI » 1. 

Then, le-iFI is very large upon this line and leiFI very 
small; therefore, from continuity considerations 
across this boundary between regions I and II, 

B2 = BI 

while, by the preceding section, 

A2 = AlAI + ,uIBI , 

where Al and ,ul are independent of Al and BI . 

(54) 

(55) 

Similarly, for a transition across the second Stokes 
line (the region II-III boundary, arg F = 317/2), we 
have 

As = A 2 , 

Bs = A2A2 + ,u2B2, (56) 

where A2, ,u2 are independent of A2 and B2 and S09 

independent of Al and BI . 

9 For we have B3 = AoAIAI + ({to + A.{tI)BI and we know, by the 
preceding section, that .1. • .1.1 ; ({to + Ao{tl) will be independent of Al 
and B I • But Al and {tl were independent of Al and BI • Hence, so are 
A. and {t •• 

Similarly, for the transition across the third Stokes 
line (region III-IV boundary, arg F = 517/2), we have 

B4 = Bs 

and, by the preceding section, 

A4 = AlAs + ,uIBs , 

(57) 

(58) 

the constants here being the same as in the corre­
sponding formula (55) above for the region I-II 
transition because the circumstances of the (III-IV) 
transition for the small exponential near this boundary 
are identical with those of the (I -II) transition for the 
small exponential at this boundary. (The difference 
between arg F at the two boundaries is 217.) 

Lastly, by continuity considerations for the exact 
solution being represented by these WKB forms for 
a transition across the cut C at distances from c suffi­
cient to make IFI » 1 and to justify their use, and on 
considering a point Z = ;, say, just upon the region 
I side of the cut, we have 

[f(;)r![AleiF(~) + Ble-iFWj 

= -i[f(m-![A4e-iF(g) + B4eiF(~)J, (59) 

since (as can be seen by considering the form of the 
functions near Z = c) arg / increases by 217 and arg F 
by 317 when z encircles the branch point c in the positive 
sense once, starting from the point ; and ending up 
at the contiguous point just the other side of the cut. 

Hence, by (59), 
-iA4 = BI , 

-iB4 = AI' (60) 

These equations give 

Al = w, ,ul = i/w, 

A2 = i/w, ,u2 = w, (61) 

where w is one of the three cube roots of unity. 
The only way the author could see of deciding which 

value of w was the correct one for the WKB repre­
sentation problem was to compare the above theory 
for the solution of (1) with a differential equation 
whose solutions are well known. The details appear in 
the author's forthcoming book,2 and the result is 
that we must take w = 1 in the above. 

4. CONNECTION OF THE WKB APPROXIMA­
TION WITH THE SERIES APPROXIMATION 

VALID SUFFICIENTLY NEAR 
A ZERO OF fez) 

The requirements to be satisfied to ensure that the 
regions of validity of the two types of approximation 
should overlap (or at least adjoin) are rather involved.2 
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However, a necessary condition is that f"(c) be 
small enough to make 

/I~/! > max {N [~(N + I)J3; N [~(N + I)J*}. 
I/~I 40 8 24 8 

(62) 

When this situation exists, it appears2 that one 
formula can be used to approximate W(z) within the 
entire circle surrounding z = c which just contains 
the annulus (38) (wherein the WKB type forms are 
valid). 

This single formula is 

! 
W(z) : (L) [f'(c)]t(z - c)! 

x (AliiU/12H}1){Hf'(c)]~(z - c)!} 

+ B1e-<5ilT/12)H}2){Hj'(c)]!(z - c)~}). (63) 

An improved form of (63), which approximates to 
the given solution W(z) of (1) better when z is too far 
from c for a linear approximation to fez) to be of any 
use (i.e., when z is outside the above-mentioned circle), 
has been suggested by LangerlO and has been further 
refined by the present author,u It is 

(F/F')![AIHll'(F) + BIH}2'(F)], (64) 

where F(z) is as we have defined it. 
This approximation will be found to satisfy the 

equation 

W" + (Q2 + 2 Q2 _ ~ Q,2 + ! Q") W = 0 (65) 
36 F2 4 Q2 2 Q ' 

where 
Q = [fez)]!. (65') 

APPENDIX A: ON THE REQUIREMENTS FOR 
THE ONE-VALUEDNESS OF THE INVERSE 

FUNCTION TO F(z) 

Let R be the radius of the largest circle that can be 
drawn round the zero z = c of fez) without enclosing 
any singularities, or other zeros, off 

Then, from consideration of the Taylor expansion 
of f, we see that, provided the elementary function 
(z - c)t is made one-valued by a cut drawn from c 
and extending to 00, ft can be expanded in the 
following form: 

It = {j1(C)}t(z - C)t{1 + ~lanCz - ct }, (AI) 

and the power series is convergent in Iz - cl < R. 
This being a Taylor series (AI) therefore defines /t 
inside the cut circle. 

10 R. E. Langer, Phys. Rev. 51, 669 (1937). 
11 F. H. Northover, Can. J. Phys. 33, 241 (1955). 

Integrating (AI) term by term, which is valid in 
view of the uniformity of convergence of the series 
inside its circle of convergence, we have an expression 
for F(z) which can be written in the form 

the power series converging inside the same circle; 
and (A2) then defines F(z) as a one-valued function 
inside the same cut circle, analytic therein except on 
the cut and at the branch point c. 

We have, in the paper, chosen this cut so that 
arg F = 0 on one side of it and arg F = 317 on the 
other. In this cut plane, 0 < arg F < 317. 

We show that the subregion Rl of Iz - cl < R, 
wherein the inverse z(F) of F(z) is one-valued, is 
defined by the condition 0 < arg F < 217 and so 
comprises the regions I, II, and part of III. 

This is obvious enough for z sufficiently near c, since 
there F is also arbitrarily small and 

z - c : (i)i[j'(c)]-tFi, (A3) 

and the only way to secure the one-valued ness of 
Fi is to prevent arg F increasing or decreasing by 217 
or more. This, of course, is accomplished by making 
a cut in the F plane from the branch point F = 0, and, 
bearing in mind that the cut plane must include the 
desired reference region I of the text (for which 
o < arg F < 17/2), we see that the cut must be made 
(as in the usual way for such a function) along the 
positive real Faxis ; we have then, in this cut plane, 
o < arg F < 217. 

Turning now to the general case, recall that F(z) is 
given by (A2) with z in the cut interior of the circle 
Iz - cl < R, the cut being made by a curve drawn 
from c. In this cut region 0 < arg F < 317; on the cut 
arg F = 0 on one side and arg F = 317 upon the other. 

Since 
00 

1 + I bn(z - ct 
n=l 

has, by the hypothesis onf(z), no zeros in /z - cl < R 
and is analytic in this circle, 

can be developed into the Taylor series 

00 

1 + I Bn(z - c)n, 
n=l 

and the radius of convergence of this last series is 
also R. 
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For brevity writing 

A = (!)f[f'(c)]-l, 

we find that (A2) becomes 

Z - c = AA[1 + !Bn(z - c)n], 
n=l 

where 
A =Fi. 

(A4) 

(A5) 

(A6) 

In (A5), Z is in the interior of the circle Iz - cl = R, 
cut as described (so that therein 0 < arg F < 31T). 

Now, throughout the circle Iz - cl < R, the 
inverse function to A, z(A) exists. For N(z) = 
iF-fft :F O. 

But (AS) can be formally satisfied by 

Z - c = AA( 1 + n~lCnAn), (A7) 

the coefficients Cn of the Taylor series in (7 A) being 
uniquely determined (in succession) by 

C1 = BIA, 

C2 = B1AC1 + B2A2, 

Ca = B1AC2 + 2B2A2C1 + BaAs, (A8) 

the formal manipulations involved (multiplying series 
by themselves, equating coefficients, etc.) being justi­
fied within the radii of convergence of the power series 
involved. 

As just pointed out, we know that the inverse 
function z(A) exists for Iz - cl < R. Since by (A 7) it 
is representable by a Taylor series, it must, therefore, 
be a unique function of A, analytic within the circle 

of convergence of that Taylor series. The radius of 
convergence of this series for z(A) will have to be K, 
where K is the least upper bound of the set of positive 
numbers k for which the inequality 

IAI k 11 + ~lcnkneni91 < R (A9) 

is true for all () in 0 < () < 27T. 
Thus the inverse of A(z), namely z(A), is a one­

valued, analytic function of A for IAI < k, 0 ~ A ~ 
217, and therefore, in particular, it has this property 
in the sector IAI < k, 0 < arg A <%/3. But, by 
(A6), the points of this sector are in (1, 1) correspond­
ence with the set of values of F for which IFI < Kt, 
o < arg F < 27T. Hence, z - c must be a one-valued 
function of F for values of F for which IFI < Kt, 
0< arg F < 217, i.e., for values of z for which 
0< arg F < 217, Iz - cl < R (for IFI < Kt implies 
IAI < K which implies Iz - cl < R), where R is 
the radius of the greatest circle round the zero c of 
fez) containing no other zeros or singularities off 

APPENDIX B: CRITICISMS OF PREVIOUS 
DERIVATIONS OF THE WKB CONNECTION 

FORMULAS 

It appears that previous analysis is open to criticism 
on two counts: 

(i) It is assumed without proof that the relation 
between the constants in the connection formulas for 
two different "Stokes regions" has necessarily to be 
linear. 

(ii) The fact that there are three solutions to the 
equations giving the coefficients in the linear con­
nection relations appears to have been overlooked­
and so also the consequent necessity of giving reasons 
why two of these solutions should be rejected. 
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A set of linear inequalities for the reduced two-body density matrix ~s pre~ented. !~e general problem 
of finding all such inequalities is discussed. It is shown that all of the hnear mequahtIes found so far for 
ensemble representability may be written as a single family of inequalities. 

INTRODUCTION 

It is well known1 that the average energy of any 
system involving only one- and two-body forces 
may be expressed in terms of the two-body reduced 
density matrix r defined by 

r(1, 2; 1',2') = N(N - 1) f 0/(1,2,3, ... , N) 

X 'Y*(1', 2', 3, ... ,N) dXa ' .. dX1\" (1) 

Thus, if 
N N 

H = ho + I h1(i) + I h2(i, j), (2) 
i=l i*i 

where ho, hI , and h2 are zero-, one-, and two-particle 
operators, respectively, H may be rewritten as 

N 

H = L g(i,j), (3) 
i*j 

where 

g(i,j) = N-l(N - I)-lho 

+ 2-1(N - l)-l[hl(i) + h1(j)] + h2(i,j). (4) 

The operator g is then called the reduced two-body 
Hamiltonian to H. The average energy E is then given 
by 

E =f[g(l, 2)r(1, 2; 1',2')]1'=1 dX1 dX 2 , (5) 
2'=2 

which is more usually written as 

E = Tr (gr). (6) 

This equation for E only holds provided 'I'" is totally 
symmetric (bosons) or totally antisymmetric (fer­
mions). 

Similarly, if H involves only one-body forces, H 
may be written as 

N 

H = Ih(i), (7) 
i=l 

(8) 

the one-body reduced density y, defined by 

y(1 ; I') = N Jo/(1, 2, ... , N) 

X 0/*(1',2, ... ,N) dX2 ' •• dXN , (9) 

E = Tr (hy) == f [h(1)y(l; 1')]1'=1 dX1 • 

as 
(10) 

In addition to these formulas for a single system, 
formulas for the average energy (per system of N 
particles) in an ensemble are easily obtained. If the 
set {o/i} of orthonormal functions are the possible 
states of the system and if Wi (Wi ~ 0, Li Wi = 1) 
is the probability in the ensemble of finding the system 
in state 'Y i' then 

r = LWiri , 

y = LWiYi, 

(11) 

(12) 

where r i and Yi are the reduced densities for o/i' 
and Eq. (6) or Eq. (10) still holds for the energy. 
Further, if the ensemble consists of systems with 
varying numbers of particles so the set {o/i} includes 
states of various N, Eqs. (11) and (12) are still valid, 
but - r ( ) E = ho + Tr (hlY) + Tr (h2 ) 13 

must be used to obtain E. 
It would be very nice if the average energy formulas 

could be used by making direct guesses to r (or y) 
without reference to any wavefunction. In order to 
obtain sensible results in such a procedure, it is 
necessary that the guessed r be derivable, in the 
manner indicated above, from wavefunctions. This 
problem of determining the boundary conditions on 
r is called the representability problem. If r is to 
correspond to one 'Y, the boundary conditions are the 
pure-state N-representability conditions. If r corre­
sponds to an ensemble, the conditions should either 
be the ensemble N-representability condition or just 
the ensemble representability conditions. 

The average energy may then be expressed in terms of 
Many such conditions are known. From its defini­

tion, r is obviously a positive Hermitian kernel. 
Further 

.. Alfred P. Sloan Research Fellow. 
1 P.-O. Lowdin, Phys. Rev. 97, 1474 (1955). r(1,2; 1',2') = ±r(2, 1; 1',2'), (14) 

72S 



                                                                                                                                    

726 ERNEST R. DAVIDSON 

where + is used for bosons and - for fermions. In 
addition, an upper bound on the eigenvalues of r is 
known for the pure-state case.2 There are also the so­
called G-matrix conditions, a Q-matrix conditions,a 
and the Weinhold inequalities.4 

For the purpose of doing calculations on the 
ground state of a molecule, it is only necessary to find 
the conditions on r such that Eq. (6) will give an 
upper bound to the ground-state fermion energy of the 
Schrodinger equation. This problem has not been 
solved, and the conditions presented in this paper are 
undoubtedly stronger than necessary to guarantee 
"variational stability." Variational stability will be 
used in this context to mean that Eq. (6) or (13) gives a 
permitted energy of the system. 

Clearly a necessary set of representability conditions 
on r is that 

(15) 

where Emin and Emax are the minimum and maximum 
eigenvalues of H. The whole set of these variational 
stability inequalities for all H provides a solution to the 
representability problem.a•5 It is hoped, however, that 
a subset of them would suffice for the Schrodinger 
Hamiltonian Hs' 

I. CONDITIONS ON THE I-MATRIX 

Suppose H is of the form of Eq. (7). Then, if 
{CPi}~~l are the eigenfunctions of h with eigenvalues 
f-li (f-li :::;; f-lHl) in a truncated space of dimension r, 

r 

h = L f-li !CPi)(CPi!' 
i~l 

The eigenvalues of H are now 
N 

E(i1.···' iN} = L f-liJ' 
i~l 

with wavefunctions 

Hence, 

and 

'¥ = det !CPiJI), ... , CPi/N )!. 

r 

Emax = L f-li 
i~r-N+l 

N 

Emin = Lf-li' 
i=l 

(16) 

(17) 

(18) 

(19) 

(20) 

then 
r 

E=LAif-li' (22) 
i~l 

The fermion conditions on yare now easily obtained 
if Eq. (15) is to hold for every choice of the CPi and f-li' 
First, E must be real, so the Ai must be real for every 
CPi' Hence y must be a Hermitian kernel. Now if 
f-lr = 1 and f-li = 0, i < r, then 

(23) 

must hold for every CPr' Hence the eigenvalues of y 
must all lie between zero and one. Further, if all 
f-li = 1, then 

r 

N:::;; LAi:::;; N, 
i~l 

so 
r 

Tr (y) = L Ai = N. (24) 
i~l 

These conditions will now be shown to be sufficient: 

r N N r 

Lf-liAi = Lf-li - Lf-li(1 - Ai) + L f-liAi; 
i~l i~l i~l i> N 

but by Eqs. (23) and (24), (1 - Ai) and Ai are positive, 
so 

r N r 

Lf-liAi ~ Emin - f-lN L (1 - Ai) + f-lN+l L Ai' 
i~l i~l i>N 

But by Eq. (24), 

N r 

L (1 - Ai) = L Ai = ~ ~ 0, 
i~l i>N 

so 
r 

L {-liAi ~ Emin + (f-lN+l - f-lN)~ ~ Emin · 
i=l 

A similar proof holds for the upper bound, so Eqs. 
(23) and (24) are sufficient for fermion-ensemble 
N-representability. 

For an ensemble with variable N, Eq. (23) is still 
true, and Eq. (24) becomes 

since 

0:::;; Tr (y) :::;; r, 

r 

Emax = max L f-li 
(N) i~r-N+l 

(25) 

If and 

Ai = (CPi! Y !CPi) == J CPt(1)y(1; l')cp;(I') dX1 dX~, (21) 

2 F. Sasaki, Phys. Rev. 138, 1338 (1965). 
3 C. Garrod and J. K. Percus, J. Math. Phys. 5, 1756 (1964). 
'F. Weinhold and E. B. Wilson, Jr., J. Chern. Phys. 47, 2298 

(1967). 
5 H. Kummer, J. Math. Phys. 8, 2063 (1967). 

N 

Emin = min Lf-li' 
(N) i~l 

These conditions are sufficient for ensemble repre­
sentability. The general conditions for pure-state 
N-representability may not be derived in this manner 
and are still unknown. 
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For bosons, 

and 

so the ensemble N-representability conditions are 

o :::;; Ai :::;; N (26) 

and 
r 

Tr(y) = LAi = N. (27) 
i=1 

For variable N, Eqs. (26) and (27) should be replaced 
by 

0:::;; Tr (y) :::;; 00, 

o :::;; Ai :::;; 00, 

since there is no upper bound to the number of 
bosons which may occupy a one-particle state. 

These conditions on yare, of course, not new6 and 
are merely presented here as an illustration of the 
results obtainable from Eq. (15). The simplicity of 
these results is in direct contrast with the complexity 
of the results obtained in the next section for the 2-
matrix. 

II. CONDITIONS ON THE 2-MATRIX 

A. General Considerations for Ensemble 
N-Representability 

Let us consider operators H of the form of Eq. (2) 
on a finite linear vector space :It. Then every H, 
except multiples of the identity, may be mapped by a 
transformation into a new operator H' which has 
E:"ax = d and E:"in = E. Thus, if 

H' = ~(H - (31), 

where ~ and (3 are real numbers and ~ > 0, the 
choice 

p = Emax - ~-ld, (28) 

~ = (d - E)j(Emax - Emin) > 0 (29) 

gives the correct H'. Further, if r is correctly normal­
ized so that 

Tr (r) = N(N - 1), 

the inequality (15) is equivalent to 

E:::;; £1:::;; d. 

This may be seen from the fact that 

g' = ~g - ~(3N-l(N - 1)-1 

so 
£' = Tr (g'r) = ~ Tr (gr) - ~(3. 

• A. 1. Coleman, Rev. Mod. Phys. 35, 668 (1963). 

(30) 

(31) 

Equation (31) then becomes 

~-IE + P :::;; Tr (gr) :::;; ~-ld + p. 
But if Eqs. (28) and (29) are solved for Emax and Emin , 

Emax = ~-ld + p, 
Emin = ~-IE + p. 

So Eq. (31) implies Eq. (IS). Thus it is sufficient to use 
Eq. (30) and the inequalities resulting from those H 
with Emax = d and Emin = E. 

Now consider the sets of operators 

~ = {H I Emax = d, Emin = E, H =J,g(i,j)} (32) 

and 

Je = {H I Emax:::;; d, Emin ~ E, H =J,g(i,j)}. (33) 

Since ~ c Je, satisfying Eq. (31) for all elements of Je 
is equivalent to satisfying it for all elements of ~, 
even though for the interior points of Je stronger 
inequalities could be written. But for elements of Je, 
a linear combination H = L XiHi with Xi > 0 and 
Li Xi = 1 satisfies Emax:::;; d and Emin ~ E, so H is 
in Je. Further, if Eq. (31) is satisfied for all the Hi' 
so that 

E :::;; Tr (gir) :::;; d, 
then 

E = LXiE:::;; Tr (gr):::;; LXid = d. 

So Eq. (31) is satisfied for H and is a weaker inequality 
for H than for some of the Hi' Thus Je is a convex set 
and the set ~ is part of its boundary. Among the 
boundary points of Je, there are some, called extreme 
points, which are not linear combinations of any 
others. These provide the strongest inequalities, and 
all other elements of Je (and hence all other inequali­
ties) are linear combinations of these. Hence one 
solution to the representability problem would be to 
find the extreme points of Je. Further, if only calcula­
tions involving a particular Hs were to be done, it 
would be sufficient to know enough of the extreme 
points Ki to allow the expansion of H; (the mapping 
of Hs in ~) in the Ki : 

H; = LXiKi • 

If the inequality (31) were satisfied for just these 
extreme points, £s would necessarily be an allowed 
energy of Hs' Although this argument, strictly 
speaking, holds only for bounded operators, it applies 
to any truncated representation of H. in a finite 
vector space :It for which all matrix elements of Hs 
are bounded. Thus these conditions would be sufficient 
for calculations as they are normally performed. 
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The extreme points of Je are not yet known. Some 
progress can be made, however, by considering for 
each H in Je the sets 

and 
J(,H = {'I'I H'Y = b'Y} 

CH = {'I'I H'Y = e'Y), 

(34) 

(35) 

where the 'I' are elements of the truncated vector 
space :R. Now if H is not an extreme point of Je, it 
may be written as the average of two other members 
of Je, say J and K, 

H = xJ + yK, x > 0, y > 0, x + y = 1. 

But then 

so 
('1'1 H J'Y) = x ('1'1 J 1'1') + y ('1'1 K 1'1'), 

('1'1 H 1'1') = 15 

only if 'I' E J(,J and 'I' E J(,K' Thus 

J(,H = J(,J () J(,K, 

CH = CJ () CK • 

(36) 

(37) 

Further, if for some H, J(,H U CH is empty, then 
H ± d is still in Je for IX sufficiently small and 
H = t(H + d) + i(H - d). Hence if J(,H U CH is 
empty, H is not extreme. Those extrem~ points of 
Je required to express the inequalities in ~ can be seen 
from Eqs. (32), (34), and (35) to have neither J(,H nor 
CH empty. There are some extreme points of Je with 
either J(,H or CH empty, however. For example, by 
Eqs. (36) and (37) it follows that 151 and dare 
extreme points of Je. 

For a different choice of e and 15, a new set 

Je' = {H' I Elllnx ~ 15' and Em1n ~ e'} 

results. If the elements of Je' are mapped into the 
elements of Je by the transformation 

H = IX(H' - PI), 
with 

IX = (15 - e)/W - e') 
and 

P = (e'b - b'e)/(~ - e), 

the linear combinations H' = I XiH; map into 
H = I XiHi for Xi > 0, I Xi = 1, where each H; 
maps into the corresponding Hi' So the inequalities 
in Je' are equivalent to their images in Je, and the 
extreme points of Je' are mapped into extreme points 
of Je. Thus every choice of e and 15 gives an equivalent 
set of extreme points. In order to simplify the proofs, 
it is convenient to choose 15 = - e = 1 so that H 
and - H are both in Je, and - H is extreme if Ii is 

extreme. With this choice, only half of the inequalities 
need be considered since those for Hand - Hare 
identical. Hence, let us specialize to the set 

Je* = {H I Emax ~ 1, Emin ~ - t, H = I g(i,j)}. 
i#<i 

(38) 

With this set CH = J(,_ll and J(,ll = C ll . Also, if 
there is an element H of Je* with J(,ll U Cll empty, 
then IXH is still in H* for some values of IX > 1. 

Now suppose Hand J are elements of Je* with 

J(, II S; J(, J 

and 
CH S; CJ • 

Then, for every 1 ~ e ~ 0, 

p = (1 - e)H + eJEJe*. 

Further, Q = (1 + e)H + e( -J) is in Je* for e > ° 
sufficiently small even though 1 + 2e > 1. This may 
be seen from the fact that 

('1'1 Q 1'1') = 1, 'I' E J(,ll, 

= -1, 'YECH, 

= (1 + e) ('1'1 H 1'1') - e ('1'1 J 1'1'), 

'Y$J(,HUCH · 

But in this last case, ('1'1 Q 1'1') will be less than 1 if 

e < (1 - ('1'1 H 1'1'»/(1 + ('1'1 H 1'1'» 

and greater than -1 if 

e < (1 + ('1'1 H 1'1'»/(1 - ('1'1 H 1'1'». 

Thus if the least value of the right-hand side of these 
inequalities is selected over all 'I' ¢:. J(,H U Cll , an 
e> ° will be found such that Q E Je*. But then 

H= tP+ tQ, 

so H is not an extreme point. 
If for any H in Je* there exists another operator J 

in Je* with 

and 
Cll S; CJ , 

then H is not an extreme point o/Je*. Conversely, by 
Eqs. (36) and (37), if there is no such operator J, then 
H must be extreme. 

It follows at once from this that 1 is the only 
extreme point with C empty and -1 is the only 
extreme point with J(, empty. For any other selection 
of C and J(" there are three possibilities: 

(i) No H of the form of Eq. (2) exists in Je*. In 
this case there are no extreme points H for which 
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C s;; CH and J(, S;; J(,H and some'f" must be dropped 
from C or J(, in order to obtain an extreme point. 

(ii) Exactly one H of the form of Eq. (2) exists in 
Je *. In this case H is an extreme point. 

(iii) Several Hi of the form of Eq. (2) exist in Je*. 
In this case C or J(, is not large enough, since by the 
construction of Q given above it is possible to find an 
operator in Je* for which 

C S;; CQ 

and 
J(, s;; J(, Q ' 

and equality does not hold in both cases. 
Clearly for the case that C u J(, is the whole trun­

cated vector space, there is only one operator H for 
each choice of J(,. If this can be written in the form of 
Eq. (2), it is an extreme point of Je*; if not, there is 
no extreme point of that form. In any case, if the set 
'f"i spans the space J(" the set cpi spans the space C, 
and the set Xi spans the residual of the finite vector 
space :R, it can always be written as 

H = ! I'f"i)('f"il - ! I cpi)( cpil + ! fli1 IXi)(x;l, (39) 
i i ii 

where p. is a Hermitian matrix with eigenvalues less 
than 1 in absolute value. The question, then, is 
whether there is a choice of the fl.; for which H can 
also be written in the form of Eq. (2). It is unfortu­
nately true that the extreme points of Je * depend on the 
truncated vector space :R. From Eq. (39) it is clear 
that an extreme point of Je*(:R) will not generally be 
an extreme point for Je*(:R'). 

All of the above discussion applies equally well to 
the ensemble representability problem for variable N, 
if Eq. (13) is used for the average energy and Emax is 
replaced by max Emax(N) and Emin is replaced by 

CN) 
min Emin(N). In any expression such as H'f" it is to 
(N) 

be understood that H(1, ... , N) is used if'f" involves 
N particles. The space :R would contain wavefunctions 
'f" of various N. 

For the special case of N = 2, the extreme points 
of Je*(:R) may be written by inspection. Consider 
every distinct partitioning of:R into two subspaces J(, 

and C, so that J(, u C = :R. Then, if the 'f".(1, 2) span 
J(, and the cp.(l, 2) span C, 

H = g(1, 2) + g(2, 1), 

g(1,2) = H! I'f".) ('f"il - ! Icpi) (cpil}. 

A complete set of ensemble 2-representability con­
ditions in :R then is 

Tr (f) = 2, 

-2 ~ ! ('f".1 f I'f".) - ! (cpil f Icp.) ~ 2, 
• i 

where 

('f"1 f I'f") = f 'f"*(I, 2)r(1, 2; 1', 2') 

x 'f"(1', 2') dXl dX~ dX2 dX~. 

For a different choice of E and 15, i.e., E = 0, 15 = 1, 
these conditions may be written in the more trans­
parent form ° ::;; ! ('f";1 f I'Fi) ::;; 2, 

i 

which is true provided 

('f"il f I'f"i) ~ 0, for all 'f"i' 
and 

Tr (r) = 2. 

That is,for N = 2, it is necessary and sufficient that r 
be positive-definite and properly normalized. For pure­
state representability, it is obvious that 

I ('f"il f 1'f";)12 = ('f"il f l'f"i)('f";1 f I'f";) , 

which is a much stronger requirement, since it is equiv­
alent to saying f has only one nonzero eigenvalue. 

An alternative convex set may be defined. Every H 
of the form of Eq. (2) can be mapped into the set 

fl = {H I Emin = 0, H =,t;g(i,j)} (40) 

by the mapping used previously. Since the upper 
bound is not specified, the mapping is not unique. 
This set is part of the boundary of the set 

v = {H I Emin ~ 0, H = !g(i,j)}. (41) 
i>#; 

Since every upper-bound condition on H is equivalent 
to a lower-bound condition on - H, it is sufficient to 
consider lower bounds only. Since every condition in 
fl is also in v, the inequalities 

Tr (gf) ~ 0, for HE v, (42) 

contain all the information in Eq. (15) if Tr (f) = 
N(N - 1). The set v is a convex cone since every H 
of the foml 

H = ! XiHi , Xi > 0, and Hi E v 

is also in v (regardless of !i Xi)' Further, if the 
inequalities [Eq. (42)] hold for the H., they hold, 
and are weaker, for H itself. The set v may then be 
characterized by its extreme rays-those operators 
H in v which are not linear combinations of other 
operators in v with positive coefficients, but which are 
arbitrary within a positive multiplicative constant. 

Now consider for each H in v the set WH = 
{'f" I H'f" = O}. From the previous discussion [see 
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Eq. (37)], it is obvious that if J, K E V and H = 
xJ + yK (x,y > 0), then 

(43) 

Further, if WH is empty, H is not extreme in v because 

H = HH + (xl) + t(H - 0:1), 

B. Subclass of Conditions on the 2-Matrix 

Consider a fermion system of N particles: 

N 

H = L g(ij), 
i*i 

where 
r 

g(ij) = LOCk! l4>k(i)cPz(j» (4)k(i)cPz(j)1 
k.! 

(44) 
and H ± ocl is in v for oc sufficiently small. Also if 
Hand J are in v and and 

then H ± d is in v for E > ° and sufficiently small. 
For H - d, it is only necessary to choose 

('1"1 H 1':1") - E (':1"1 J 1':1") > 0, for all 'Y rt W II • 

There is a maximum nonzero choice of E which 
satisfies this equation. But then 

H = HH + d) + t(H - EJ), 

so H is not extreme. 
Iffor any H in v there exists another operator J in v 

with WH S WJ' then H is not on an extreme ray ofv. 
Conversely, by Eq. (43), if there is 110 such operator J, 
then H is extreme. 

Hence, for a given W spanned by the set of functions 
'Y i , the residual of the vector space:lt may be spanned 
by a set Xi and H will have the form 

H = L fiii IXi)(xil, 

where ~ is a positive-definite Hermitian matrix. The 
question, then, is whether this H may also be expres­
sed in the form of Eq. (2) for some choice of ~, and 
if so, is the choice of ~ unique (within a multiplicative 
constant). 

For the special case of N = 2, w may be chosen to 
be the whole space :It orthogonal to one element X. 
Then 

H = g(1, 2) + g(2, 1), 

where 
g = t Ix)(xi 

is on an extreme ray of v with the corresponding 
inequality 

(xl r Ix) > 0. 

Further, by the theorems given above, all extreme rays 
are of this form. Together with the trace condition 

Tr (r) = 2, 

this provides a complete set of conditior.s on r for 
N = 2. It will be noticed that v is more convenient 
in this case than Je* and has fewer extreme rays 
than Je* has extreme points. 

S = {$[ IID[ = (N!)-! det l4>iJl), ... , 4>iN(N)I, 

1 ~ il < i2 ' .. < iN ~ r, I = {i1,' ", iN}). 

Since the identity operator is in this set 
(45) 

r 

g = N-\ N - 1)-1 L l4>k4>/) < 4>k4>d, 
k.! 

all of the previous theorems remain true for this 
subset of operators. But for this simplified form, the 
$[ are the eigenfunctions of H in S with eigenvalues 

(46) 

Hence, the requirement that H be in Je* is simply 

-1 ~ E[ ~ 1, for all I, (47) 

and the requirement that H be in v is just 

E[ ~ 0, for all I. (48) 

Further, this set of operators is not a trivial subset. 
If 

Aii = <4>i4>il r l4>i4>i) 

then 

= f 4>i(I)4>,!(2)r4>i(I')4>l2') dX1 dX; dX2 dX~, 
(49) 

Ai = (N - lr1 L Aii' 
; 

The following examples are of interest (all OCii not 
specified are zero): 

(50) 

(51) 

(52) 

for j = 1, ... , r => ° ~ Ai ~ 1, (53) 

r 

all i,j=>N(N - 1) ~ LAi; ~ N(N - 0 
i.; 

(54) 

(55) 

OCik = -1, k = 1, ... , r, 
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except 

OCi ; = N - 2 ~ Ai} ~ Ai, (56) 

OCik= -l,ock,= -1,k= 1,"',r, 

except 

(57) 

OCip = -1, P = 1, ... , r, 

except 

OCi ; = N - 2 = OCik ' 

OCk; = -(N - 1) ~ Ai} + Aik ~ Ai + Ak ;, (58) 

OCip = oc;,p = OCp,k = -1, p = 1, ... ,r, 
except 

OCik = OC;k = OC;; = N - 3, OC;i = 0, 

~ ° ~ 1 - Ai - A; - Ak + Aik + A;k + Ai;' (59) 

This list includes all of the Weinhold linear inequal­
ities.4 

In fact, the restricted set of H 

Ii = {H I Emax ~ 1, Emin ~ -1, H =J/(i,j), 

g = 2 OCkl l1>k1»<1>dl l}, 
or 

v = {H I Emin ~ 0, H =J/(i,j), 

g = 2 ock! l1>k1>!> < 1>k1>!I}, 

can generate all of the linear inequalities which can be 
expressed using only the Ai;' This follows because 
Tr (gr) would involve other quantities if g had 
nondiagonal terms. If the orbitals 1>i are subjected 
to a unitary transformation 1>i = 2 Uii1>~, then 
similar inequalities must hold for every A;;. Even the 
requirement that all these inequalities hold simul­
taneously for every unitary transformation is not a 
complete set of restrictions, however.s For instance, 
for every extreme ray in v there must be some function 
'I' E wand some other element '1" rt= w (or else g == 0). 
For the extreme points of Je* there must be at least 
one 'I' E J\, and one '1" E r. In either case, specification 
of 'I' and '1" specifies 2ev) - 3 free parameters if 'I' 
and '1" are an orthonormal pair. But if this H corre­
sponding to 'I' and '1" could be written in terms of the 

extreme points of:k or V, it would imply 

'I' = 2 q<l>[, I in J\, (or lEw), 

with 
'1" = 2 C;<I>[, I in I: (or I rt= w), 

But this last form contains only (N) - 2 free coeffi­
cients C;, and (~) free coefficients Ui ;. Hence, in 
general, an element of ~ or I-' is not in any of the sets 

:ie' or v', 
For example, for N = 2, the complete set of 

extreme points of :ie are given by partitioning the 
Slater determinants from S into two sets J\, and L. 
This gives the inequalities 

2 Ai; = 2, 
i, i 

-2 ~ L ai;Ai; ~ 2, 
ij 

where ai ; = (±1)i;' and there are 2" extreme points 
[where z = (~)]. The extreme rays of v give the 
inequalities 

Ai; ~ 0, 

and there are only (;) extreme rays. For every matrix 
W, however, 

there are (;) extreme rays of v, and the total number of 
extreme rays of v is infinite and nondenumerable. 

Now let us deal only with r of the correct fermion 
symmetry, so Ai; = A;i and Aii = 0. In this case it is 
sufficient to consider 

for which 

T 

g(i,j) = LOCk! I 1>k 1> !) (1)k1>zI , 
1.>k 

N 

E[ = 2 OCiki,' 
!>k 

The extreme points of the set Je may then be found by 
finding H such that 

J\, = {Ill = {i1 ,"', iN}, 

.;.\1 

1 ~ il < i2 ... < iN ~ r,'~:OCiki' = 1}, 
!>k 

I: = {Ill = {iI' ... , iN}' 

1 ~ il < i2'" < iN ~ r,focik•i , = -1}. 
!>k 

This leads to the set of linear equations 

iV 

L OCiki , = 1, IE.x" 
!>k 

.\' 

2 OCiki , = -1, lEI:, 
!>k 

and the inequalities 

If OCiki ' I ~ 1, I rt= J(, U L. 
l>k 
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These may be solved by a systematic procedure. 
Since there are (~) variables ocii ' there are only (~) 
linearly independent sums in the set of (k) possible 
sums. If (~) independent sums are picked from the 
(k) possible, and partitioned between J(, and !: in 
every possible way, there results 

sets of equations, each one of which may correspond 
to an extreme point of :ie. If the solution to one of 
these sets of equalities does not satisfy the inequalities, 
there is no extreme point with J(, £; J(,H and!: £; !:H' 

If the inequalities are satisfied, then the solution is an 
extreme point of ie. Since generally J(, c J(,H and 
!: c !:H' many of the sets J(" !: will generate the same 
extreme point. 

The extreme rays of v may be generated in a 
similar manner. The extreme rays satisfy the condi­
tions 

and 

N 

IOCikil = 0, lEw, 
I>k 

N 

IOCikil :2: 0, I i W. 
I>k 

The set of equalities has a unique solution (within an 
arbitrary constant) only if the rank is (~) - 1. Thus, if 
(~) - 1 sums are picked out of the tv) possible, there 
results 

( (~) ) (;)-1 
sets of equations, each one of which may give an 
extreme ray of v. Again, if the solution to one of these 
systems of equalities does not satisfy the inequalities, 
there is no extreme point of v with W £; WHo If all 
the inequalities are satisfied, then the solution is an 
extreme ray of v. Usually W c WH' so many of the 
sets of equations generate the same extreme ray. 

This calculation has been carried out for V, for 
N = 3 and r = 5 and 6. The results are the same as 
the inequalities given by Kuhn.7 These may be written 

7 H. W. Kuhn, Proc. Sym. Applied Math. 10,141 (1960). 

in the notation of Weinhold and Wilson as 

r = 5, N = 3, 1 - Ai - A; + Ai; :2: 0, 

r = 6, N = 3, 1 - Ai - A; + AU :2: 0, 

Ai - Aii :2: 0, 

1 - Ai - A; - Ai + Aij + Aik + Aik :2: 0, 

Aii :2: 0. 

It will be noticed that both of these examples lead to 
Weinhold inequalities. This raised the immediate 
question whether the Weinhold conditions contained 
all of the extreme rays in general. This was unlikely, 
since the Weinhold conditions were generated origi­
nally (from a completely different viewpoint) by 
considering operators H which were idempotent. 
Clearly there should be some extreme rays of v with 
more than two distinct eigenvalues, and these would 
give new conditions on r. Two examples are easily 
found: 

a a 
1 - I Ai + I AU :2: 0, q = 1,2,3, ... , (60) 

i=l i< i 

a a 
AH1 - I Ai,a+! + I Ai; :2: 0, q = 1,2, ... , (61) 

i=l i< j 

These are Weinhold conditions for q = 1, 2 and are 
new conditions for q > 2. They have been verified 
in some cases to be extreme rays of v for r sufficiently 
larger than N + q. For large rand N, the sets of 
linear equations for the extreme rays become too 
numerous, so it is impractical to carry out the 
calculations. 

For the example of g, given by Eq. (44), a second 
approach is possible which is more practical, since the 
results are independent of rand N. This new set of 
inequalities may be generated by considering the 
general form of the Weinhold and Wilson results, 

a a 
f = OC + I PiA; + 2 YiiAii . 

i=l i< i 

This / is positive-semidefinite, provided that it is 
positive or zero for every '1'[ in S. This follows because 
/may be generated from Tr (gr); so, for a legitimate 
r, we have 

f:2: Emin = min Tr (gr I) = min fl' 
1 1 

1f one lets (i) denote the subset of Slater determinants 
(for r :2: N:2: q) with CPi occupied, (i) the set with CPi 
empty, and (if) the set with CPi occupied and cP; empty, 
etc., then the '1'1 JIlay be split into 2a subsets according 
to the occupancy of q of the orbitals. The expression 
/ gives the same value for all 'I' 1 in one of these subsets. 
So if a is the set of all these subsets for which/is zero, 
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TABLE I. Some conditions on the 2 matrix. 

p, s, t 

q=1 
1 - Ai ~ 0 

Ai~O 

1,0,1 

0,1,0 

q=2 
1 - Ai - Ai + )"i ~ 0 

Ai - Ail ~ 0 

Ail ~O 

2,0,1 

1,1,0 

0,2, -1 

q=3 
1 - A, - AI - Ak + A,; + Aik + A;k ~ 0 

A, + Akl - Aii - Aik ~ 0 
+ all permutations of those for q = 2 

3,0,1 

2,1,0 

1 - A, - Ai - Ak - A, + .1.'1 + Aik + Ail + Aik + Ai, + Ak, ~ 0 4, 0, 1 

A, + Akl + A'i + ),., + A'i - Aik - )'il ~ 0 3, 1,0 

q=4 
Ai + A, + Ai, + Ak, - )"k - At! - Aik - All ~ 0 

1 + 2.1./ - A, - Ak - A, - Ai; - Ai. - Ail + Aik + )'Il + Aik ~ 0 

3 - 2.1., - 2.1.1 - 2.1.. - 2.1., + Ail + J"k + A" + )'ik + Ail + J'k! ~ 0 
+ all permutations of those for q = 2, 3 

2,2, -1 

1,3, -2 

0,4, -3 

then / generates an independent inequality, provided 

(t $ (\' 

for some other f'. Following the procedure given 
previously, if (atl) of the 2a subsets are selected and 
the corresponding/l is set equal to zero, an/may be 
found. If it is unique, and positive on the other 
subsets, it is an independent condition for this q. 
In this way a maximum of 

inequalities may be found. This has been done for 
1 ~ q ~ 4, and the results are given in Table I. These 
conditions are a sufficient set of ensemble represent­
ability conditions for r = q (within the subspace v). 
They will not be complete for N representability, 
however, if there exists some/which is excluded from 
the list because it is negative only on subsets with 
more than N occupied orbitals. For example, 

is an extreme ray of v for r = 10 and N = 3 but is not 
in Table I for q = 4. 

Although larger values of q would require too much 
computer time, the results obtained so far may be 
generalized. For example, all of the conditions in 
Table I and in Eqs. (60) and (61) can be generated 

from the single inequality 

p • 

it(t + 1) - t 2 An, + (t + 1)2Amj 
i=1 i=1 

j) 8 'P.S 

+ 2 Anini + 2 Am,m; - 2 An,ml ~ 0, (62) 
i<j i<i i,; 

where (n l ,"', np) and (ml ,"', m.) are disjoint 
subsets of (1, ... ,r), and 1 is an integer. This may 
easily be seen to be true. If, for some lJ1' l' j of the c/>n, 
and k of the c/>m, are occupied, the left-hand side takes 
the value 

HU - k - 1 - W - H, 

which is nonnegative for all integers j, k, t. Table I 
gives the values of p, s, and 1 which generate the 
inequalities given there. It is conceivable that Eq. (62) 
would generate all of the ensemble representabili ty 
conditions which may be expressed using only the 
Ai and Aii • Table I has the obvious pattern 

(p,s,/)=(q-k,k,l-k), k=O,I,···,q. 

Since (p, s, I) and (s, p, -I - 1) give the same 
inequality, k = 2,3 are not needed for q = 3. 

III. RELATION TO SOME PREVIOUS 
CONDITIONS 

As shown above, the Weinhold inequalities may 
easily be derived by these methods and stronger 
inequalities produced. In fact, it has been shown by 
Erdahl8 and Kummer9 that many of the Weinhold 

8 R. Erdahl, private communication, 1968. 
'H. Kummer, private communication, 1968. 
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conditions are extreme points for the less stringent 
case offermion ensemble representability (variable N). 
The nonnegativity of the G matrix and Q matrix3 

generally imposes conditions on the matrix elements 
of r other than Ai and Au, and hence these matrices 
contain some restrictions from v not contained in 
v. For some particular examples of the G-matrix 
conditions which involve only the Au, however, 
the Weinhold inequalities are easily shown to be 
stronger conditions. 

The Sasaki upper bound2 on the eigenvalue of r 
could easily be derived by considering 

g = Iw(i,j»(w(i,j)l, 
where 

(w(i,j) I w(i,j» = 1. 
Then 

o ~ (wi r Iw) ~ Emax 

and the maximum E for any w gives the upper bound 
to the eigenvalues of r. The solution of this is known. 
For even Nand r, for example, 

and 

gives 

(2)! r 1 
w = - ! R det I CPi CPi+l I 

r i odd V 2 

'Y = A[w(1, 2)· .. weN - 1, N)] 

Emax = N - rlN(N - 2). 

The general problem of finding the extreme points 
of Je* or v is very difficult. First of all, the number of 
subsets J(, and r (or w) which may be selected from:R 
is not denumerable. The examples of the restricted :k 
and v were solvable only because the restrictions on 
H made the number of ways of selecting J(, and r 
(or w) finite. Further, most selections of w will not 
lead to an operator H in v. This may be seen from the 
fact that if:R is S, the space of (v) Slater determinants, 
then an arbitrary wavefunction in :R contains (N) free 
parameters while g contains only r 4 [really only (~), 
where z = G), if permutation symmetry is built 
into rand g]. It is easy to write a set of (N) linear 
equations for the r 4 matrix elements giikZ, such that 

g = ! gi;kZ I CPiCP;) (CPkCPZ I , 
expressing the fact that 

H'Y = E'Y. 

For most selections of'Y these equations have no 

solution. From this, one might conclude that for 
many of the extreme rays of v, w contains only one 
function 'Y. Because the ways of selecting ware not 
denumerable, the number of extreme rays may be 
infinite, and no systematic searching procedure may 
be devised to discover them. This is equally true for 
the sets J{, and r so the same difficulty exists in Je *. 

From these dimensional considerations, one may 
conjecture that, except for a set of measure zero, all 
the elements of fl are on extreme rays of v for (V) » r4. 
If this is true, then an arbitrary operator such as the 
Schrodinger operator Hs almost always maps onto 
an extreme ray of v when it is mapped into fl. Thus, 
probably, the condition for the variational stability of 
Tr (gsr), 

is independent of all other ensemble N-representability 
conditions. Thus, if this conjecture is true, it will 
always be impossible to calculate Emin by variation of 
r subject to previously known N-representability 
conditions. 

The possibility still appears to exist that sufficient 
nonlinear inequalities might be found to guarantee 
variational stability. That this is probably impossible 
may be seen from the fact that all of the linear 
inequalities may be replaced by the single nonlinear 
inequality 

min {Tr (gr) - Em1n(g)} ~ O. 
g 

This is nonlinear because the g* for which the expres­
sion is minimum is a function of r. For a fixed r, this 
single inequality is necessary and sufficient for ensemble 
N-representability. If Tr (gsr) were minimized subject 
to this constraint, however, g* would usually turn 
out to be gs' and Emin(g.) would still have to be 
calculated by other methods. 
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In analogy with the metrics of SchwarzschiJd and de Sitter, a first-order approximation to the spheri­
cally symmetric solution of Einstein's field equations is found where the deviation from the flat Minkow­
ski space-time is given by potentials of the gravitational force and the cosmical A force. It is shown that 
in the Newtonian approximation the forces acting per unit mass of the fluid are the assumed gravitational 
self-attraction and cosmical A force. 

1. INTRODUCTION 

SchlUter! has shown that the cosmical constant A 
in Einstein's field equations may be interpreted as a 
force parameter; empty space acts as an additional 
source of gravitational potential. In the case of 
spherical symmetry, SchlUter found in the Newtonian 
approximation the following expression for the radial 
force per unit mass apart from the pressure gradient 
force: 

(1) 

where G is the gravitational constant and Mr is the 
mass inside a sphere of radius r. With the definition 

L == A/47T, 
Eq. (1) may be written 

F = -GMr/r 2 + LVr/r2, 

(2) 

(3) 

where Vr is the volume of the sphere with radius r. 
When SchlUter's idea about empty space is maintained, 
it is seen that L may be interpreted as a gravitational 
constant associated with space. 

2. THE METRICS OF SCHW ARZSCHILD 
AND DE SITTER 

The analog of Eq. (1) in the case of a central body 
with mass M surrounded by empty space would be 

F = -GM/r2 + LVr/r 2, (4) 

where Fnow is the force per unit mass of a test particle 
at distance r. The complete Schwarzschild metric 
describing the geometry outside a central body may be 
written in the following form2 : 

(
1 _ 2m _ Ar2) dtZ 

r 3c2 

_1.( dr
2 

+ r2 dO}) 
c2 1 _ 2m/r _ Ar2/3c2 ' (5) 

1 A. Schliiter, Astrophys. J. 60, 141 (1955). 
B R. C. Tolman, Relativity Thermodynamics and Cosmology 

(Oxford University Press, London, 1934), p. 204. 

where dw = d()2 + sin2() dcp2, c is the velocity of light, 
and m = GM/c2• The coefficients of this metric differ 
from those of the Minkowski space-time by the two 
quantities -2m/r and -Ar2/3c2• If the sum of these 
two expressions is regarded as a dimensionless 
potential «1>, we may write 

F 1 = _ 0«1> = .£.. (2m) + .£.. (Ar2) 
or or r or 3c2 

2m 2Ar 
= -- +--

r2 3 c2 

(6) 

Hence, the geometry of the Schwarzschild (exterior) 
space-time is determined by the (dimensionless) 
potential of the Newtonian forces acting on a test 
particle. 

In the case of empty space (no central body), Eq. 
(4) reduces to 

The corresponding de Sitter's metric may be written 
as3 

ds2 = 1 - - dt2 
- - + r2 dw2 

• ( 
Ar2) 1 (dr

2 
) 

3c2 c2 1 _ Ar2/3c2 

(7) 

Also in this case the deviation from flat Minkowskian 
space-time is given by the potential of the force 
acting on a test particle of unit mass. 

3. THE CASE OF A UNIFORM MASS 
DISTRffiUTION 

In analogy with the metrics of Schwarzschild and 
de Sitter, it may now be possible to determine the 
metric for the general case of a spherical symmetric 
mass distribution. From Schluter's result, Eq. (3), 

• Reference 2, p. 349. 

735 
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it is found that the potential <l> ofthe forces is given by 

<l> = - F dr = --' dr - -' dr. l' l' GM l' LV. 
o 0 r2 0 r2 

From the assumption that the density is a function of 
time alone it follows that 

<l> = GM, _ LV, . 

2r 2r 

Strict analogy with the former cases now requires <l> 
to be multiplied by a factor of 21e2• Hence, a metric 
for a uniform mass distribution may be written 

ds2 = (1 + GMr _ LVr) dt2 

e2r e2r 

_1.( dr2 + r2 dO}) (8) 
e2 1 + GMrle2r - LVr/e

2r . 

This metric, however, may be considered only as an 
approximation to the general metric of an orthogonal 
space-time, spherically symmetric about the point 
r = 0. Hence, it has to be proved that in the Newto­
nian approximation the forces acting on a test particle 
in the space-time described by (8) are, in fact, given 
by Eq. (3). It is assumed that L/G differs from p by a 
few orders of magnitude at the most. To write out 
Einstein's equations, the following form of the metric 
is used: 

(9) 

A constant K is defined by K == 87TG/e2• Since this 
constant is a small quantity, we may write, to the 
first order of K, 

eV = e-I' = 1 + Ktp. (10) 

In Dingle's notation, we have 

D = eV, A = e-V/e2, B = e-vr2/e2, 

C = e-vr2 sin2 Ole2. 

These expressions are now substituted into Einstein's 
equations.4 Inspection of the formulas for 'P2 , 'P3 , 

]'23, ]'24, and ']'34 shows that all these components of 
the energy tensor TIZP are identically zero. The matter 
is assumed to be a perfect fluid with the energy tensor 
given by 

TIZP = (p + p/e2)ulZuP _ gIZPp/e2, (11) 

where u« is the velocity 4-vector, glZP is the contra­
variant form of the metrical tensor, p is the density, 
and p the pressure. 

• G. C. McVittie, General Relativity and Cosmology (Chapman 
and Hall Ltd., London, 1965), 2nd ed., p. 71. 

After some calculations, it is found that the surviv­
ing Einstein equations can be written, to first order in 
K, as 

A 
2 ' e 

(12) 

K[(P + E..)(U1)2 + eVPJe-v = K(e
2tp 

+ e
2tpr) + A, 

e2 e2 r2 r 
(13) 

Kp = K( tptt + te2tprr + e
2
;,) 

+ K2( te2tp~ + te2tptp,r + e2~tp,) + A, (14) 

K(p + ple2)u4u1 = -Ktpt/r. (15) 

The subscripts denote partial derivatives with respect 
to rand t. By inspection, it is found that two new 
equations arise from Eqs. (13) and (14) which make 
the Newtonian approximation unnecessary: 

tpr + tplr + A/(87TG) = 0, (13') 

"1'" + 2tp,/r + A/(47TG) = O. (14') 

These terms are of order e2 times that of any other 
term in (12)-(15). The solution that satisfies both 
these differential equations is 

C Ar2 
"1'=-----, 

r 247TG 

where C is a constant of integration. Whence, we have 

K Ar2 
Ktp= -- --, 

r 3e2 
(16) 

where K is a constant. It is thus shown that, of the 
metrics (9) with the first-order approximation (10), 
only thoSe with a function "I' given by (16) are com­
patible with Einstein's equations. It is seen that the 
Schwarzschild metric (5), K = 2m, and the de Sitter 
metric (7), K = 0, follow from this investigation. 

This result may be interesting in itself, but shows 
that the metric (8) cannot be used as a representation 
of a spherically symmetric space-time with a uniform 
mass distribution. 

4. FIRST APPROXIMATION TO THE ISOTROPIC 
FORM OF THE METRIC FOR SPHERICAL 

SYMMETRY 

It may stiIl be possible to find a metric for a spher­
ical mass distribution where the deviations from flat 
Minkowskian space-time are proportional to poten­
tials of the A force and the gravitational force acting 
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per unit mass of the fluid. It is required that the 
absolute magnitudes of the constants ofproportionality 
are of the same order of magnitude and that in the 
Newtonian approximation of the field equations the 
forces acting on a fluid element are the A force and 
the gravitational self-attraction of the matter. 

Thus, giving up the strict analogy with the Schwarzs­
child and the de Sitter cases, the isotropic form of the 
metric for spherical symmetry is used: 

ds2 = eY dt2 - (e/J/c2)(dr2 + r2 dw2). (17) 

The explicit forms of Einstein's equations to which 
this metric gives rise are worked out in detail by 
McVittie.6 

Before proceeding it is worth noticing what happens 
when the exact solution, with nonzero cosmical con­
stant for the region outside a central mass M given by 
Eq. (5), is transformed to the isotropic form. A new 
radial coordinate f is introduced in the metric (5) by 

( 
m Af2)2 

r = 1 + 2f - 24~ f. 

In the first-order approximation, we find 

dr = 1 + - - - 1 - - - - df ( 
m Ai'I.) ( m 5Af

2
) 

2f 24c2 2f 24c2 

and, hence, the metric becomes 

It is important to notice that this does not have the 
form 

It is therefore not to be expected that the internal 
solution which we are seeking reduces in first approxi­
mation to the form (5"). Therefore, we begin by 
modifying the coefficients of the metric by introducing 
a function Q. This function is assumed to be of the 
order c2• The coefficients of the metric (17) are now 
given by 

eY = 1 + K(2Q/c2 - "P), e" = 1 + K"P, (18) 

where "P = (n1P + n2L/G)r2. Here n1 and n2 are 
constants. It is assumed again that L/G does not 
differ from P by more than a few orders of magnitude. 
When the function Q is introduced in this way, the 

6 Reference 4, p. 74, Eqs. (4.419)-{4.422). 

approximation to first order in K is retained. This 
procedure is analogous to one used by McVittie.6 

After the Newtonian approximation (see the appen­
dix), the surviving Einstein equations are reduced to 

pq2 + P = -"PTT + A"P - tAr"Pr - 27TG"P~, (19) 

P = -"PTT + A"P + tAr"Pr 

+ 27TG"P; + 27TGr2(~)2, (20) 
87TG 

p = _V2"P - 8~G' (21) 

pq = "PrT' (22) 

The subscripts rand T indicate partial derivative with 
respect to the radial distance r and Newtonian 
absolute time T, respectively. The operator V2 is 
defined by 

V2 = ~ + ~ .£. , (23) 
or2 r or 

and q is the fluid velocity. 
In the course of the calculations in; the Appendix 

the function Q is determined to be 

Q = -tAr2jK, (24) 
whence 

2KQ/C2 = -!Ar2/c2• 

This means that the terms in the coefficients of the 
metric are still of the same type. It remains to deter­
mine the two constants n1 and n2' Since the coefficients 
(18) are only a first-order approximation to the 
general case of spherical symmetry investigated by 
Schluter, it also remains to show that the Newtonian 
forces acting per unit mass of the fluid are in fact 
given by Eq. (3). 

By elimination of p, p, and q from Eqs. (19)-(22), 
the consistency relation is found to be 

(
A )-1 

"PrT V2"P + 87TG 

= Ar"Pr + 47TG"P: + 27TGr2(~)2. (25) 
87TG 

Thus, the four equations (19)-(22) are equivalent to 
(25) together with 

P = -"PTT + A"P + tAr"P,. 

(26) 

(27) 

(28) 

• Reference 4, p. 119. 
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With the help of the equation of continuity, the 
equation of motion for a perfect fluid in the case of 
spherical symmetry may be written as6 

002 
pF = oT (pq) + or (pq2 + p) + ; (pq2), (29) 

where F is the radial force per unit mass of the fluid, 
apart from the pressure gradient force. When the 
expressions for p, q, and p are substituted into Eq. 
(29), it is found that 

F = 47TG'lfr + tAr. (30) 

If the mass inside a surface of radius r is defined as 

If the minimum value of the mean density,S p = 
3.10-31 g/cm3 , is inserted, the upper limit of the 
radius is defined by r « 1029 cm. 

A first-order approximation to the isotropic form of 
the metric for spherical symmetry has been found 
where, in analogy with the cases of Schwarzschild and 
de Sitter, the deviation from flat Minkowskian space­
time is given by the potentials of the gravitational 
force and the A force. It is shown that in the New­
tonian approximation the forces acting per unit mass 
of the fluid are the A force and the gravitational 
self-attraction. 
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then, by means of Eq. (28), it is found that with n1 = 
-i and n2 = -i\;, the force per unit mass of the 
fluid is 

(32) 

where Mr and Vr are the mass and the volume inside a 
sphere of radius r, respectively. Equation (32) is 
equivalent to Eq. (3). Hence, all the requirements for 
the metric are fulfilled. The coefficients of the metric 
(17) are given by 

(33) 

(34) 

The metric describes a (bounded or unbounded) 
spherically symmetric mass distribution where in 
general the density is a function of both radius and 
time. It is in accordance with the one describing a 
spherically symmetric static mass distribution with 
A = 0.7 

In the special case where the density is a function 
of time alone the metric may be used for cosmological 
investigations. However, it is assumed in the calcula­
tions that the deviations from flat Minkowskian 
space-time are small. Hence, the following inequality 
must be satisfied: 

K( L) 2 "6 p -Ci r «1. 

The magnitude of L/G can at most be of the order of 
the mean density of the universe. An upper limit 
of the radius r is thus given by 

,2 « 6/(Kp) •. 

7 Reference 4, p. 67. 

valuable suggestions. 

APPENDIX 

Inspection of Einstein's equations for the metric 
(17) shows that the components Tl2, P3, T23, T24, and 
T34 of the energy-momentum tensor TaP are all 
identically zero. This implies that the two components 
u2 and u3 of the velocity 4-vector u" = dx"/ds are zero 
and, hence, the 4-vector satisfies the following 
equation5 : 

The surviving Einstein equations are worked out in 
detail by McVittie.5 When the expressions for f.l and v 
given by (18) are substituted on the right-hand sides, 
the following equations are obtained to first order 
in K: 

K[ (p + ~)(U1)2 + e-~p}~ 

= K[2~r - 1{Jtt + 27TG1{J; + 47TG1{Jr(2c? - 1{J)J + A, 
(A2) 

Kp = K[ nr, + ~r - 1{Jtt + 27TGe~r - '1fl,n + A, 

(A3) 

K[ (p + ~)(U4)2 - e-' ~]e' 

= -K( 'If,r + 2~,) (A4) 

( P) 1 4 K P + di u U = K1{J,t· (AS) 

8 J. H. Oort, Solvay Conference on La Structure et l'evolution de 
l'univers, R. Stoops, Ed. (Brussels, Belgium, 1958), p. 180. 
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It is seen that the terms 2l<Qr/r + A in (A2) and 
I«Qrr + Qr/r) + A in (A3) are of magnitude c2 times 
that of any other term in the equations. For a Newto­
nian approximation to be possible, these terms must 
vanish identically. Hence, it follows that 

2l<o.r/r + A = 0, 

K(o." + o.r/r) + A = o. 
Both equations are satisfied by the solution 

0. = -tAr2/K, (A6) 

which determines the function 0. to be of a form in 
agreement with the requirements for the metric. 

A Newtonian approximation is now carried out in 
which c is identified with an infinite velocity. The 
coordinate time t then becomes the Newtonian 
absolute time T and the coordinate r becomes the 
radial distance from the origin in absolute Euclidean 
space. The fluid velocity q is now defined by q = U1/U4• 

JOURNAL OF MATHEMATICAL PHYSICS 

The approximation of (AI) gives u4 = 1. It is 
assumed that velocities are small, q2 « c2. The Newto­
nian forms of (A2) to (AS) then become 

pq2 + p = -1jJTT + 1\,1p - tAr1jJr - 27TG1jJ~, (A7) 

P = -1jJTT + A1jJ + tAr1jJr 

+ 27TG1jJ~ + 271Gr2(~)2, (A8) 
87TG 

21jJr A 
p = -1jJ" - - - -- , 

r 87TG 
(A9) 

pq = 1jJrT· (AlO) 

The constants n1 and n2 can also be determined by 
solving Eq. (A9). The solution is found to be 

1 2 1 L 2 
1jJ = - epr - 12 G r , 

in accordance with the previous results. 
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A theory of characters of ray representations of finite groups, that does not use any reference to a 
covering group, is derived by defining two generalizations of the concept of a group's class. Orthog­
onality relations are obtained over one of these generalized classes. This theory is used to discuss 
subduction and induction of ray representations while the Frobenius reciprocity theorem and generaliza­
tions thereof are proved. The theory provides a more efficient method of deriving and treating ray 
representations of finite groups for a given factor system than has previously been made available. 

1. INTRODUCTION 

Since ray representations of point groups have 
become useful in the theory of nonsymmorphic space 
groups, l methods of obtaining them have been given 
by Doring.2 Tables of them for particular factor sys­
tems have been tabulated for the 32 point groups. The 
theory of double groups is really a special case of ray 
representation theory and tables of these have long 

• Research supported by Number 9-443984-21112-3, NSF-GP 
No. 5844. 

1 G. Lyabarski, The Application of Group Theory in Physics 
(Pergamon Press, Inc., New York, 1960), p. 95. 

I Z. Doring, Z. Naturforsch. 14,343 (1959). 

been available for the point groups.3 Recently this 
theory was extended to space groups.4 Most of these 
treatments build on those given by Schur in his three 
papers.5 

In all these theories, one deals with a so-called cover­
ing group whose order is, in general, some multiple of 
the order of the group which is being ray-represented. 
(Usually it is twice as large.) The following 
theory will show that this is unnecessarily laborious. 

a w. Opechowski, Physica 7,552 (1940). 
• M. Gluck, Y. Gur, and J. Zak, J. Math. Phys. 8, 787 (1967) .. 
5 I. Schur, J. Reine Angew. Math. 12",20 (1904); 132, 85 (1907); 

139, ISS (1911). 
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It is seen that the terms 2l<Qr/r + A in (A2) and 
I«Qrr + Qr/r) + A in (A3) are of magnitude c2 times 
that of any other term in the equations. For a Newto­
nian approximation to be possible, these terms must 
vanish identically. Hence, it follows that 

2l<o.r/r + A = 0, 

K(o." + o.r/r) + A = o. 
Both equations are satisfied by the solution 

0. = -tAr2/K, (A6) 

which determines the function 0. to be of a form in 
agreement with the requirements for the metric. 

A Newtonian approximation is now carried out in 
which c is identified with an infinite velocity. The 
coordinate time t then becomes the Newtonian 
absolute time T and the coordinate r becomes the 
radial distance from the origin in absolute Euclidean 
space. The fluid velocity q is now defined by q = U1/U4• 
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The approximation of (AI) gives u4 = 1. It is 
assumed that velocities are small, q2 « c2. The Newto­
nian forms of (A2) to (AS) then become 

pq2 + p = -1jJTT + 1\,1p - tAr1jJr - 27TG1jJ~, (A7) 

P = -1jJTT + A1jJ + tAr1jJr 

+ 27TG1jJ~ + 271Gr2(~)2, (A8) 
87TG 

21jJr A 
p = -1jJ" - - - -- , 

r 87TG 
(A9) 

pq = 1jJrT· (AlO) 

The constants n1 and n2 can also be determined by 
solving Eq. (A9). The solution is found to be 

1 2 1 L 2 
1jJ = - epr - 12 G r , 

in accordance with the previous results. 
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groups, l methods of obtaining them have been given 
by Doring.2 Tables of them for particular factor sys­
tems have been tabulated for the 32 point groups. The 
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been available for the point groups.3 Recently this 
theory was extended to space groups.4 Most of these 
treatments build on those given by Schur in his three 
papers.5 

In all these theories, one deals with a so-called cover­
ing group whose order is, in general, some multiple of 
the order of the group which is being ray-represented. 
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It will be shown how one may quickly construct 
and use a concise square character table and a set of 
representations straightaway from any given factor 
system. In short, the following theory will make it 
possible for one to use already tabulated results more 
easily and quickly to obtain irreducible ray repre­
sentations for other finite groups or factor systems 
which might be important in other areas of interest. 6 

But what is most important, an understanding of the 
possible structures of these mathematical objects is 
obtained systematically; this in turn sheds more light 
on the structure of representations of groups them­
selves. 

A systematic treatment of ray representations of 
groups was begun by Rudra in a series of three papers. 7 

Unfortunately, many of his results are not valid for 
factor systems that are not equivalent to the trivial one. 
In order to include the nontrivial cases, it will be 
necessary to begin the following treatment by starting 
with the basic definitions of a ray representation. 

2. BASIC DEFINITIONS 

If one nonsingular n by n matrix 9t(R) is assigned to 
each element R of a group § = { ... R, S, T, ... } 
such that 

9t(R)9t(S) = coR.s9t(RS) 

(where COR.S = complex number) for all Rand S in 
§, then that set {, 9t(R), 9t(S), 9t(T);} of matrices is 
called an nth degree ray representation of §, and the 
constants CORB make up what is called afactor system 
{co} over §. 

Now if all the matrices of this ray representation are 
multiplied by different constants, the resulting set of 
matrices {9t'(R) == C~(R), 3t'(S) == Cs9t(S), ... } is 
also a ray representation but with a new factor system 
{co'} as is shown beloW: 

3t'(R)3t'(S) = CRCs3t(R)3t(S) 

= (CRCS /CRB)WR.S3t'(RS) 

== cok.s3t'(RS), (1) 

where coB.S = (CRCS/CRB)COR.S' If two factor systems 
{co} and {co'} are related in this manner, they are said 
to . be projective eqUivalent or p-equivalent8 or in the 
same class.9 

• A. O. Barnt,l. Math. Phys. 7,1908 (1966). 
7 P. Rudra. 1. Math. Phys. 6, 1273, 1278 (1965); 7, 935 (1966). 
81. S. Lomont. Applications of Finite Groups (Academic Press. 

London, 1959). p. 729. 
• M. Hamenncsh, Group Theory and Its Application to Physical 

Problems (Addison-Wesley Pub!. Co .• Inc .• Reading. Mass .• 1962). 
p.462. 

If the 9t are n x n matrices, one may let CR equal 
any nth root of det 9t(R) for all R in § and obtain the 
following: 

det [3t'(R)3t'(S)] = det [wk.s3t'(RS)], 

C~[det3t(R)JC;[det:R(S)] = (wR.s)"C~s[det:R'(RS)], 

(2) 

Hence every factor system associated with an nth 
degree ray representation is p-equivalent to one 'in 
which all the factors are nth roots of unity; i.e., 
(wB,s)" = 1 and wit.SCOR.S = 1 for all Rand S in §. 
If n = I, then coB.S = I and {co} is p-equivalentto the 
trivial factor system, which is sometimes called the 
vector factor system. 

3. ASSOCIATIVITY AND THE REGULAR 
REPRESENTATION 

It is helpful to imagine an abstract set of g elements 
{aR' as, aT} (one for each element R, S, or T of a 
group §) that obey the relations 

(3) 

where the COR.S belong to a given factor system {co}. 
Such a collection forms what is defined as a ring or 
associative algebra. (But it is not a group unless 
COR.S == 1.) I call the set of all linear combinations of 
the elements aR (using complex coefficient) the ray 
algebra A(§, w). The elements aR are here called a 
system of base elements, since any element in A(§, co) 
can be written as a unique linear combination of them. 
Obviously there are other bases for which the same 
is true. 

This definition is motivated by more general 
theories of rings and algebras. There the IT!ost general 
algebra A with n-base elements {aI' a2' as, ... , an} 
has the following multiplicative structure: 

k=n 

aiQi = I Cfiak' (4) 
k-l 

Here the complex numbers c:'i are called structure 
constants and can be thought of as components of 
n x n matrices that will represent the algebra A. 
For if one lets Cfi = 3tik (a,.), then the relations 

follow directly from an expansion of the associativity 
relations (aiai)ak = a.(a;aJ which one demands of 
any ring or any set of matrices. 
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These n n-by-n matrices :R(a;) form what is called 
the regular representation of A in basis {aj}. Now the 
regular representation of A(~, w) in the basis 
{ ... a R' as ... } will be made of g-by-g matrices that 
have a very simple form. In particular, :RRT(aS) = 
WR.S if and only if RS = T. Otherwise :RRT(aS) = O. 

An easy way to construct these matrices is first to 
arrange a multiplication table of the base elements 
with the elements aR written in some order across the 
top, and the "inverses" aR-l appearing in the same 
order down the side: 

(6) 

Then, since :RRT(aS) = wR,S if and only if R-lT = S, 
you obtain matrices of the form 

••••.•. Wi,S······· 

••• W .......... . 
2.S 

•••.••..••• W3.S··· 
(7) 

W4.S ............. . 

by simply inspecting the table. (Note that there is one 
and only one entry in each column and row.) In­
cidentally, the associativity of multiplication implies 
that 

or 

(8) 

for all R, S, and T in ~. 
The regular representation of the unit element 1 

obtained by the preceding construction is 

W11 0 0 

:R(al) = 0 W2l 0 (9) 

o 0 WBl 

But the associativity relations demand that 

(10) 

for all R in ~. (Similarly W 1 .S = W 1,1') Clearly no loss 
of generality will occur if we assume from now on 
that 

(11) 

so that :1t(al) is a unit matrix. 
Now the trace of :R(al) is g, the order of group ~. 

From this one sees that WR-l.R = wR.R-l, since 

Tr :R(aR):1t(aR-1) = Tr :1t(aR-l):1t(aR) 

implies that 

wR,R-1 Tr :R(al) = wR-1,R Tr :R(al)' 

(12) 

(13) 

Note, however, that the trace of :R(as) (for S :F I) is 
zero. 

Finally, it is possible to show that each matrix 
:R(as) is unitary. Since :1tRT(aS) = WR.S (assuming 
now that RS = T), one has that :1tTR(as-l) = WT.S-l. 
Now the inverse of matrix :R(as) is 

[:R(as)r1 = (ws-l,s)-1:1t(as-1), 

while the Hermitian conjugate of the matrix :R(as) is 
:R-~(as), where 

:R!f;R(aS) = w]l,s = _1_ = WRS,S-l/(WR,sWRS,S-l) 
wR,S 

= WRS,S-l/(WR,SS-lWS,S-l) 

= WR,S-I/WS,S-l 

= :1tRT(aS-1)/ws,s-1 

= [:1tTR(aS)r1
• (14) 

The associativity relations (8) have been used along 
with the conventions (11) wR,l = 1 and (2) 

4. NILPOTENTS, IDEMPOTENTS, AND OTHER 
ALGEBRAIC CONCEPTS 

In this section it is necessary to make some state­
ments without proof, since such proofs are still quite 
lengthy. The references (10, 11, 12) which contain 
these proofs are concerned with a type of algebra or 
ring, of which the ray algebras are a special case. 

10 H. V. McIntosh, "Abelian Groups with Operators," RIAS 
Technical Report 57-2, 1958. 

11 C. L. Curtis and I. Reiner, Representation Theory of Finite 
Groups and Associative Algebras (lnterscience Publishers, Inc., New 
York, 1962). 

11 w. G. Harter, Doctoral dissertation, University of California 
at Irvine, 1967. 
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It is convenient to define a contagiously nilpotent 
element 'l} of algebra A = { ... a, b, c, ... } to be a 
nonzero element that transforms every element a of 
A into a nilpotent n = 'l}a or into zero 1]a = O. (A 
nilpotent n is a nonzero element that goes to zero if 
raised to some power, i.e., nk = nnn' .• n = 0, for 
some k = 2,3,4, .. '.) If it can be shown that 
contagiously nilpotent elements do not exist in a 
given A, then9-11 any element a of algebra A can be 
written as a linear combination of a certain convenient 
set of base elements 

{p(~)p(~) p(~) p(~)p(~l p(~l p(Plp(PI } 
11 12'" 1!(~1 21 22'" I(~) I(~l 11 12"', 

which will be called unit dyads. 

a = 22 2 ~<t~(a)P<t~. (15) 
(al L m 

These unit dyads have a simple multiplicative structure 
something like their naming would imply: 

0 if (ex) ~ ({3) j ~ k, or 
p(~)p(P) - (16) if nL - p(~) if ex={3 and j = k. tL 

Note that P(~l is idempotent if i = k i e p(~)p(~) = i:l ' •• , ij :11 

PW. By construction10- 12 these idempotents all share 
the following property. There is an a in A such that 
P:~)aP~i) is nonzero and 

P~~)bP~".) = f-tP(~)aP~".) = vp(j) u , n , i (17) 

for any b in A, where f-t and v are constants. The 
meaning and application of these elements is further 
explored shortly. 

First it must be shown that this expansion (15) is 
valid for ray algebras, by showing that there are no 
contagiously nilpotent elements in A(~, w). This we 
do by showing that no nonzero element 

R=f/ 
'l}= 2'l}RaR of A(~,w) 

R=l 

makes every element a of A(~, w) into a nilpotent 
'Y)o = n or into zero 'Y)a = O. If 

• 2 'fJsas-1 

a= ---, 
S Ws-1,S 

then one has the following: 

'fJa = 2 'fJR'fJ~aR as-
1 

• 

R,S Ws-1,S 

The regular representation of this is 

!Jt('Y)a) = 2 'Y)R'Y);!R(aR)!Jt+(aS), 
R,S 

which is a Hermitian matrix since the !R(aR) are 
unitary. Also one sees that 

which shows !R(1]a) is a diagonalizable matrix with a 
nonzero trace. Clearly 'fJa is not nilpotent, and the 
basis of unit dyads is valid. 

Now imagine the construction of the regular rep­
resentation !RP of the unit dyads using the unit dyads 
as a basis and relations (16). For example, one has the 
following: 

10 
()() 

'. 

10 
()() 

10 
()() 

'----

.:It ~(P~~ I) = , (18) 

()() 

()() 

()() 

()() 

-
01 
()() 

01 
()() 

01 
()() 

'--

3{"(Pi~') = , (19) 

()() 

()() 

()() 
()() 
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and 
0()"" 
00 

'. 

00 
00 

00 
00 

-

10 
00 

'. 

]0 
00 

. (20) 

'. 

This regular representation can represent any element 
a of A(~, w) according to (15). It is equivalent to the 
regular representation (7) over the basis {. aR'} con­
structed in Sec. 3, but it has the following form: 

:R-p(a) = 

(IX) 
~(a) 

. (21) 

Here the i)(~)(a) are matrices of the coefficients 
i)i~(a) in (15). These i)(~) are in fact the matrices of 
the irreducible representations of A(~, w). Further­
more, the frequency of i)(~) on the diagonal of :RP is 
equal to the dimension I(~). Also it is true that 

g = Z(~)2 + Z(p)2 + ... , (22) 

which will be called the diophantine solution of 
A(~, w). 

By definition the unit dyads are some linear com­
bination of the old base elements {a1a2 ••• aR ... ag }: 

(23) 

We solve for the constants pg)(aT)' We find that 

P~:)(aT) = (gwT-l,T) Tr :R(P::)aT-1), 

since Tr :R( aT) is zero if T is not 1, but is g if T = 1. 
Next, we obtain the result that 

P(P)(a ) 
ii T 

= (gwT-1,T)-1 Tr :R(pgtt * ~ i)~~(aT-l)p~~}) 
Z(P) 

= i)W(aT-l ), 
gWT-l,T 

which gives finally 

I (P) m.(P)( ) 

P
(P) __ ~ .vii aT- l 

ii - k aT' 
g T WT-l.T 

(24) 

These i)(~), like the regular representation, can be 
chosen unitary, 13 where 

[i)(P)(aT- 1)/wT-l,Tl = [i)(P)(a T)]+. (25) 

We shall assume that the i)(~) are unitary so that 

P::' = z<P) .2 i):V(aT)aT' 
g L 

(26) 

It is now a simple matter to derive representation 
orthogonality relations and the Schur's Lemmas. 

Theorem ]14: 

I(Y) 1 
-.2 -- i);,;~(aT-l)i)tJ(aT) = tJYPtJLntJim' 
g T WT-l,T 

Proof' By inspecting (18), (19), and (20), one may 
write 

i)(jJ)[p(Y) 1 = tJ(y)jJtJ .ll. 
Li nm LmU,m' 

Now expanding P~~ according to (24) 
desired relation. 

(27) 

yields the 

Theorem 214; The only (square) I(~) X I(~) matrix 
m that commutes with all the matrices of an irreducible 
ray representation { ... i)(~)(aT) ... } of group ~ is 
a multiple of the unit matrix. 

Proof: Let m be an I(~) X I(~) matrix that satisfies 
mi)(~)(aT) = i)(~)(aT)m for all T. This implies that 
mi)(~) [PW] = i)(~) [P:~)]m for all i and j. From (27) 
one sees that m is a multiple of the unit matrix. 

Theorem 314 ; The only (in general rectangular) 
I(~) X I(ft) matrix m that satisfies the relations 

mi)(~)(aT) = i)(P)(aT)m 

for all aT' when oc yi: fl, is the zero matrix. 

13 P. Rudra, J. Math. Phys. 6, 1273 (1965), p. 1274. 
14 Reference 13, p. 1275. 
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Proof' Define the elements 

1=Z(<<) 
p(<<) = 2 p~~) (28) 

1=1 

and note that ~(<<) [p(<<)] is the unit matrix, while 
~(/I) [p(oe)] is the zero matrix if r:t. ;I: (3 using (27). 
Clearly 

or 
m =0. 

5. THE CENTER OF A RAY ALGEBRA 

R'(T-IRT = R') so that 

then 
(34) 

aT-1CRaT/wT-l,T 

= (WT-1,T)-I(r:t.aT-laRaT + ... ) 
= (WT-l,T)-I(r:t.WT-1,RTWR,TaR' + ... ), (35) 

where (aT-lcRaT)/wT-lT = CR by (30). Equating the 
coefficients of the first terms of (33) and (35) (which is 
correct since aR' appears only once in either series), 
one has 

The center C of A(§, w) is the maximal set of (3 = r:t.[(WT-1,RTWR,T)/WT-l,T]· 

elements in A(§, w) that commute with every element It will be conventional to let r:t. = VR and 
of A(§, w). C is a subalgebra of A(§, w), and it 
would contain the idempotents p(<<) defined in (28). ER' == {3/r:t. = (WT-1,RTWR,T)/WT-\T (36) 
We now set out to determine how many p(<<) there so that 

may be for a general A(g, w) and learn how to obtain CR = vR(aR + ER,aR, + EWaR" + ... ), (37) 
them for a particular ray algebra. 

Suppose that c = 2R YRaR is in C. Then where the EN" is a root of unity, 

cas = asc 

for all as in A(§, w). Also one has that 

(as-1cas)/Ws-l,s = c. 

From this one sees that 

s;c.g as-lcas ~ 
k = k C = gc, 

S=1 WS-l,S s 

(29) 

(30) 

(31) 

where g is the order of group §. One is assured that 
any element in the center must have the form 

C =! BIas- l [(2 YRaR) /ws-\sJas 
g 2=1 R 

= 2 YR {2 as-laRas}. 
R g S WS-l,S 

So every element of the center must be some linear 
combination of some of the g elements CR defined by 

We must now find which CR. if any, are linearly 
dependent. For the number of linearly independent 
cR is exactly equal to the number of inequivalent IR 
of A(§, w). 

Now cR is the linear combination of aR' aR', .•. , 
where R, R', ... , are in the class of R in §. Suppose 

(33) 

where all terms have been collected. If in group § 

it happens that an element T transforms R into 

and VR is some number whose possible values will be 
discovered shortly. 

Now define the character of an irreducible repre­
sentation ~(<<) of A(§, w) to be X<<<)(aR) == Tr~(<<)(aR)' 
Now note that x(<<)(aR') is not necessarily equal to 
x(<<) (aR) even if R' is in the class of R in §. Instead one 
may take the trace of the equation [where it is assumed 
that R' = T-IRT as in (34)] 

[~(<<)(aT)rl~(<<>CaR)~(<<)(aT) = wT-l,RTWR,T ~(oe>CaR') 

to obtain 
WT-l,T 

If one substitutes a = CR in Eq. (15), there results 

cR = 22 2 ~t~(CR)Pt~· 
/I L K 

But since CR is in the center, Schur's Lemmas demand 
that 

{

o if L;I: K, 

~t~(CR) = ...l (/1)( ) l'f L 
l(/I) X CR = K, 

whence 
1 1 

CR = 22 -,(/I) l/l)(cR)ptl = 2 -,(/I) X(/Il(CR)P(/I). (39) 
/I L /I 

Of course one must compute X(/Il(cR)' From (37) one 
has 

X(/Il(CR) = VR[x(/l)(aR) + ER,x(fJ)(aR') + ... ]. 
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Using (36) and (38), one obtains 

X(P)(CR) = O(CR)VRx(P)(aR), (40) 

where O( C R) is the order of the class of R in §. Hence 
we obtain 

O(C) 
~ iP>(aR) (P) 

CR= RVRk, (P) P . 
P / 

(41) 

Similarly, if R' = T-IRT, then 

~ x(P)(aR') (P) 
CR' = O(CR)VR' k, (P) P , 

P 1 

since O(CR') == O(CR)' Now, using (38) and assuming 
that CR is not zero, one obtains 

CR' = (WT-l,T WR,T VR')CR == y(T)CR' (42) 
WT-l,RT VR 

SO, if CR is not zero, all the other c R' (corresponding to 
elements R' of class C R) are simply proportional to 
cR' We now evaluate yeT) in (42). 

Substituting CR for C in (31) and using (37), we 
obtain 

(~ as-laRaS ~ as-laR,aS ) 
gCR = VR k, + ER' k, + ... 

S WS-1S S WS-l,S 

= VR(cR + ER'CR' + ... ), 
which by (42) becomes 

gCR = VR(CR + ER' WT-l,T wR,T VR' CR + ... ), 
wT-l,RT VR 

or 
(43) 

where (36) gave the last result. The series on the right 
has o(eR ) terms VR" The highest value that any vR or 
VR' can have is (g/o(CR», since this is the number of 
elements T, U, V,'" in § that transform R into 
R' = ]'-lRT = U-IRU = V-IRV = .. " where we 
assume all factors are modulus unity [see (2)]. 
Clearly, by (43), either each of the VR' VR" etc., is 
exactly (gjo(CR», or else cR = cR' = ... = O. In the 
latter case VR = VR' = ... = O. 

Theorem 1: Given 

for all R in group §, there are no more linearly 
independent cR than there were classes in §. Further­
more, CR is zero (nonzero) if and only if all CR' are 
zero (nonzero) for all R' in the class CR' Finally, if 
cR is nonzero, then 

cR = gjo(CR)(aR + ER,aR , + ... ) = ER,cR" (44) 

where ER' is given by (36). 

D~nition: If the elements {aR , aR" ... } correspond 
to a class C R in § that gives nonzero C R' they will be 
said to belong to the ray class of aR in A(G, w). If 
CR = 0, they will be said to belong to the zeroing 
class of aR' 

The term "zeroing class" will hereafter be abbre­
viated to zass, and a "ray class" will be called a rass. 

D~nition: If CR is nonzero, then the element 

(45) 

[where ER' is given by (36)] is called the rass sum of 
aR' 

From (28), (26), and (38) one obtains 

(46) 

This can be written as a linear combination of inde­
pendent rass sums, since it is in the center: 

a _lp(a)a /(a) R=g 
~ s s _ pIa) _ _ ~ (a)( ) 
~ - g - k, X aR CR' 

8 W8-1,. g R=l 

/(a) 
pIa) = - ~ (X(a)'(a)c 

2 k, R; R; 
g independent 

rasses j 

In the series above, there is one term for each element 
of the jth rass of A(§, w). Assuming, as before, that 
R; = T-IRJ and using (44) and (38), there results 

/(a) ( 
pIa) = --;: I ia)(aR;)CR; 

g r"'j"s 

+ -l-ia)(aR;),cR + ... ), 
ER~ER; 

/(a) (a)' 

= -2 I O(CR)x (aR)CRI' 
g r""SCS 

i 

where KR is given by (45). 
Finally; (41) and (45) give 

(P)( ) 
O(C) 

~ X aRi pIP) 
KR; = RI k, ( ) . 

irreducible I P 
representative 

(P) 

(48) 

(49) 
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6. CHARACTER THEORY INVOLVING RASSES 

The following two theorems show that only the 
rasses need be considered in manipulations of charac­
ters, while the rest of the ray algebra (the zasses) can 
be ignored. 

Theorem 2: If x(a) (aR) = 0 for all (IX), then cR = O. 

Proof" This follows immediately from (41). 

Theorem 3: If CR. = O,then x(P) (aR.) = 0 for all (13). 

Proof" The expressions (47) for pea) do not include 
any elements from a zass. The expressions (46) for 
pea) show then that x(ct)(aR) is identically zero for an 
element a R in a zass. 

Now suppose {:R(al ) :R(a2) ••• :R(ag )} is a repre­
sentation of A(~, co), i.e., a ray representation of ~ 
with factor system {co}. An immediate consequence of 
the preceding formalism is that if :R is not equivalent 
to one of the ~(ct), it must be equivalent to a direct sum 
of them. Let 

:R ""' EB!j(a)(:R)~("), 

r' ,. 
Pl 
p. 
P3 
r3 
r 
," 
p~ 
P; 
p~ 

(<Z) 

1 ,. 
r' 
1 
2 
3 
r· 
r 
r" 
l' 
2' 
3' 

r' 

,. r' 
-1 -,' 
" -1 

-3 -2 
1 -3 
2 1 
," , 
r3 r' -, _,3 
3' -2' 
l' 3' 

-2' -1' 

Pl p. P3 

1 2 3 
3 -1 -2 
2 3 -1 

-1 " r2 
-r' -1 r' 
-r' -,' -1 

1 ' 2' 3' 
3' l' 2' 
2' -3' -1' _,3 -r r' 

-r· _ra -r 
-r " r3 

(The notation aR has been replaced by R for each 
element of De.) The element r corresponds to a rota­
tion by 600 around the six-fold axis, while PlP2' Pa, 
P~' p~, and p~ correspond to various 1800 rotations 
around the axis shown in Fig. 1. (These are indicated 
by the numbers 1, 2, 3, 1',2', and 3' in the table.) 

FIG. 1. The group of rotations in De = D. X c •. 

where the integer j<<z)(:R) is the frequency of~(a) in:R, 
or the (IX) contents of:R. Now one has 

/<Z)(:R) = Tr :R(P:;» = /<Z) Tr :R(p(a», 

which by (48) expands to 

j(ct)(R) =.! ! o(CR)x(<Z)*(aR;) Tr :R(aRJ (50) 
grasses 

j 

It is an easy matter to obtain rass-IR orthogonality 
relations. Substituting (49) into (48) and comparing 
coefficients yields 

while substitution of (48) in (49) yields 

o( C RL) '" (P)( ) (P)( ) _ ~ ---.c..X aRLX aR; -ULj. (52) 
g (P) 

7. CALCULATING CHARACTERS: AN EXAMPLE 

The following is a table [see (6)J of A(D6co) derived 
from a spin or representation ~(t) of 0(3): 

, 
r P. 

,. ,. , l' 2' 3' 
-r _r3 ," -3' -1' 2' 

r· -r r3 2' -3' l' 
-1' -3' -2' ,3 r r" 
-2' -1' 3' r· ra -, 

3' -2' l' -r ," -ra 
-1 -r' ,. • -1 -2 3 

r' -1 r' 3 -1 2 
-r' -r' -1 -2 -3 -1 

1 -3 2 -1 r' -," 
2 1 3 -ro -1 -r' 

-3 -2 1 r' ,. -1 

There are three rasses and three zasses. The rass 
sums are kl = 1, k2 = r2 - r4 and ka = r - r5. These 
three form the following algebra: 

The minimal equations satisfied by k2 and ks are 
the following: 

(k2)2 + k2 - 2kl = 0, (kS)3 - 3kl = 0, 

with the roots (1, -2) for k2' and ev'J: -v'3, 0) for 
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ka . These roots will serve (sometimes repeatedly15) 
as coefficients O(CR)X<P)(aR)I/(P) = a<J,) in (49): 

(P)( ) 
KR = O(CR) IX aR p(P) = Ia~)P(P). (49') 

P z(P) P 

The coefficients are tabulated below: 

1 1 

1 1 

1 -2 

../3 
-../3 
o 

The character table is completed once the values of 
1(<<), I(P), and /(Y) are obtained. The relation (51) gives 
the following simple formula for these: 

(~)Z =! ~ _l_(OCR;x(<<)(aR;») (OCRix(<<)(aRi») 
Z(<<) g '';'8 oC Ri 1(<<) Z(<<) 

i 

= ! I _1_la~~12. 
g i OCR; 

The resulting ray character table of De is shown 
below: 

2 1 

2 1 

2 -2 

../3 
-../3 

o 

This A(Ds, w) has diophantine solution (22) 22 + 
22 + 22 = 12. The characters of other rass elements r4 

and r5 follow from (38). The characters of zass ele­
ments are zero. 

Other "double value" representations of 0(3) 
subduce ray representations of De. The contents of 
these are easily obtained by writing "down" the traces 
of them for 1, r2, and r, using the formula 

X(J/Z)(w) = [sin (J + 1)wI2]/(sin w12) 

(where w = 217/3 for r2 and w = 17/3 for r) and then 
applying (50). 

8. CANONICAL RASSES 

So far it has been assumed that one treated a given 
factor system without transformation, provided it was 
in a "unimodular" form corresponding to (2) and (11). 

16 But the roots themselves (of the minimal equation) will never be 
repeated. If they were, a nilpotent TJ in the center could be con­
structed, and this would be a contagious nilpotent in A(g, 00), since 
TJ"an = 0 = (TJa)(TJa) ••• (TJa) = (TJa)n, contrary to Theorem 1. 

However, the theory of Sec. 5 inclines one to trans­
form to a (generally) different factor system {w'} that 
is p-equivalent to {w} but more convenient to deal with. 
For if 

KR = aR + ER,aR' + . . . (45) 

is a rass sum, one may write a new element 

bR, == ER,aR, (53) 

for each element aR' in the sum where ER' is given by 
(36) as 

WT-l,T 

if R' = T-IRT. Now if all these new elements bR , for 
all the rass sums in A(§, w) are collected along with the 
aR (which we label bR == aR for notational conven­
ience) and the members of zasses a. (which we label 
b. == a.), the resulting set {bR ' •• bs ... bT ••• } is a 
basis of a new ray algebra A(§, w'), which is said to 
have canonical rasses. 

One advantage of A(§, w') is that if { ... M(bR )' •• 

M(b,) ... M(bT ) ••• } is a representation of it, then one 
has 

or 
Tr M(bR,) = Tr M(aR) = Tr M(bR), (54) 

provided b R' and b R are in the same rass. If they are 
both in a zass, then the identity 

Tr M(bR,) = 0 = Tr M(bR) (55) 

holds in any case. 
Furthermore, in this A(§, w') it is true that 

b"-lbR,b,, = w~-l,,,b,,-lRv' (56) 

for any base element b", provided bR , is in a rass. 

9. INDUCTION INVOLVING RAY ALGEBRAS 

The process of induction in groups is well described 
by Coleman1s and Bradley.17 A slight modification of 
their derivation allows us to perform the same opera­
tion with ray algebras without involving a covering 
group. 

The idea is to obtain a representation [labeled 
:R = Ml A(§, w)] of ray algebraA(§, w) if you know 
a representation { ... M(aH) ••. } of a subalgebra 
A(Je, w) of A(§, w) corresponding to a subgroup Je 
of§. 

16 A. J. Coleman, Induced Representations with Applications to 
S" and GL(n), Queens Papers No.4 (Queen's University, Kingston, 
Ontario, Canada, 1966). 

17 C. J. Bradley, J. Math. Phys. 7, 1146 (1966). 
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Proceeding in the manner of Bradley, 17 one con­
structs left co sets of Je in g, 

g = !RJe, (57) 
R 

while singling out one element R from each coset to be 
the Rth coset leader. 

Now, returning to the corresponding ray algebras, 
suppose m vectors {t'¥l 1'¥2· •• l'lj'm} form a basis of 
representation M, 

i=m 

aH l'¥i = !l'¥iM;;(aH). (58) 
i~l 

Let m new vectors {R,¥ 1 R,¥ 2 ••• R,¥ m} be defined for 
each coset leader in (57): 

(59) 

If you pick a leader R such that aR-1agas is an element 
of A(Je, w), (60) becomes 

by (58), which in turn becomes 

i~m 

ag S'¥i = !R'¥.Mii(aR-1agas)/wR-1,R 
i~l 

(61) 

by (59). The vectors {l'lj'l •.• R'Ij'j ... } form the basis of 
the induced ray representation M j A(g, w) == :R. One 
matrix :R(ag) of this is depicted in Fig. 2. 

We now assume that A(g, w) has canonical rasses 
and proceed to compute the traces of the induced 

5th super-column 

Rth super~ row 

representation. One has 

Tr (M j A(g, w»(ag ) 

= ! Tr M(aR-1a9aR)/wR-l,R{c5(Je, R-1gR)}, 
leaders 

R 

where c5 is defined by 

b(Je, R-1gS) == {i, 
0, 

Using (56), one obtains 

if R-1gR E Je, 

if R-1gR ¢ Je. 

Tr (M j A)(ag) = ! Tr M(aR-1gR){c5(Je, R-1gR}, 
le~ers (62) 

which can be converted to a sum over all g using the 
following lemmas with (54) and (55). 

Lemma 1: If a leader R transforms g into h E Je 
(R-lsR = L E Je), then all the members of coset RJe 
will transform g into the class Ch of h in Je. 

Proof" If R-lgR = h is in Je, and if h' is in Je, then 
h'-l(R-lgR)h' = h'-lhh'. This becomes 

(Rh')-lg(Rh') = h'-lhh'. 

Lemma 2: If a leader R fails to transform g into an 
hE.le, then no member of coset R.le can transform g 
into .le. 

Proof" Assume R-lgR = G is not in .le. Then 
(Rh')-lg(Rh') = h'-lGh', and clearly this is not in .le. 

The result is 

Tr (M j A)(ag ) 

=! ! Tr M(aa-1agaa)c5(.le, G-1gG). (63) 
h all 

elements 
aeg 

Now assume that g is in class Cj of g and that ag is in 
the jth rass of A(g, w). Then it follows that 

Tr(Mj A)(ag ) = Tr(Mj A)j = -g- ! Tr M(ah). 

ho(C,) alln"" 
inCjn"" 

(64) 

Assuming that this jth class Ci of g contains classes 
q, q, q, ... , C~j of.le, one has 

Tr(MjA)j = -g-n!jo(C~)Tr(M)~, (65) 
hO(Ci)n~I 

using the notation Tr (M)~ = Tr (M(an» where an is 
any member of rassiS C~ of A(.le, w). 

FIG. 2. The matrix M t .1I;(g, 00) == .R(a.) induced by representation 18 One should note that there cannot be a zass of .11;(.1£,00) within a 
M of ray-subalgebra .11;(.1£, 00). rass of .1I;(g, 00). 
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The formalism is now set up to prove a Frobenius 
reciprocity theorem for ray algebras. Using Bradley's 
notation U) for subduction, letting D(A) denote an 
irreducible representation of A(Je) and ~(a), an 
irreducible representation of A(~), one obtains the 
following theorem: 

Theorem 5: 

la)(D(A) t A(~» = lA)(~(a) t A(Je». 

Proof" Using (50) and (65), one has 

la)(D(A) t A(~» 

= 1 ! O(Cj)X~a).{_g- n~j o(c~)x(A) (i)}, 
grasses i hoe C,.) rasses n n 

of A(g) of A(J(;) 
in OJ 

where X(A)(~) is a character for rass c~ of A(Je). Re­
arranging this equation, one obtains 

j(a)(D(a) t (~» = 1 ! o(c~)x~a)·x(A) (i), 
h all rasses n 

(D of A (Je) 

which, by (50) and the fact that I(a)* = pa), proves 
the theorem. 

With this established, it is an easy matter to prove 
the following two generalizations [Eqs. (66) and (67) 
below]: 

Theorem 6: If A(Je') and A(Je") are two ray sub­
algebras of A(~), D(A)' is an IR of A(Je'), D(B)' is an 
IR of A(Je"), and ~(a) is an IR of A(~). then one has 
the following relations: 

Applying Theorem 5, one has 

fB)"(D(A)' t A(~) t A(Je"» 

= !la)(D(A)' t A(~»l")(D(B)" t A(~», 
(/X) 

which is clearly equal to the left side of (66). 

10. OBTAINING RAY REPRESENTATION 
EXAMPLES 

The reciprocity theorems allow the extension of the 
recursive techniques of Seitz19 and Boerner2o (for 
finding the IR of solvable groups) to the corresponding 
ray algebras. This will be described here without 
detailed proof, and examples will be treated. 

Suppose A(Je) is a ray subalgebra of A(~) corre­
sponding to normal subgroup Je of~ with prime index 
p [O(~/Je) = p]. Then the IR {~(,,) , ~(fJ), ••• } of A(~) 
will be obtained from the IR {D(A), D(B) •... } of 
A(Je) by the process of induction ~(/X) = D(B) i A(~), 
as described in Sec. 9, and by a process called extension 
~(P) = D(B) -+ A(~), which is described now. 

Extension is used when D(B) i A(~) is not an irre­
ducible representation of A(~). This can be checked by 
using Eqs. (65) and (51). In this case, and under the 
conditions listed above, there is an IR ~(P) of A(~) 
such that ~(P) t A(Je) = D(B). Furthermore, the 
representation DCB)G, defined by 

D(B)G(aH) == D(B)(aa-1aHaa) (68) 
wa-l,a 

for a given G in ~ and all aH in A(Je), is equivalent to 
D(B); i.e., 

(69) 

for some matrix b. One may obtain all the solutions 
j tA)'(D(B)" t A(~» I A(Je'» 

I .j. b to (67) by using the unit dyads of A(Je). Clearly then, 
= fB)"«D CA )' t A(~» t A(Je") (66) 

and 

j(A)'(D(B)" t A(Je' n Je"» t A(Je') 

= fB)"(D(A)' t A(Je' n Je"» t A(Je"). (67) 

Proof" The proof of (67) is virtually identical to the 
proof of (66), which is now given. Assuming, as in 
Sec. 6, that 

(D(A)' t A(~» "" E9!la)(D(A)' t A(~»~(a) 
(a) 

and 
~(a) t A(Je") "" E9 ! j(B)"(~(a) t A(Je"»D(B)", 

(B)" 

one obtains the following expression for the right­
hand side of (66): 

j(B)"(D(A)' t A(~) t A(Je"» 

= !la)(D(A)' t .4;(~»j(B)"(~(a) t A(Je"». 
(a) 

(70) 

where the allowed constants p'<"), p.(P), ••• , are ob­
tained by inspecting A(~). A number of inequivalent 
IR {~(/X), ~(P), ••• } of A(~) will result, corresponding 
to the number of distinct allowed constants (p.(/X) , 

p.(P), ••• ). 

A. Double-Valued Representations of Dn 

The group Dn has a cyclic subgroup Cn of index 2, 
which is generated by an element R which satisfies the 
relation 

(71) 

The ray algebra A(Dn) derived from spinors has a ray 
subalgebra A( Cn), which is generated by an element 

19 C. M. Seitz, Ann. Math. 37,17 (1936). 
20 H. Boerner, Representations o/Groups (Interscience Publishers, 

Inc., New York, 1963), p. 95. 
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-I 

27Ti 
e :3 

FIG. 3. Irreducible 
representations of the 
generator of c •. 

aR which satisfies the relation below: 

(aR)n = -al. (72) 

Now there are as many IR (labeled as {D(O) DO) ... (R) (R) 

Dl~l' .. }) of Cn as there are nth roots of unity. 
Similarly, there are as many IR { ... D(A) (aR) ... } of 
A( Cn) as there are roots of minus one. In fact, for 
Cn one has D(A)(R) = [an nth root of (1)], while for 
A(Cn) one has D(AI(R) = [an nth root of (-1)]. 

Now the IR ilea) of Dn(A(Dn» are obtained from the 
IR D(A) of Cn(A(Cn» by induction or extension, de­
pending on whether case (a) or case (b), shown below, 
is relevant. 

Case (a): D(A) not equal to D(A)·. In this case 

D(A) i Dn 

-- D(A)· i Dn[D(A) i A(Dn) '"" DCA)· i A(Dn)] 

and induction yields one two-dimensional IR of 
Dn [of A(Dn)] for each conjugate pair D(A) and D(A)". 

Case (b): D(A) equals D(A)". In this case extension 
yields two inequivalent one-dimensional IR of 
Dn [of A(Dn)]. 

Examination of the following tables for n = 2,3,4, 
and 6 should make this clear, and the results for 
arbitrary n should thereby be transparent. 

n = 6. The IR of Cs and A( Cs) are indicated by 
vectors in complex plane in Figs. 3 and 4, respectively. 

- 7Ti 

-e 6" 

'lTi 
-e 6" 

~ 
e 2 

-"7Ti 

e :3 

17"i 
e6 

-'lTi 

e 6 

FIG. 4. Irreducible 
representations of the 
generator of A(C., co). 

These yield IR of Ds and A(Ds), whose character 
tables are drawn below: . 

(extended) 

(extended) 

(induced) 

(extended) 

(extended) 

(induced) 

1 

1 

2 

1 
1 

2 

(induced) 

(induced) 

(induced) 

1 

1 

-1 

1 

1 

-1 

2 

2 

p 

1 

-1 

0 

1 

-1 
0 

2 -2 

1 
1 

2 

-1 
-1 
-2 

1 1 

1 -1 

-1 0 

-1 -1 
-1 1 

1 0 

n = 4. The IR of C4 and A(C,) are indicated in Figs. 
5 and 6, respectively. These yield IR of D4 and A(D,) 

FIG. 5. Irreducible 
representations of the 
generator of C •. 

-I 

"7Ti 

e 2 

with the following character tables: 

(extended) 

(extended) 

(extended) 

(extended) 

(induced) 

1 

1 

1 
1 

2 

(induced) 

(induced) 

R2 Ra C1 

1 1 1 

1 -1 -1 

1 -1 1 

1 1 -1 

-2 0 0 

1 R 

~ 
~. 

1 

1 

-1 

-1 

0 

n = 3. The IR of Ca and A(Ca) are indicated in 
Figs. 7 and 8, respectively. These yield the following 
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m. 
e 4 

- 'lTi 
4'" 
e 

FIG. 6. Irreducible 
representations of the 
generator of 

A(C" (0). 

character tables for the IR of Da and A(Da): 

(extended) 

(extended) 

(induced) 

(extended) 

(extended) 

(induced) 

1 

1 1 

2 -1 

1 -1 

1 -1 

2 1 

I 

-1 

o 

i 

-i 

0 

Note that A(Da) is p-equivalent to Da. 

n = 2. The IR of C2 and A(C2) are indicated in Figs. 
9 and 10. 
The resulting IR of D2 and A(D2) are characterized as 
follows: 

1 R R' R" 

(extended) 1 1 1 

(extended) 1 -1 1 -1 (induced) 1 
(extended) 1 -1 1 -1 m 
(extended) 1 -1 -1 1 

B. The Groups T and D 

The tetrahedral group T is of order 12 and contains 
the group D2 discussed in the preceding section. The 
representations of a nontrivial ray algebra ACT), 
derived from spinors, are characterized below along 

m 
e :3 

-, 

-'lTi 
e3 

FIG. 7. Irreducible rep­
resentations of the gen­
erator of Ca. 

2'ITi 

e 3 

1 FIG. 8. Irreducible repre­
sentations of the generator 
of A(Cs,oo). 

)-----

with the representations of the group T itself: 

T 1 r R(2) 

1 1 1 1 

e7Ti
) 

(-27Ti) 1 1 exp 3 exp --
3 

(-27Ti) e7Ti
) 1 1 exp -- exp 3 

3 

3 0 0 -1 

A(T) at ar ar2 

2 1 1 

e7Ti
) 

( -27Ti) 2 exp 3 exp --
3 

(-27Ti) e7Ti
) 

2 exp -- exp 3 
3 

Here rand ,2 indicate the classes (rasses) of 1200 

rotations around the points and faces of a tetrahedron, 

FIG. 9. Irreducible , 
representations of the . ... 
generator of Ca. -I 

while the R(2) indicates the class {R, R', R"} of 1800 

rotations about the tetrahedron edges. [Clearly, 
aR(2) is in a zass of A(T).] Note that all the representa­
tions of A(T) are extensions of the one IR of A(D2). 

FIG. 10. Irreducible representations of the gener­
ator of A(C2 , (0). 
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The octahedral (cubic) group 0 is of order 24 and 
has T as a subgroup. The representations of 0 and a 
nontrivial ray algebra A(O) are characterized below. 
Here class r of 0 contains classes rand r2 of T. R( 4) 
and R(2) are classes of 900 and 1800 rotations, 
respectively, around cube faces. i(2) is the class of 
1800 rotations around cube edges. 

o 
(extended) 

(extended) 

(induced) 

(extended) 

(extended) 

A(O) 

1 

1 
2 

3 

3 

(extended) 

(extended) 

(induced) 

r 

1 
1 

-1 
0 

0 

al 

2 

2 

4 

1 1 1 
-1 1 -1 

0 2 0 

-1 -1 1 
1 -1 -1 

a r aR(4) 

.J2 
1 -.J"2 

-1 0 

The first two IR of A(O) are simply extensions of the 
one real IR of A(T). The third one can be induced by 
either of the complex IR of A(T). 

The diophantine solution of A(O) is 22 + 22 + 42 = 
24. One sees from Theorem 1 that the solution 
22 + 22 + 22 + 22 + 22 + 22 = 24 could never exist 
for any ray algebra of O. 

11. OUTER PRODUCTS OF RAY 
REPRESENTATIONS 

Suppose one has a number n of different non-p­
equivalent factor systems defined over a group g, 
such that 

{w~~s = l}{w~~s' .. }{ ... w~~s' .. } ... { ... w~:s" .}. 

(Here W(l) is the trivial factor system.) Suppose also 
that no other factor system can be defined over g 
that is not p-equivalent to one of these. 

Denote by {~(~), ~(~)', ... } the set of all IR of 
A(g, w(~» and by {~(P), ~(P), ••• } the IR of A(g, W(b»). 
Thus, 

~(~)(aR)~(~)(as) = w~~S~(aRS)' 
~(P)(aR)~(P)(as) = w~~S~(aRS)' (73) 

Consider the outer (tensor) products of two ofthese 
representations: 

{ ... ~(~)(aR) ® ~(P)(aR)"'" ~(IZ)(as) ® ~(P)(as)," .}. 

These form a ray representation ofg: 

[~(IZ)(aR) ® ~(P)(aR)][~(IZ)(as) ® ~(P)(as)] 

, = w~~sw~~s[~(IZ)(aRS) ® ~(P)(aRS)]' (74) 

But by (74) the factor system of this representation is 
(in general) p-equivalent to some other factor system 
wId. Therefore (~(IZ) ® ~(P») can be reduced by simi­
larity transformation 1), and projective transformations 
{ ••. cR ••• Cs ••. }, to a direct sum of the IR 
{~(y), ~(Y)'} of A(g, w(e»): 

bl[CR~(IZ)(aR) ® ~(P)(a~]1) 

I ~(Y)(aR) I 

= (75) 

One may use the unit dyads to compute the constants 
CR and the matrices 1) indicated in (75). The compo­
nents of the 1) matrix are Clebsch-Gordan coefficients. 

One should note the difference between the pre­
ceding theory and that of Rudra. For example, in Eq. 
(21) of his first paper? he defines the direct product of 
two representations r p and r. belonging to a partic­
ular factor system {WR.S} by 

r P0.(R)ik.iL == (r P(R) ® rp(R»ik.iL 

[ J
-tu 

= Jl wR.pwP.R rp(R)i;r.(R)kL 

and supposedly obtains a representation r p0• that 
belongs to that same factor system. But we have shown 
that this is impossible if {wR.S} is not p-equivalent to 
the trivial factor system. 
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Random Walks on Lattices. ID. Calculation of First-Passage Times 
with Application to Exciton Trapping on Photosynthetic Units· 

ELLIOlT W. MONTROLL 
Department of Physics and Astronomy, University of Rochester, Rochester, New York and 

Instituut-Lorentz, Leiden, Netherlands 

(Received 1 September 1968) 

The following statistical problem arises in the theory of exciton trapping in photosynthetic units: 
Given an infinite periodic lattice of unit cells, each containing N points of which (N - 1) are chlorophyll 
molecules and one is a trap; if an exciton is produced with equal probability at any nontrapping point, 
how many steps on the average are required before the exciton reaches a trapping center for the first 
time? It is shown that, when steps can be taken to near-neighbor lattice points only, as N ...... 00, our 
required number of steps is 

(

N2/6' linear chain, 

(n),....., 7T-1Nlog N, square lattice, 

1.5164N, single cubic lattice. 

The correction terms for medium and relatively small N are obtained for a number of lattices. 

1. INTRODUCTION 

Photosynthesis in plants is the employment of light 
energy for the production of sugars and carbohydrates 
from CO2 and H20, according to the chemical reac­
tion 

The detailed conversion occurs in an object called a 
photosynthetic unit which, among other things, 
contains a network or lattice of chlorophyll mole­
cules. The long chain of events which starts with the 
absorption of a photon and ends with the production 
of the sugar can be separated into three main processes: 

(a) A photon is absorbed by a chlorophyll mole­
cule, exciting the molecule. 

(b) The excitation or "exciton" is transferred from 
one chlorophyll molecule to a neighboring one on the 
lattice with the original excited molecule reverting to 
the ground state. This process continues, the exciton 
enjoying a random walk through the lattice. 

(c) The exciton finally reaches a trapping center, 
triggering a detailed chemical reaction which is 
involved in the formation of sugar. 

We shall be concerned with the statistical aspects 
of process (b) in this paper. A detailed survey of the 
current understanding of the various processes can 
be found in the excellent review by Duysens. l 

Investigations are usually carried out on pigmented 
algae or bacteria suspended in a liquid medium. One 
type of experiment involves the radiation of the 

• This work was partially supported by the U.S. Office of Naval 
Research. 

1 L. N. M. Duysens, Progr. Biophys. 14, f (1964). 

organism with light of known intensity and frequency, 
observing the rate of O2 production. As early as 1932 
Emerson and Arnold2 probed the time lapse between 
processes (a) and (c) by radiating the specimens with 
light pulses of very short duration separated by much 
longer time intervals and observing the response of 
the system through O2 formation. One factor contri­
buting to the length of time between the original 
excitation and the formation of the O2 molecule is the 
duration of the random walk discussed in (b) before 
trapping. 

A maximum "flash yield" of oxygen per photon is 
obtained when the duration of the pulse is very short 
(say, < 10-5 sec) and the interval between pulses is 
very long (say, 0.05 sec). Various experimentsl 

indicate that eight to ten photons are required to 
liberate an O2 molecule and the maximum O2 yield 
is about one O2 molecule per 200-500 chlorophyll 
molecules. It has been suggested that there must be 
about 250 chlorophyll molecules per trap in order to 
obtain the observed O2 yields. 

The modell which evolves from such experiments 
(and a statistical problem which it suggests) is as 
follows: The chlorophyll molecules form some kind 
of regular lattice in which is imbedded, in a regular 
way, one trap for every N chlorophyll molecules, N 
being in the range 250-500. A photon may be absorbed 
with equal probability by any chlorophyll molecule 
and then, by an exciton transfer mechanism, walk 
randomly through the lattice until it reaches a trapping 
center for the first time, at which moment it is absorbed 
and process (c) starts. 

2 R. Emerson and W. Arnold, J. Gen. Physiol. 15, 391 (1932). 

753 
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The statistical problem which is then to be discussed 
in this paper is: Given an infinite lattice of unit cells, 
each cell containing N points of which (N - 1) are 
chlorophyll molecules and 1 is a trap; if an arbitrary 
chlorophyll molecule is excited, how many steps 
must be taken by the exciton in a random walk 
before it is trapped? 

Actually, we consider the equivalent problem of a 
finite lattice of N points with a trap at the origin and 
allow the random walk to take place on the torus 
which is formed by connecting the opposite ends of 
the unit cell. Practically all the information and ideas 
required to discuss this problem have been given in 
the first two papers of this series.3•4 

Pearistein5 •6 and Robinson7 have already discussed 
this problem to some extent for a square lattice, and 
KnoxS has treated it for square and triangular lattices 
by direct machine inversion of the transfer matrix. 
Here an analytic solution for arbitrary lattices will be 
obtained in terms of asymptotic series in 1/ N. In some 
special cases in which there is an equal probability 
for a random walker to go to any nearest-neighboring 
point on a given step, we find the average number of 
steps (n) before trapping to be: 

(a) one-dimensional chain: 

(n) = N(N + 1)/6; 

(b) square lattice: 

(n) = ,"-IN In N + 0.195056N - 0.1170 

- 0.051N-I + O(N-2); 

(c) simple cubic lattice: 

(n) = 1.5164N + O(N!). 

The two-dimensional result seems to give the best 
agreement with light flash experiments.5 

2. GENERAL FORMALISM 

Let Fn(s) be the probability that a lattice walker 
which starts at the origin arrives at lattice point s for 
the first time after n steps. Also define 

00 

F(s, z) = I znF n(S) (1) 
n=l 

to be the generating function of the set {Fn(s)}. It can 

8 E. W. Montroll, in Proceedings of the Symposium on Applied 
Mathematics, Vol. 16 (American Mathematical Society, Providence, 
R.I., 1964), p. 193. 

4 E. W. Montroll and O. Weiss, J. Math. Phys. 6, 167 (1965). 
6 R. M. Pearlstein, Ph.D. dissertation, University of Maryland 

(1966). 
I R. M. Pearlstein, Brookhaven Nat!. Lab. Symp. 19, 19 (1967). 
• O. W. Robinson, Brookhaven Nat!. Lab. Symp. 19, 16 (1967). 
8 R. S. Knox, J. Theoret. BioI. 2.1, 244 (1968). 

be shown that3.4 

F(s, z) = [pes, z) - ~.,o]IP(O, z), (2) 

where pes, z) is the generating function 

00 

pes, z) = Iznpn(s), (3) 
n=O 

with P n(s) being the probability that a walker starting 
from the origin arrives at s for the first time after n 
steps, independently of how many previous visits he 
already had at s. 

Suppose that the origin is a trapping point and that 
at time t = 0 a walker has the same probability of 
being at any nontrapping point on the lattice. Then 
the generating function for the probability that a 
walker will be trapped in a given number of steps is 

1 
Gk(z) = -- I F(s, z) 

N - 1.,,0 

= _1 _ {! F(s, z) - F(O, z)} (4) 
N -1 • 

on a d-dimensionallattice with m x m X • • . x m = 
md = N lattice points and periodic boundary con­
ditions (i.e., walk on a d torus). N - 1 is the number 
of nontrapping points. Then, from (2). 

Gk(z) = _1 _ {I [pes, z) - ~ •. o] _ 1 + _1_} 
N - 1 P(O, z) P(O, z) 

= _1 _ {-I + ! pes, z)IP(O, z)}. (5) 
N - 1 8 

However, since !.Pn(s) = 1, we find 

! pes, z) = ! zn I Pis) = ! zn = 1/(1 - z), 
B n 8 n 

so that 

GaCz) = _1_ {[(I - z)P(O, Z)]-l - I}. 
N-l 

(6) 

Note that P(O, z) is the generating function for all 
walks which start and end at the origin. 

The average number of steps required to reach the 
origin for the first time (i.e., to be trapped) is 

(n) = oG,dozl.=1 = N ~ 1 ~ {(1 _ Z~P(O, Z)}.=l· (7) 

This is our basic formula. 
To obtain an idea of how (7) is to be applied, 

consider a ring of N equally spaced lattice points. 
Suppose that when a walker is at any of these points, 
the probability is t that his next step will be to either 
one of his neighboring lattice points. Then it is easy 
to show that the generating function for all walks 
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which start and end at the origin is3 

1 N-l 
P(O, z) = - ! 1/[1 - z cos (27Tk/N)J 

N k=O 

(8) 

(the summation is carried out in Appendix A), 
where 

x = [1 - (1 - Z2)!]/Z 

= 1 - 2!(1 - z)! + (1 - z) - (!)~2(1 - z)tt 

+ (1 - Z)2 - ••• , (9) 

so that, as z-+ 1, 

1 
(1 - z)P(O, z) 

= N _ N(N
2 

- 1)(1 - z) + 0(1 _ Z)2. (10) 
6 

An immediate application of (7) with d = 1 then 
yields the following expression for the average number 
of steps required for a walker to be trapped: 

(al (bl 

FIG. 1. See text for explanation. 

end at the origin is3•4 (the r's being integral compo­
nents of a lattice vector r) 

m-l m-1 m-1 

P(O, z) = m-d ! ! ... ! [1 - zA(27Tk/m)]-1. (14) 
k)=O k2=O kd=O 

One finds for structure function of a walk on a 
two-dimensional square lattice in which the transition 
probabilities are pes) = 0, except 

p(l, 0) = p(-l, O) = p(O, 1) = p(O, -1) = t, (lSa) 

A(O) = (ei91 + e-i91 + ei92 + e-i82)/4 = HCl + c2), 

(lSb) 

where 0 = (01 , ( 2) = i02 + j02 and cj = cos OJ. 
The case exhibited in Fig.1(a)with the weight i for 

steps to any of the four nearest-neighbor points as 
well as to the identified two next-nearest neighbors 
(out of the possible four next nearest neighbor), i.e., 
pes) = 0, except for (n) = (N - 1)-lN(N2 - 1)/6 

= N(N + 1)/6. (11) p(l, 0) = pC-I, 0) = p(O, 1) = p(O, -1) 

One has to work a little harder to establish similar 
formulas for two- and three-dimensional lattices. We 
consider first the class of walks in which the probability 
of a walker making a step represented by a given 
displacement vector is the same at every step. The 
cases of walks on two-dimensional square and 
triangular lattices are of this class, as is the case of a 
simple cubic lattice. The two-dimensional hexagonal 
lattice is not of this class. It corresponds to the 
situation in which one set of transition probabilities is 
appropriate for even-step numbers and another for 
odd-step numbers. 

Let pes) be the probability that at any step a random 
walker makes a displacement s. Then 

! pes) = 1. (12) 
• 

If one defines the "structure function" A(O) for the 
walk by the summation over all lattice points 

A(O) = ! pes) exp iO . s, (13) 
• 

then, on a d-dimensional simple hypercubic lattice of 
(m X m X •.• X m = nzd = N) lattice points, the 
generating function for those walks which start and 

= p(1, -1) = pC-I, 1) = t, (I6a) 

yields the structure function 

A(O) = [cos 01 + cos O2 +, cos (01 - ( 2)]/3. (I6b) 

This example is of interest because, by shearing the 
square lattice of Fig. 1 (a), it can be made into the 
triangular lattice of Fig.l(b). Since there is a Olle-to-one 
correspondence between every walk which starts and 
ends at the origin of the sheared lattice and every 
walk which starts and ends at the origin of the 
original lattice, the statistics of such walks on the 
triangular lattice which have equal probabilities of a 
walker stepping to any of the 6 nearest-neighbor 
points can be discussed in terms of walks on a square 
lattice with the structure function in (16b) . 

Structure functions (ISb) and (I6b) are special 
cases of a more general class of random walks on a 
square lattice for which pes) = 0, unless 

p(I,O) = pC-I, 0) = p(O, 1) = p(O, -1) = p, 

(I7a) 

p(I, 1) = p( -1, -1) = ql; 

pel, -1) = pC-I, 1) = Q2, (I7b) 



                                                                                                                                    

756 ELLIOTT W. MONTROLL 

with 4p + 2ql + 2q2 = 1. Then 

A(O) = 2p(cos 01 + COS OJ + 2q1 COS (01 + (2) 

+ 2q2 COS (01 - ( 2), (18) 

Equation (lSb) corresponds to q1 = q2 = ° and 
p = !; (l6b) corresponds to q1 = 0, q2 = P = i. A 
walk on which the probability of a jump to any 
second neighbor is a fraction IX of that to a nearest 
neighbor is characterized by 

q1 = q2 = IXP, so that 4p(l + ex) = 1. (19) 

The structure function of a three-dimensional 
simple cubic lattice is 

A(O) = (l)(cos 01 + cos O2 + cos OJ. (20) 

We shall now employ (7) and (14) to find the average 
number of steps required for a walker to be trapped 
on a simple cubic lattice when the number of lattice 
points per trap is very large. From (14), 

1 m-1 m-l m-1 

P(O, z) = -; I I I [1 - lz(c1 + C2 + C3)]-1 
m kl=O k2=O ka=O 

= {m3(1 - Z)}-1 + tfo(O, z). (21) 
Here 

tfo(O, z) = m-3 I' [1 - Z(C1 + C2 + c2)/3]-1 (22) 

is the sum (21) with the origin kl = k2 = k3 = ° 
omitted. The function tfo(O, z) has no singularity at 
Z = 1; indeed, as m -- 00, we set 21Tk/m = 0 and 
21Tfm = dO to obtain 

tfo(O, 1) --~ fIf[1 - l(cos 01 + cos O2 
(21T) 

o 

+ cos ( 3)]-1 dOl d02 d03 

= ~ [18 + 12J2 + 10J3 - 7..(6] 
31T 

x K2[(2 - J3)(J3 - .J2)] 

= 1.51638 60591, (23) 

where K(k) is the complete elliptic integral of the first 
kind. This integral was first calculated by Watson.9 

Then, from (7), 

(n) = lim ..E... { 1 } 
z-+1 oz m3(1 - z)P(O, z) 

= lim..E... {I - m3(1 - z)tfo(O, 1) + 0(1 - z)i} 
z-+1 oz 

~ Ntfo(O, 1) = 1.51638 60S91N + 0(N+1), (24) 

where N = m3 , the total number of lattice points 
per trap. 

• G. N. Watson, Quart. J. Math. Oxford, 10,266 (1939). 

It is interesting to note that this result for the 
average number of steps required for trapping could 
have been deduced from the formula8•4 

(n')/N ~ tfo(O, 1) - (!TTl) + 0(1/12
) (25) 

for the average number (n') of steps required by a 
random walker who starts from the origin to reach the 
point (/1' 12 , IJ [with 1 = (l~ + l~ + l~)l] for the first 
time on a simple cubic lattice with N lattice points. 
A remarkable property of this formula is that, when 
I> 25, the ratio of average number of steps required 
to go to a given lattice point for the first time to the 
total number of lattice points becomes independent 
of the location of the lattice point. As the lattice 
becomes larger and larger, this applies to a larger 
fraction of lattice points. Now the average number of 
steps to go from the origin to I for the first time is the 
same as the average number of steps to go from 1 to a 
trap at the origin if pes) = p( -s) for all s [pes) being 
defined above Eq. (12)]. Hence, if we average over all 
lattice points where a walker might have started on 
his way to a trap at the origin, as N -- 00 we see that 

<n) "" (n') "" Ntfo(O, I), 

which is exactly (24). 
This reasoning can also be employed to find (n) 

for a two-dimensional lattice. The formula3.4 which 
corresponds to (25) for the average number of steps 
required to reach (II' 12) for the first time is 

(n') ,....., (N /1TG1G2) log A, (26a) 
where 

and 

G~ = I s~p(s) 

and it is postulated that 

~ SIS2P(S) = 0. 

(26b) 

This vanishing correlation postulate is not satisfied 
for the case (17) when q1 ;c q2 for 

(26c) 

For the present we limit our discussion to the case 
G~ = G~. For square lattice walks with symmetrical 
nearest-neighbor and next-nearest-neighbor step prob­
abilities, ql = q2 = q and 

G~ = G~ = 2p + 4q = (1 - 2p), 
so that 

(n') log [(l~ + 1~)1/(1 - 2p)] 
-"-I 

. N 1T(1 - 2p) 
(27) 

This formula is good except for those values of 
(II' 12) close to the origin. However, as N -- 00 this 
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represents a vanishingly small fraction of the lattice 
points. Now I == (l~ + I~)t on the average is some 
fraction, say f of m = .IN; i.e., an average lattice 
point is some fraction of the distance to the boundary 
of the unit cell andfis not too far from t. However, 
since this average I = fm = feN)! appears in the 
logarithm in (27), as N -+ 00 the result is insensitive 
to f and we again find that as N -- 00 

. ) (') N log [(fm)/(l - 2p)] 
(n 1"'-.1 n 1"'-.1 

'IT(1 - 2p) 

= N log N + O(N). 
2'IT(1 - 2p) 

(28) 

When the jumps are to nearest-neighbor points only, 
p = t and 

1 
(n) 1"'-.1 - N log N + O(N). (29) 

'IT 

The above reasoning is not applicable to the one­
dimensional case since the formula (n') = seN - s) 
depends sensitively on the lattice point s to which the 
walker is going (from which it starts in the case of the 
walk which starts at s and ends at the origin). All one 
can say without the detailed averaging process which 
was carried out in the derivation of the exact formula 
(11), (n) = N(N + 1)/6, is that an average s is O(N), 
so that (n) 1"'-.1 (n') = O(N2). 

While Eq. (29) is good for very large N, we see 
that when N"" 250, which is the range of interest in 
the photosynthesis application, log N is not so large 
that the corrections of O(N) can be neglected. Their 
calculation is a straightforward application of (7) 
but requires good estimates of cp(O, 1) for not too 
large values of N. This is discussed in detail in Appen­
dix B, whose results can be summarized as follows: 
as z-+l, 

1 
P(O, z) = + {cilog N + C2 + cs/N 

N(l - z) 

+ C4/N2 + ... } + 0(1 - z)t. (30) 

Hence, from (7), 

(n) = {clN log N + c2N + Cs 
+ c4/N + .. '}N/(N - 1), (31) 

where the constants CI , C2 , ••• depend on the lattice 
and are listed in Eq. (B38) of Appendix B. The first 
one, CI' has the value 

where the q's and p are discussed in Eqs.(17-19).In 
particular, on a square lattice and on a triangular 

lattice on which only nearest-neighbor jumps are 
allowed and are given equal weight, 

{
1/'IT' 

CI = .J3/(2'IT), triangular lattice. 

square lattice; 
(33) 

The numerical analysis of (n) for the complete 
range of N going from 4 to 00 is presented in the next 
section . 

While (32) is not valid for a hexagonal lattice, (31) 
still is. It is shown in Sec. 4 that for a hexagonal 
lattice 

(33') 

3. NUMERICAL RESULTS FOR SQUARE AND 
TRIANGULAR LATTICES 

The constants C2 , Cs, and C4 for square lattices are 
[see Eq. (B38) Appendix B, with r = 1]: 

_ 2 
C2 = (6 - 12p) 1 + - [y + log (2/'IT)] 

'IT 

- 'IT-I log (1 + 'Yj) 

4 + - [e-21T + te-41T + !e-6 .. + ' . ,], (34) 
'IT 

Cs = t(2 - 4p)-1{(7 - 36p)/6 + 'IT(3'Yj - 1)/36 

+ (4'IT/3)e-21T(1 + 3e-2.- + 4e-b + . , .) 
- 4'IT(5p - 1)(1 + 6e-2.-

+ 12e-b + ' . ')/(1 - 2p)}, (35) 

C = 7 'ITs + 11 'ITs + 9'IT
s 
{(ll _ 5'IT)e-211 

4 21600 1440 4 10 

+ C1807 - 90'IT + 4'IT2)e-4 .. 

+ (6 g 2 _ 420'IT + 12'IT2)e-61T + ' , ,}, (36) 

'fJ = (6p - 1)/(1 - 2p), (37) 

y = lim (1 + 1. + 1. + ... + 1. - log n) 
2 3 n 

= 0.577 215 665. 

Numerically, when only steps to nearest-neighbor 
points are allowed and all of these are given equal 
weight, i.e., p = ! and 'fJ = , = 1, we have 

CI = 0.318 309 886, Cs = -0.1169 6481, 

C2 = 0.195056 166, C4 = -0.0514 5650. (38) 

The accuracy of Eq. (31) as a function of N (using 
four terms) for this simple square lattice case can be 
investigated by comparing results based on (31) with 
exact results for N = 4, 9, 16, 36, 64, and 144. 
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The input for these exact results is the list of cosines: 

cos 0° = -cos 180° = 1; cos 90° = cos 270° = 0, 

cos 30° = cos 330° = -cos 150° = -cos 210° = h/3, 
cos 45° = cos 315° = -cos 135° = -cos 225° = h/i, 
cos 60° = cos 300° = -cos 120° = -cos 240° = t. 

Since cos 15° = .j2(.j3 + 1)/4 and cos 75° = .j2 X 

(.j3 - 1)/4, the functions of all the angles required 
for N = 576 are available in a form from which an 
exact number for (n) can be derived. The manner in 
which this list is employed for the values of N given 
above can be seen by considering the case m = 4, 
i.e., N = 16. The required function P(O, z) is 

P(O, z) 
a 3 

= T~ L L {1- (Z/2)[cos(27Trl/4) + cos (27Tr2/4)]}-I. 
rl=Or.=O 

(39) 

The relevent angles in this case are () = 27Tr/4 = 
0, 90°, 180°, and 270°, which result successively by 
letting r = 0, 1,2,3. The values of the sum of the two 
cosines which correspond to all pairs (rl' r2) are 
exhibited in the table below 

rl/r2 0 1 2 3 

0 2 1 0 1 
1 1 0 -1 0 
2 0 -1 -2 -1 
3 1 0 -1 0 

from which it is clear that 

P(O,z) = - --+-- + --+-- + 6 1{ 1 4 4 1 } 
16 1 - z 1 - tz 1 + 1z 1 + z 

= - -- + - + 0(1 - z) . 1 {I 103 } 
16 1- z 6 

Hence 

1/(1 - z)P(O, z) = 16{1 - 103 (1 - z)/6 

+ 0(1 - Z)2}, 
and from (7) 

(n) = ~~ :z {I - 103(1 - z)/6 + 0(1 - Z?}.=l 

= H(~~3) = (17.16666· .. )H-. 

The cases m = 3, 6, 8, and 12 (i.e., N = 9, 36, 64, 
144) follow in the same manner. The results are 
summarized in Table I. Notice that, even when N is as 
small as 4, the error resulting from the use of Eq. (31) 
is only 8 parts in 250, while when N = 144, which is 
approaching the range of practical interest, it is only 
one part in 50000. 

TABLE I. Exact values of (n) compared with those 
based on Eq. (31) for various numbers N of lattice 
points per trap on a square lattice. (n) is the average 
number of steps before a walker is trapped when only 
jumps to nearest-neighbor lattice points are possible 

and all are given equal weight. 

N 

4 
9 

16 
36 
64 

144 

(n)(N - 1)/N (exact) 

5/2 = 2.50 
8 = 8.00 

103/6 = 17.17 
3,359/70 = 47.98 

69,329/714 = 97.099 
7,680,923/30,030 = 255.755 

Based on 
Eq. (31) 

2.42 
7.92 

17.12 
47.97 
97.091 

255.770 

We can proceed in the same way to discuss walks 
on a triangular lattice for which at each step the 
walker has an equal probability of stepping to any 
of the six nearest-neighbor points. In this case p = 
q2 = i- and ql = O. Also r = 1v3 and 'YJ = t. Then, 
from (B38) and (B33), if we let oc = 7TV3, we have 

C1 = 1/3 = 0.275664448, (40a) 

C2 = ! + .j3(y - log 7T + t log 3)/7T 
- (2/7T).j3(e-« - !e-2~ + te-3a - ••• ) 

= 0.235214021, (40b) 

1 2.j3 (-~ 3 -2~ -32) 
Ca = - 4 - -9- e - e + 4e ... 

= -0.251407596. (4Oc) 

Exact results for triangular lattices are given in 
Table II. These are to be compared with the numbers 
in the last column which are obtained from Eq. (31) 
with the c/s given by (40). 

4. LATTICES WITH MORE THAN ONE 
LATTICE POINT PER UNIT CELL 

The derivation of our basic equation (7) has to be 
extended somewhat to cover lattices which have more 
than one lattice point per unit cell. The special case of 
interest here will be the hexagonal lattice, but we can 
go rather far with the general problem. 

TABLE II. Exact values of (n) for triangular lattice compared 
with those based on Eq. (31). Walker steps to nearest-neighbor 
points only, and all six possible steps are given some weight, t. 

N 

4 
9 

16 
36 
64 

144 

(n)(N - l)/N (exact) 

9/4 = 2.25 
22/3 = 7.33 
63/4 = 15.75 

2627/60 = 43.78 
2469/28 = 88.179 

318,962,951/1,381,380 = 230.902 

Based on 
Eq. (31) 

2.22 
7.32 

15.74 
43.78 
88.176 

230.900 
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The unit cells will be identified by the vectors {s}, 
which are the same as those used earlier in this paper. 
The numbers {j} will be used to identify various points 
in a given unit cell. 

The first statistical question to be considered is: 
Let a random walker be at point (j, s) initially; what 
is the probability that after n steps he will be at 
(j', s') when the various transition probabilities are the 
same at each step? We define 

P ( ., , . ) nj,S;j,S 

as the required probability. When there are two 
lattice points per unit cell, it is convenient to introduce 
the matrix 

P ( ' ) _ [Pn(l, s'; 1, s) Pn(l, s'; 2, S)] (41) 
n S, S -, " 

P n(2, s ; 1, s) P nC2, s; 2, s) 

the generalization to cases with more than two lattice 
points per unit cell being obvious. The transition 
probabilities which will apply at every step are 
{PikeS)}; the exhibited member of the set represents 
the probability that a walker at the kth lattice point 
in an arbitrary unit cell will on his next step arrive 
at the jth lattice point of a unit cell which is displaced 
by the vector S from the originally occupied unit cell. 
Clearly, 

(42) 

for all k since the walker arrives with certainty at some 

where 

Aiie) = 2, P1k
ewo8• 

Then, from (42), 

for k = 1,2. 

(49b) 

(50) 

The mechanics of effecting the solution of (48) is 
provided through the function 

ml-l m.-l 

U(27Trlm, z) == 2, 2, pes', s; z) 

X exp {27Tj(rls~jml + r2s;/m2)}. (51) 

When one employs periodic boundary conditions on a 
lattice with ml X m2 unit cells (ml in the horizontal 
and m2 in the vertical directions), we have used the 
notation 

rim == (r1/ml' r2Im2). (52) 

By multiplying (48) by exp (27Tir1s'lm) and summing 
over all unit cells s~, we find 

U(27Trjm, z) = zA(27Trjm)U(27Trlm, z) 

+ 2, Po(s', s)e21fiN'/m, 
8' 

so that 

U(2TTrjm, z) = [1 - zA(27Trjm)rl 2,po(s",s)i"ir o

8"lm. 

8" (53) 

Then, by applying the standard Fourier inversion 
formula to the combination of (51) and (53), we find 

point after his step is taken. Also, 

2,Pn(j', s';j, s) = 1 (43) pes', s; z) = _1_ 2, [I - zA(27Trjm)]-1 
m1m2 r 

for all n ~ 0 and (j, s), and 

Po(j', s';j, s) = dJJ,dss" (44) 
Moreover, 

P n+l(S', s) = 2, pes' - s")P n(S", s), (45) 
8" 

where 

pes) == (Pl1(S) P12(S»). 
P21(S) P22(S) 

(46) 

It is useful to construct the generating function 

pes', s; z) = 2,znpn(S', s), (47) 
n=O 

so that from (45) 

pes', s; z) = Po(s', s) + z 2,p(s' - s")P(s", s; z). (48) 
s" 

This equation can be solved for P(s', s; z) in terms of 
a "known" matrix 

x 2, Po(s", s)e21fir-<S"-s'l/m. .. (54) 

The generalization to the case of more than two 
points per unit cell is again obvious. In the two points 
per unit cell case, one finds that 

where 

ZA12(e) ) 
1 - zAu(6) , 

(55a) 

dee, z) == [1 - zAu(O)][1 - ZA22(O)] - Z2A12(6)A21(6). 

(55b) 

We are, of course, mainly interested in the proba­
bility Fn(j', s' ;j, s) of a walker starting at (j, s) and 
arriving at (j', s') for the first time after n steps. These 
F's are related to the P's through the relation [when 
(j, s) ii5 (j', s')] 

n 

P ( ., , .) ~P (., , ., ')F (., , . ) 
n ] , s ; J, s = "'" n-k ] , s ; ] , s k ] , s ; J, s , 

k~l 

(56) 
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which is a consequence of the fact that the independent 
way of going from (j, s) to (j', s') in n steps is to go to 
(j' , s') for the first time in k steps and then to return 
again to (j', s') in the remaining (n - k) steps for 
k = 1, 2, ... ,n. Now multiply both sides of (56) 
by zn == zn-kzk and sum from n = 1 to 00. Then, if 
we define the generating function 

00 

F( " ,. ) ~ nF (., , . ) 
},S;},S;Z =kz n}'S;},S, 

n=1 
we see that 

f(j', s' ;j, s; z) 

(57a) 

= P(j', s';j, s; z)IP(j', s';j', s'; z). (57b) 

The average number of steps required to go from 
(j, s) to (j', s') is 

(nO', s';j, s» = ~{P(j', s';j, s; Z)} . (58) 
oZ P(j', s'; j', s'; z) .=1 

From this we can immediately derive the generaliza­
tion of the basic formula (7). 

Let us suppose that initially our walker has the 
same probability, I/(N - 1), of being at any of the 
(N - 1) nontrapping points. Then the average number 
of steps required to go to (j', s') for the first time is 
[a prime in summation indicates that terms with 
(j', s') == (j, s) are omitted] 

(n) = 1 ! i {P(j', s';j, s; Z)} 
(N - 1)i'.Boz P(j', s';j', s'; z) .=1 

= 1 i ! {P(j', s';j, s; z) _ I} . (59) 
(N-l)oZi.B P(j',s';j',s';z) .=1 

We choose the point (j', s'), the location of the 
trap, to be (1,0). Then, from (54) and (55), 

!P(1, O;j, s; z) 
i.B 

= _1_!!{1 - Z).22(27Tr/m) + z),12(27Tr/m)}e21Tir'Blm 
mI m2 r B d(27Tr/m, z) 

= ____ I_-_Z...:.).~22~(0....t.)_+.:__z..:..:).~12~(0..t...) __ _ 
[1 - z).11(0)][1 - Z).22(0)] - Z2).12(O»).21(O) 

and, letting 0 == 27Trlm, 

P(l,O; 1,0; z) 

(60) 

= _1_! 1 - Z).22(O) 
mIm2 r [1 - z).l1(O)][1 - Z).22(O)] - Z2).12(O»).21(O) 

(61) 

Hence, to calculate (n), we substitute (60) and (61) 
into 

(n) = _1_ i !{P(I, O;j, s; Z)} . (62) 
N - 1 oz i.B pel, 0; 1,0; z) .=1 

" " "" / / / 
L a /b c /d / 

/ / / / 
Le f /CI h / / 

L / / / 
L / / 7 

L 1/ 2 1/ 2 1/2 
/ / / / 

L 1/2 1/ 2 1/ 2 

FIG. 2. See text for explanation. 

Now let us analyze the special case of the hexagonal 
lattice on which our walker steps to one of its three 
nearest-neighbor points only, with probability 1. The 
equivalence between a hexagonal lattice and a square 
lattice with two lattice points per unit cell is indicated 
in Fig. 2. Notice that the hexagonal lattice can be 
deformed and put on a square lattice so that there is a 
one-to-one correspondence between any path connect­
ing two points on the hexagonal lattice and the 
corresponding path on the square lattice. Hence, any 
lattice statistics problem on the hexagonal lattice can 
be translated into one on the square lattice. 

It is clear from Fig. 2 that the only nonvanishing 
transition probabilities PikeS) == P,iS1' S2) [as defined 
above Eq. (42)] are 

b1(0,0) = P21(O, 1) = P21(-I, 0) = 1, (63a) 

P12(0,0) = P12(O, -1) = P12(1, 0) = 1, (63b) 

so that the structure matrix (49) has the matrix 
elements 

(64a) 

).12(27Tk1/m1, 27Tk2/m2) 

= l{l + exp (-27Tik2/m2) + exp (27Tik1/m1)}, (64b) 

).21(27Tk1/m, 27Tk2/m2) 

= j{1 + exp (27Tik2/m2) + exp (- 27Tikl /ml )}, (64c) 
the matrix A(O) being Hermitian. Then 

).12).21 = i{3 + 2 cos Ol + 2 cos O2 + 2 cos (Ol + (2)} 

= i{3 + 2CI + 2c2 + 2CIC2 - 2S1S2}, (65) 
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where, as usual, 

C1 = cos (217k;/ml) and s; = sin (217k;/m;). (66) 

On this basis ).'12A21 -- 1 as (}l> (}2 -- 0, so that 
expression (60) becomes 1/(1 - z) and (62) has the 
form 

(n) = N ~ 1 ~ {(1 - Z)P(I~ 0; 1,0; Z)} (67a) 
with 

1 tnl-1 tn.-I 

P(l, 0; 1,0; z) = - I I [1 - (z2/9) 
m 1m21:1=0 k8=0 

X {3 + 2Cl + 2ca + 2Clca - 2slsa}r\ (67b) 

which is the direct generalization of the basic formula 
(7). An alternative form for P(1, 0; 1,0; z) is 

1 

where 
Zl = 2za/(3 - Z2). 

The double sum is exactly the same form as that 
discussed in Appendix B when ml = ma = m. The 
general case can be discussed in essentially the same 
manner as this special one. We restrict ourselves here 
to the special case so that the results of Appendix B 
can be applied directly. When the total number of 
lattice point per trap N - 1 = 2m1ma - 1 is large, 
the results should become independent of ml/ma as 
long as m1 = O(N) and ma = O(N). Hence the 
constant Cl in (31) is correct. Ca may require a correc­
tion, but not by a large factor, while Ca would un­
doubtedly have to be changed. 

In terms of the p's and q's of Eq. (B2) in Appendix 
B, p = l, ql = l, and qa = O. Also, 2mlm2 = N = 
2m2• The quantity 

(l -lz2)P{l, 0; 1,0; z) 

has the same value P(O, z) for the triangular lattice 
if one replaces m2 by N/2 and z in P(O, z) by z'. On 
this basis we find 

(1 - lz~P(1, 0; 1,0; z) 

= [ma(l - Zl)]-l 

+ [(J3/2n-) log ma + C2 + ca/m2 + ... ] 
+ 0(1 - Zl)' (69) 

where the C2 and es have the same values as those 
appropriate for the triangular lattice (40b) and (4Oc): 

C2 = 0.235214021; Cs = -0.25140796. (70) 

On this basis, 

P(1, 0; 1,0; z) 

1 1 3 {J3 = + - + - -logN 
N(1 - z) 2N 2 217 

- J3 log 2 + C2 + 2ca + ... } + 0(1 - z) 
217 N 

= [N(1- z)rl + {cflogN + cf + c{f/N + ... } 
+ 0(1 - z), (71) 

where 

c{1 = 31/217 = 0.413 496 672, 

c{f = 3ca + t = -0.25422 27888, 

cff = i[c2 - (J3/217) log 2] = 0.06620698. (72) 

If (71) is substituted into (7), on a hexagonal 
lattice we find that 

(n) = {c{1N log N + cffN + cff + .. '}N/(N - 1), 

where the constants are given by (72). 
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APPENDIX A. EVALUATION OF S(Wl, wa) 

We define 

S(Wl' w2) 

1 m-l 
= - I {I - WI cos (217k/m) - W2 sin (217k/m)}-1. 

mk=O 

Let 

WI + iW2 = pi· 
and assume that 0 < p < 1. Clearly, 

(AI) 

(A2) 

WI = P cos cp, W2 = P sin cp, and l = w~ + w~. 
(A3) 

Hence, if we let ,(k) = (217k/m) - cp, 
1 tn-I 

S = - I {1- p cos ,(k)tl 

mk=O 

2 tn-I 
= - - I ei,(k)/{(e,,<k) - x)(ei'(k) - X-I)}, (A4) 

pmk=o 

where x is the smaller root of the equation 

x 2 - 2x/p + 1 = 0; (A5) 
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i.e., since we postulated 0 < p < 1, with 

0< x = {I - (1 - p2)!}/p < 1. (A6) 

The summand of S can be rewritten using partial 
fractions: 

111 e21T;k!/m = {I for 1 = 0, ±m, ±2m ... etc .. , 
m k=O ° for other integral values of 1, 

we find that the first sum in S is 

1 m-l _ ! {I + xeiq,e-21T;k/m + x2e2iq,e-2021rik/m + ... } 
mk=O 

= 1 + xmeiq,m + x2me2q,m + ... = 1/(1 _ xmeiq,m). 

The second sum in S is evaluated in a similar way. 
Finally, we find that 

S = (1 _ p2)-!{ 1 + xme-imq, } 
1 - xmeimq, 1 _ xffle-imq, 

= 1 { 1 - x2m } (A7) 
(1 - l)! 1 - 2xm cos mcf> + x2m . 

APPENDIX B. ON THE CALCULATION OF 
1 m-l m-l 

P(O, z) = -;! ! [I - zA(271'kl/m, 271'k2jm)]-1 
m kl-1J k2=O 

We have 
1 m-1 m-1 

P(O, z) = 2! ! [1 - zA(271'k1/m, 271'k2/m)]-I, 
m k1=Ok2=O 

(B1) 

WI = 2z[p + (ql + q2)Cl]/(1 - 2pZCl), (B6a) 

w2 = 2Z(ql - q2)SI/ (I - 2pzc1). (B6b) 

The sum fez, (1) is just the S(Wl' W2) evaluated in 
Appendix A. Incorporating (A7) into (BS), 

1 m-l 
P(O, z) = - ! (1 - 2pZCl)-1 

mkl=O 

X (B7) { 
1 - x2m } I 

1 - 2xm cos cf>m + x2m (1 _ p2)! ' 

where x is given by (A6), p2 = w~ + w~, and cf> by 
(A2). 

We first evaluate the term which corresponds to 
kl = 0. Then W 2 = 0, I = 0, and 

p = WI = 2z(P + ql + q2)/(l - 2pz) 
= z(1 - 2p)/(1 - 2pz) (B8) 

and the kl = ° term is 

m-1 [(1 + xm)/(1 - xm)][(1 - 2pZ)2 - p2(1 - 2pz)2]-! 

= m-1 [(1 + xm)/(I - xm)]/rcl 

X {2[1 - 2p][1 - fJ2(1 - 4)]}-!, (B9) 
where 

ex = (1 - z)! and fJ = ex[2(1 - 2p)]-!. (BlO) 

The quantity x was defined in Eq. (AS) to be 

x = {I - (I _ p2)!}jp 

Hence, 

= [1 - 2p + 2pex2 - ex{2(1 - 2p) 

+ ex2(4p - I)}!]/(1 - ex2)(1 - 2p) 

= 1 - 2fJ + 2fJ2 + (4p - 3)fJ3 + .... (BII) 

xm = 1 - 2mfJ + 2m2fJ2 
when m is large and Z is close to 1 and A(OI, (2) is 
defined by - 4mfJ3(m2 - 3p + !)/3 + ... , (BI2) 

with 

C1 = cos 0i' Sl = sin 0i and 0i = 271'ki/m, (B3) 

while 

Clearly, 
1 m-l 

P(O, z) = - ! [1 - 2pzc1rY(z, (1), (BSa) 
mkl=O 

where 

and our k = ° term becomes 

[m2(1 - Z)]-l + (m2 - I)/6m2(1 - 2p) 

+ 0(1 - z)!. (BI3) 

For other values of kl as z -- 1 

(1 - 2pzcJ(1 - p2)! 

-- {(l - 2pCI)2 - 4[p + (ql + q0Cl]2 

- 4(ql - q02S~}! 

= 4[(P + 2ql)(P + 2q2)]! 

X [1 + 17 sin2 71'kl/m]! sin 71'kl/m (BI4) 
with 

17 = p(l - 2p) _ 1. 
(p + 2ql)(P + 2q0 

(B14') 
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In two special cases of interest [which we shall 
henceforth designate as cases (a) and (b)]; we have 

(a) square lattice: p = i. ql = q2 = 0, and rJ = 1; 
(b) triangular lattice: p = q2 = i, ql = 0, and 

rJ = i. 
On this basis we combine (B7), (B13). and (BI4) 

to find 

P(O z) _ 1 1 
, - m2(1 - z) + 2(1 - 2p) 

x {m2 - 1 + ~(O, I)} + 0(1 _ z)i. (B15) 
3m2 r 

where 

and 

with 

~(O. 1) = SI + S2 + S3 

r = {4(P + 2ql)(P + 2q2)}i 
(1 - 2p)2 

1 m-l 
S1 = - ~ l/sin (17k/m), 

mk=1 

1 m-l 

(BI6a) 

(BI6b) 

with 

y = lim (1 + 1. + 1. + ... + 1. - log n) 
n"'<X) 2 3 n 

= 0.57721 56649· .. , (B20) 

and since Eq. (BI7) implies that the second sum in 
(BiS) has the form 

we have 

S2 = - ~ HI + rJ sin2 (17k/m)]-i - l}/sin (17k/m), 
m k=1 SI = ~ {log m + [y + log (2/17)] 

(B16c) 17 

1 m-l 1 {2XN(COS ~N - xN) } 

S3 = m k~lsin (17k/m) 1 - 2xN cos N~ + X
2N 

X 1 (BI6d) 
[1 + rJ sin2 (17k/N)1i . 

It will be helpful to employ the Euler-McLauren 
summation formula: 

- 1 g( 17k/m) = - g(O) dO - - [g(O) + g( 17)] 1 m-l Ii" 1 
mk=l 17 0 2m 

+ ~ [g/(17) - g/(O)] 
12m 

3 

__ 17_ [glll(17) _ gll/(O)] + .... 
120m" 

(BI7) 
The sum S1 can be rewritten as 

+1 --- -. m-l[ 1 1 1 ] 1 
k=l sin 17k/m 17k/m (m - k)17/m m 

Since 
(BlS) 

ffl-l -1 1 1 1 k = log m + y - - - -
k=1 2m 12m2 

+ 12~m" - 25~m6 + . " (B19) 

- 172/12m2 + 7174 j43200m'" .. }. (B22) 

The sum S2 also has an asymptotic expansion when 
developed according to the Euler-McLauren formula: 

S2 = 1:. f"{(1 + rJ sin2 O)-t - I} dO/sin 0 
17 Jo 

+ 17rJ/12m3 + 173rJ(1 + trJ)/720m" + .. '. (B23) 

The integral has the value 

- - - sin 0 + - rJ2 sin3 0 21"/2 {rJ 1 . 3 
170 2 2·4 

- --r/ sin5 0 + . " dO 1·3' 5 } 
2'4'6 

1 ( rJ2 r/ )-1 = - - f) - - + - - . .. = - log (1 + f), 
17 2 3 17 

so that 

1 
S2 = - - log (1 + f) 

17 
rJ17 rJ173 

+ - + -- (1 + trJ) + .. '. (B24) 
12m2 120m" 

While the sum S3 contributes very little to P(O, z), 
it is somewhat more involved. To calculate it, the 
first step is to obtain from (A3), (A5), and (B6) 

x = p-l[l - (1 - p2)t] with p2 = w~ + w:. 
(B25) 
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After a certain amount of elementary algebra, using 
(BI4), one finds 

2 2 53 
X = 1 - 2rs + 2r s -­

r 

x {4P(1 - 2r2) + r2(4r2 _ 1)} + ... , (B26) 
1 - 2p 

where s == sin 1fk/N and 

r = {4(P + 2ql)(P + 2q2)}l 
(1 - 2p)2 

(

1' i.e., 2p + 4q 

- = 1 - 2p, 

- i.j3, if ql = 0 and q2 = P = t, 

One finds 

xm f'"'OooJ e-2rffk{1 + J...(41f
3
k

3
)(2r

2 
- 1) 

m2 3r (1 - 2p) 

case (a), 

case (b). 

(B27) 

, x (3p - r2 + 2r2p) + O(1/m4
)}. (B28) 

The other quantity needed for the calculation of Ss is 
rp = sin-1 (w2/p). From Eq. (B6), W 2 == 0 in case (a) 
with qi = q2. In case (b) 

WI = (1 - s2)/(1 + S2) 

and 

W2 = -s(1 - s2)t(1 + S2), 

P = (1 - s)t/(1 + S2) with s = sin 71'k/m, 

w,J p = sin (-1fk/m) , so that rp = -7I'k/m. 

Hence the combination which appears in Sa is 

2xm(cos rpm - xm) 
1 - 2xm cos rpm + x2m 

(

2Xm/(1 - xm), 

= -2xm/(1 + xm), 

case (b) with keven, 

case (a) as always; (B29) 

case (b) with k odd. 

We see from (B2S) that when k!::::: m12, s is close to 1 
and c close to zero. In this range 

X'" t cos (1fk/m) + O(cos'1fk/m) ,..., 1f(k - m/2)/m, 

which is a very small number when m is large. Further­
more, when m - 00, xm vanishes exponentially. 
Hence the main contribution to Sa is from values of 
k near 1 and m. From symmetry considerations we 
rewrite Sa as double the sum from k = 1 to [ml2l 

and use the formula (B28) for xm since only small 
integral k's contribute. Then, for case (a), since 
r = 1 = "', we have 

x {1 + 471'
3

k
3

/3 (SP - 1) + 0(1/m4)} 

m2(1 - e-21rk
) 1 - 2p 

[sin 71'k/m]-1[1 + ",2 sin2 71'k/mrl 

f""oo.J E!..[1 _ .! 71'
2
k

2 
+ O(1/m')], 

71'k 3m2 

so that 

4 [m/2] 1 ( e-21rk ){ 71'2k2 
S3 = - Z -k 1 -2ffk 1 - -3 2 

1f k=1 - e m 

X (1 - 4k_21rk [SP - 1J) + O(1/m')} 
(1 - e ) 1 - 2p 

= i {e-2ff + !e-41r + fe-6ff + ... }. 
71' 

- -- (1 + 3e-b + 4e-4ff + ... ) 471'e-
21r

{ 
3m2 

_ 471'(Sp - 1) (1 + 6e-b + 12e-4 .. + ... )} 
(1 - 2p) 

+ O(m-4). (B30) 

The term of 0(1fm4) has the following value for the 
casep = 1: 

-1ka ---
471'3 a) ( e-2ffk 

) 

9m' k=1 1 - e-2!rk 

[
43 Sk1f + 4(k1f)2e-a.-k] 

X 10 - (1 _ e-2ff~ (1 _ e-211~2 

= 471'3 {(n _ S1f)e-2ff + (w - 901f + 41f2)e'-ff 
9m' 

+ (~P - 4201f + 121f~e-6ft + ... }. (B31) 

In case (b) the combination (B29) which appears 
in Sa is 

- 1+--.:...--~ 
2e-2rffk 

{ 471'3ks (2r2 - 1) 
e-2ffk _ (_1)k 3m2r (1 - 2p) 

while 

x (3p - r'l. + 2pr2) + O(I/m')}, 
[1 - (_1)ke-a.-rk] 

(sin 1fk/m)-l[1 + ",'I. sin2 (7I'k/m)rl 
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= _ ~ (e-21Tr _ ie-br + !e-61Tr . .. ) 
7T 

where N == m2 , and (B22) and (B24) are used: 

S1 = ! log N + ~ {[y + log (2/7T)] 
7T 7T 

- 7T2/72N + 77T'/43200N2 + ... }, (B36a) 

S2 = - ! log (1 + 'fj) + 'fj7T/12N 
7T 

+ 'fj7T3(1 + trJ)/720N2 + .. " (B36b) 

and S3 is given by (B30) or (B32), depending on the 
case. 

It is more useful to rearrange these terms so that 
one writes 

x (e-2
"r - 6e-4lTr + 12e-6"r - .. '). (B32) P(O, z) = [N(l - Z)]-1 + c

1
10g N + C

2 
+ C3/N 

Finally, when jumps to nearest neighbors on a tri- + c,/N2 + ... + 0(1 - z)!, (B37) 
angular lattice all have the same probability p = i, where 

'fj = t, and r = tJ), we have C1 = [27Tr(1 - 2p)t1 

S3 = - ;: (e-2lTr - ie-4n + !e-6
"r - ••• ) = (4~) {(p + 2q1)(P + 2Q2)}-!' (B38a) 

_ ~ (e-2lTr _ 3e-4"T + 4e-6..r _ •• '). 

9m2 

1 {1 1 (B33) C2 = - + - [2y + 2 log (2/7T) 
2(1 - 2p) 3 r7T 

In either (B30) or (B32) one can write 

S3 = S~O) + m-2S~1) + m-4S~2) + .. '. (B34) 

The results of this appendix can then be summarized 
as follows [see Eq. (BI5)]: 

- log (l + 'fj)] + S~O)/r}, (B38b) 

C3 = 1 {-t + 7T(3'fj - 1)/36r + S~l)/r}, 
2(1 - 2p) 

(B38c) 

P(O, z) = 1 + 1 c _ 1 { 77T
3 + 'fj7T

3 

(1 + t'f}) + S(2)} 
N(l - z) 2(1 - 2p) , - 2r(1 - 2p) 21600 720 2 3, 

x {.! - J.... + ! (S1 + S2 + Sa)} (B38d) 
3 3N r and the various s~a) are given by Eqs. (B30) , (B31), 

+ 0(1 - z)!, (B35) and (B32). 
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An algebraic classification of four-dimensional Riemann spaces with signature -2 is given. The 
possible Riemann and Ricci tensors are listed and inversion formulas from one to the other are obtained. 
Classifications are given for the two special spaces Ri; = 0 and R~R~ = O. 

I. INTRODUCTION 

The algebraic classification of general Riemann 
spaces was discussed in some detail by Ruse.1 ,2 An 
extensive algebraic classification of Einstein spaces 
according to the eigenbivectors of the Riemann 
tensor has been given by Petrov,3,4 Newman5 has used 
a vierbein formalism to give an algebraic and differ­
ential classification of special Einstein spaces. 

In this paper, we use a vierbein formalism to give 
an algebraic classification for the general Riemann 
space. The possible Riemann and Ricci tensors are 
classified. The inversion relations are found which 
give the possible Riemann tensors corresponding to 
a given Ricci tensor. Newman's classification of the 
special Einstein space Rij = 0 is given in terms of our 
basis. Finally, we classify the Ricci null space 
(R~kR~m = 0). 

The vierbein formalism is a completely general 
technique. In our classification we have kept the 
vector-basis tetrad as general as possible, specializing 
it only for the Ricci null spaces. 

II. CLASSIFICATION OF THE RIEMANN AND 
RICCI TENSORS 

We assume a four-dimensional Riemannian metric 
with signature (+ - - -). Any four linearly inde­
pendent vectors can serve as the basis tetrad for the 
space. If we distinguish between the various tetrads by 
the norms of the vectors, there are 15 possibilities, 
summarized in Table I. 

The level of computational difficulty in a vierbein 
formalism varies approximately as the square of the 
last column in Table I. Thus tetrad types 4, 12, 13, 
14, and 15 are the simplest, computationally, to use; 
particular problems might use any of the other types 
to advantage. 

1 H. S. Ruse, Proc. Roy. Soc. (Edinburgh) 62A, 64 (1943-44). 
• H. S. Ruse, Proc. London Math. Soc. 50, 75 (1944). 
a A. Z. Petrov, Sci. Not. Kazan State Univ. 114, 55 (1954). 
4 A. Z. Petrov, "Einsteinian Space," Thesis, Kazan State Univer­

sity, U.S.S.R., 1956. 
• E. Newman, J. Math. Phys. 2, 324 (1961). 

TABLE I. Possible tetrads for metric signature ( + - - -). 

Minimum number Total of nonzero 
of nonzero scalar norms plus 

products minimum 
(VUI VU1m ~ 0) number of 

Norms of i,j ~ 0 Nonzero nonzero scalar 
basis vectors (Max no. = 6) norms products 

1.++++ 6 4 10 
2.+++- 3 4 7 
3. + + -- 1 4 5 
4. + - -- 0 4 4 
5. - - -- I 4 5 
6. 0+++ 6 3 9 
7. 0 0++ 6 2 8 
8. o 0 0 + 6 1 7 
9. o 0 0 0 6 0 6 

10. 0++- 3 3 6 
11. 0 0+- 3 2 5 
12. 0 o 0 - 3 1 4 
13. 0+-- 1 3 4 
14. 00-- I 2 3 
15. 0--- I 3 4 

We denote the four linearly independent vectors by 
;i' Xj, 'i, Pi' Then we form the following six inde­
pendent bivectors 

where 

Qij = ;[i'il' Mil = P[i;;l' 

Pii = X[i'il' Nij = X[iPil' 

Lij = '[iPil' Su = ;[iX;l' 

Since these six bivectors are independent, they span 
the four-dimensional bivector space. We next form 
all possible independent algebraically possible Rie­
mann tensors. That is, we form all possible four-index 
tensors which have the algebraic properties of the 
Riemann tensor, namely, 

Riik' = -R;ik! = -RiJ!k = R kU;, 

Riik' + RikH + RHik = O. 

Since there are 20 independent components of the 
Riemann tensor (in four dimensions), there are 20 

766 
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such tensors and we label them as follows: 

(Riikl)I = QiJQkl' 

II = MiiMkl' 

III = PUPklo 

IV = NiiNkl' 

V = LiJLkl' 

VI = SiJSkl, 

VII = Q;;Mkl + MiJQkl' 

VIII = PUNkl + NiiPkl , 

IX = QiiLkl + LiiQkl' 

X = MiiSkl + SiiMkl 

XI = QiiPkl + PiiQkl, 

XII = M;;Nkl + NiiMkl' 

XIII = P;jLkZ + LiJPkZ ' 

XIV = NiiSkZ + SiiNkZ, 

XV = QiiSkZ + S;;Qkl' 

XVI = MiiLkl + L;iMkl' 

XVII = PiiSkl + SiJPkZ ' 

XVIII = NiiLkl + LaNk I , 

XIX = QiiNkl + NiiQkl + LiiSkl + SULkl' 

XX = MiiPkl + PiiMkl + SULkl + LiiSkl . 

The above set of 20 tensors span the space of 
algebraically possible Riemann tensors. Any Riemann 
tensor can be written in the form 

XX 

Rijkl = ! Cm(Rijk,)m· 
m=I 

The expansion coefficients Cm are, in general, func­
tions of position. 

Next, we form the basis for the algebraically 
possible Ricci tensors. Since the only algebraic 
property of the Ricci tensor is R;i = R Ji , the basis 
spans the space of all symmetric second-rank tensors. 
A symmetric second-rank tensor in four dimensions 
has 10 independent components; thus there are 10 
independent basis tensors and we label them as 
follows: 

(Rii)I = ~ ;~i' (Rii)U = XiXi, 

III = 'i'i, IV = PiPi, 

V = ~(iXi), VI = ~(;'i)' 
VII = ~(iPi), VIII = X(i'i) , 

IX = X(iPi) , X = '(;Pi) ' 
where 

III. INVERSION FORMULAS 

We introduce the notation 

(R~k;)I == Ie' 

(Rik)I == I, 

~i~i == ~2 ~i,i == ~ . ,. 

Then, the contractions of the 20 algebraically possible 
Riemann basis tensors in terms of the above 10 
algebraically possible Ricci basis tensors are 

(R~ki)I == Ie = t~ . '(Rik)VI - H2(Rik)m - i,2(Rik)I 

== t~· 'VI - H2III - 1'21, 

II. = tp . ~VII - ip21 - H 2IV, 

Ille = tx . 'VIII - ilIlI - 1'2II, 

IVe = tx· pIX - ilIV - ip2II, 

V. = g. pX - 1'2IV - ip2III, 

VIc = t~ . XVI - H 2n - ill, 

VII. = tWx + , . pI - ~ . P VI - ~ . 'VII], 

VIlle = -Hlx + , . pII - X . pVIII - X • 'IX], 

IX. = U,2VII + p . ~III - , . ~X - , . pVI], 

Xc = tWIX + X· pI - ~. pV - ~. XVII], 

Xle = -U,2V + X • ~III - , . ~VIII - X • 'VI], 

XII. = Ulv + X • ~IV - p . ~IX - X • P VII], 

XII Ie = U,2IX + X· pIlI - , . pVIII - X . 'X], 

XIVe = ulVII + ~ . pII - X . P V - X . ~IX], 

XV. = -H~2VIII + X· ,I - ~. 'V - ~. XVI], 

XVI. = Up2VI + , . ~IV - P . ~X - , . pVII], 

XVII. = HlvI + ~ . 'II - X • 'V - X . ~VIII], 
XVIII. = -Up2VIII + , . XIV - p . xX - , . pIX], 

XIX. = H2~· pVIII + 2,· XVII - x· ~X 
- , . p V - , . ~IX - p . XVI], 

XXe = -H2p· XVI + 2~· 'IX - p. 'V 

- ~ . xX - , . XVII - p . ~VIII]. 

Since the above 20 contractions are given as linear 
combinations of the 10 algebraically possible Ricci 
basis tensors, only 10 of the 20 contractions are 
independent; the other 10 equations reduce to rela­
tionships between the contractions. For each different 
choice of normalization for the four basis vectors of 
the tetrad, there is, in general, a different set of 10 
independent contractions. For example, if we choose 
normalization type 4 from Table I, with X2 = p2 = ,2 = -1, ~2 = 1, all scalar products = 0, then we 
can choose the following as our 10 independent 
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equations: 

Ie = HI - III], 

lIe = HI - IV], 

IIIe = HII + III], 
Ve = HIli + IV], 

VIle = IX, 

IXe = -lVII, 

Xc = IIX, 

Xle = IV, 

XVe = -lVIII, 

XVle = -IVI. 

And our remaining 10 equations reduce to the follow­
ing relationships between the contractions: 

IVe = Ie - lIe + IIle' 

Vic = lIe - IIle + Ve, 

VIlle = Vile, 

Xlle = -XIe, 

Xllle = -Xc, 

XIVe = IXe, 

XVlle = XVle, 

XVlllc = -XVe, 

XIXe = 0, 

XXc = o. 
To go the other way, from a given algebraic Ricci 

tensor to the algebraic Riemann tensor whose con­
traction is the algebraic Ricci tensor, is more com­
plicated. We introduce the notation 

I == (R'k)I' I, == (Riikl)I' 

In order to accomplish this inversion, we had to 
choose some minimum normalization. We chose the 
following: 

X2=p2= -1, 

X • p = ~ . X = ~ . p = ~ . X = ~ . p = O. 

This corresponds to types 3, 4, 5, 13, 14, or 15 of 
Table I. With this choice of normalization, we ob­
tained the inversion formulas listed below, where the 
algebraic Ricci tensor on the left of the colon results 
from the contraction of the algebraic Riemann tensor 
on the right. [Thus, for example, (RkJ)I results from 
the contraction over i and I of 2 [(Riikl)U + (Riikl)VI + 
~2(Riikl)IV]' or in our shorthand notation, I: 2(lIr + 
Vir + ~2IVr)]: 

I: 2(lIr + VIr + ~2IVr)' 
~211: 2(lIr - Vir + ~2IVr)' 
~211: 2(-llIr + Vr + ~2IVr)' 

~. ~II: XVIIr - XVIr + U' ~IVr' 
III: 2(lIlr + Vr + ~2IVr)' 

~2IV: 2(Vlr + ~21Vr - IIr), 

~2IV: 2(lIlr - Vr + ~2IVr)' 
~. ~IV: XVlr - XVllr + U' ~IVr' 

V: -2XIIr , 

VI: -XVlr - XVIIr + U' ~IVr' 
VII: -2XIVr , 

VIII: 2XVIIlr , 

~2IX: 2Xr , 

~2IX: 2XIIIr , 

~ . ~IX: -2XIXr, 

X: 2VIIIr • 

0: [a . ~)2 - ~2~2]IVr - Ir - H 

. ~(XVlr + XVIIr) - H2(IIIr + Vr) 

- H2(IIr + Vir), 

0: -Vllr + ~2VIIIr + ~. ~IVr' 
0: -IXr - ~2XIVr - ~. ~VIIIr' 

0: - XIr + ~2XIIr + ~ . ~XVIIIr' 
0: - XVr - ~2XVIIIr - ~. ~Xllr> 

0: -XXr + 2XIXr . 

The last six combinations of algebraic Riemann 
tensors give zero when contracted. The inversion 
equations given above are not unique. Indeed, since 
we are going from a 10-dimensional space to a 20-
dimensional space, the inversion has a 100parameter 
degree of freedom. When a particular normalization 
of the basis vector tetrad is chosen, the above 20 
equations reduce to 10 inversion relations plus 10 
combinations of algebraic Riemann tensors whose 
contractions give zero. To any of the 10 inversion 
relations we can add to the right side any arbitrary 
sum of the 10 combinations, since, when contracted, 
this sum is zero. This arbitrary choice represents our 
1O-parameter degree of freedom. 

IV. NEWMAN'S CLASSIFICATION FOR RiJ = 0 

Newman5 found the 10-dimensional subspace of 
Riemann tensors whose contractions are zero Ricci 
tensors. This would correspond in our inversion 
equations above to the 10 combinations of algebraic 
Riemann tensors whose contractions give zero. New­
man worked with a particularly interesting set of basis 
vectors. He chose a basis of type 14 from Table I with 
the further restriction that the six bivectors formed 
from the four basis vectors are each other's duals. 
Newman's normalization is 

and 

~2 = X2 = 0, ~. X = 1, 

~2 = p2 = -1, ~. p = 0, 

~ . ~ = ~ . p = X • ~ = X • P = 0, 

MiJ = Q~, 

NiJ = Pi~' 
Sii = L~, 

where the dual is defined by 

Qti == l../-g £iJklQkl 
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The restriction R'1 = 0 is 10 independent equations 
between the 20 independent components of Rm:!. 

This defines a 100dimensional subspace, and, in our 
system, Newman has found the following 10 tensors 
which span the subspace: 

IN = I, - lIn I; = VII" 

lIN = III, - IV" II; = VIII" 

IIIN = IX, - X" III; = XV, + XVI" 

IV N = XIII, - XIV ro IV; = XVII, + XVIII" 

V N = XI, - XII, + 2(Vr - VIr), 

V; = XIXr + XXr , 

where 

IN == Newman's basis-tensor number I, 

I, = (R.17cI)I. 

Every algebraic Riemann tensor which has a zero 
Ricci tensor is therefore a linear combination of these 
10 basis tensors. 

v. CLASSIFICATION OF RICCI NULL SPACES 

We call a Riemann manifold for which RimRj = 0, 
Rii ~ 0, a Ricci null manifold. Below we find all 
possible algebraic Ricci tensors which are Ricci null. 
The inversion formulas, in Sec. III, then give all 
possible algebraic Riemann tensors whose contrac­
tions are Ricci null. 

We again assume the minimum normalization 

X2 = p2 = -1, 

X • p = ~ . X = ~ . p = ~ . X = ~ . p = o. 
Let any arbitrary algebraic Ricci tensor be given by 

X 

Rij = ! am(Rij)m. 
m=I 

Then RIj is Ricci null if 

x 
= ! b/c(R1j)/C = 0, 

/c=I 

where 

bI = ~2a: + ~ . ~aIaVI - laf + g2afI - lafrr, 

bn = -a~I + U2a~ + U· ~aVaVIII 
+ g2a~III - la~x, 

bm = ~2a;II + ~ . ~aIIIaVI + U2a~I 
- la~III - lai, 

bIV = -a~v + H2a~rr + U . ~aVIIaX 
- la~x + g2ai, 

bv = ~2aIaV + ~ . ~aIaVIII - array + l~ . ~aVaVI 
+ g2avravIIl - lavrraIx, 

bVI = U . ~aIaIIl + ~2aIaVI + ~2aIIIaVl 
- laVaVIII + l~ . ~afI - lavrrax, 

bVIl = ~2aIavrr + ~ . ~aIaX - aIVavrr - laVaIX 

+ l~ . ~aVIaVII + g2avIax, 

bVIII = -arravrrI + ~2aIrraVIn + leaVaVI 

+ U· ~aVIaVIII - laIXaX + ~ . ~aIIIaV' 
bIx = -anaIx - arvaIX + leavavrr 

+ H . ~avax + l~·. ~aVIIaVIII + g2avlllax, 

bx = ~ . ~aIIIaVII + ~2aIIIaX - aIVaX 

+ leaVIaVII + H . ,aVIaX - laVIIIarx· 

The (Rij)I , ... , (R.1)x are linearly independent. Hence, 
the coefficient of each (Ri1)/c in our defining equation 
must be zero, i.e., h/c = O. This gives us a set of 10 
quadratic equations for the 10 factors ar, ... , ax. 
For any given normalization, these equations can be 
solved by the usual algebraic techniques. We have 
solved them for normalization types 4 and 14. The 
results follow below. 

A. Normalization Type 4 

We choose 

~2=1, ,2=p'l.=X'I.=-I, 

and all scalar products = O. 

The complete set of real solutions for the a/s is: av, 
aVI' aVII arbitrary (at least one must be nonzero): 

aI = ±l(a~ + a~I + a~II)t, 

B. Normalization Type 14 

We choose 

~2 = ,2 = 0, 

~. ~ = 1, 

Then, 

X2 = p2 = -1, 

~·X=X·P=X·' 
= ~ . p == , • p = O. 

ar ;tl: 0, arbitrary; all other a/s = 0 is a solution. 

Also, 

am ;tl: 0, arbitrary; all other at's = 0 is a solution. 

All other solutions are given by the following set: 
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any solutions of 

avax = aVIIaVIII' aVaVIII + aVIIaX > 0, 

and 

aVI = ±[t(aVaVIII + avuax)]l, 

a~III + ai 
aUI = 

4aVI 

a~u a~ 
au = aVI 2 2' 

av + aVII 

aVaVIl 
aIX = 2aVI 2 2 

av + aVII 

Each of the above sets of solutions for normalization 
types 4 and 14 is exhaustive; that is, every Ricci null 
tensor is contained in the solutions. 

One immediate application of our classification is to 
prove that all Ricci null tensors have zero scalar 
curvature; that is, that 

This is proved simply by taking either normalization, 
say type 4, and calculating R: 

x 
R == R::: = I alR:::)i = aI - all - am - aIV = O. 

i=I 

(Of course, the fact that Rm;Ri = 0 => R::: = 0 can 
also be proved by elementary matrix theory by an 
application of Sylvester's law of degeneracy.) 

Starting again from the general classification we 
have also shown, in a similar manner, that all alge­
braically possible spaces for which RrR!. = 0 are not 
necessarily R1mRklmn = 0 spaces, and all those for 
which R1mRklmn = 0 are not necessarily R~R!. = 0 
spaces. It is to be noted that these statements may not 
hold for bona fide Riemann and Ricci curvature 
tensors, although it is not unreasonable to conjecture 
that they do. These contractions occur in one approach 
to the elementary particle problem which uses 
Riemannian geometry.6.7 

6 G. Schrank, "Space, Time, and the Elementary Particles. I" (to 
be published). 

• G. Schrank and J. Thompson, "Space, Time, and the Elementary 
Particles. II" (to be published). 
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The relationships defining spin projectors are reviewed and the explicit formulations of the resulting 
spin-dependent (Sanibel) coefficients are shown to be consistent. Recurrence relations among Sanibel 
coefficients are derived. It is shown how the formal results here presented are useful in the calculation 
of matrix elements of spin-free and spin-dependent operators. 

I. INTRODUCTION 

For many reasons it is useful to have many~electron 
wavefunctions which are constructed to be eigen­
functions of one component of the spin angular 
momentum and of the square of the total spin angular 
momentum. Such eigenfunctions were first produced 
by the coupling of one-electron spin eigenfunctions 
by methods which related the eigenfunctions of a 
given spin system to those of the systems containing 
fewer spins.1 These so-called vector-coupling methods 
are applicable to systems more general than the 
assemblies of spin-i systems to be considered here 
and do not lead directly to highly convenient formu~ 
lations of multi~electron spin problems. 

An alternative approach is to introduce a projection 
operator2 to obtain from an arbitrary multi-electron 
spin function an eigenfunction of the desired spin 
quantum numbers. This approach has turned out to 
have the practical advantage of ease offormal manipu­
lation, particularly when, as is usually the case, we 
actually desire matrix elements rather than the spin 
eigenfunctions themselves. Various ways of intro~ 
ducing spin projectors have been described.2•3 As we 
shall see, these are all equivalent, both in that they 
describe the same projection (namely, to the entire 
spin subspace of the given quantum numbers) and 
that they give numerically consistent results. 

This paper is particularly concerned with developing 

• Supported in part at Uppsala University by the King Gustaf VI 
Adolf's 70-Year Fund for Swedish Culture, Knut and Alice Wallen­
berg's Foundation, by the Aeronautical Research Laboratory, OAR, 
through the European office, Aerospace Research, U.S. Air Force, 
and at Stanford University by National Science Foundation Grant 
GP-5555. 

t Present address: Department of Chemistry, Queen's University, 
Kingston, Ontario, Canada. 

: Present address: Department of Physics, University of Utah, 
Salt Lake City, Utah 84112, U.S.A. 

1 E. P. Wigner, Group Theory (Academic Press Inc., New York, 
1959). 

• P.-O. Lowdin, Phys. Rev. 97, 1509 (1955). Includes explicit 
formulas for S = M. 

8 J. K. Percus and A. Rotenberg, 1. Math. Phys. 3, 928 (1962). 
Includes explicit formulas for S = M, S = O. 

the formulas needed for efficient use of the projection~ 
operator method of destribing spin eigenfunctions. 
Accordingly, we define a spin projector and discuss 
the set of coefficients needed to give it explicit imple­
mentation. Different expressions which have been 
obtained for these coefficients by different methods 
are then related to each other, making use of the 
theory of generalized hypergeometric series. We next 
discuss the recurrence relations satisfied by the 
coefficients. Then we review the numerical methods 
which are available for coefficient construction. 
Finally, we survey the application of the formal 
mathematics to problems involving matrix elements 
of spin-free and spin-dependent operators. 

II. PROJECTION OPERATORS 

We consider a system of N spin-! particles. Indi­
vidual particles are characterized by a two-component 
spin space; we use Qt; and fJ to denote single-particle 
spin eigenfunctions with s. eigenvalues +ili and -iii, 
respectively. The most general N-particle spin func­
tion is a linear combination of the 2N different 
simple-product functions obtained by assigning states 
Qt; and fJ to individual electrons in all possible ways. 
It is convenient to regard these 2N simple~product 
functions as spanning a vector space; any N~spin 
function is a vector in this space. 

The simple-product spin functions are eigen­
functions of 8., the operator for the z component 
of the total spin. If a product contains nil. ex spins and 
np fJ spins, the eigenvalue is i(n .. - np)li. Writing 
this eigenvalue as Mli and writing iN = n (note that 
n may be either integral or half-integral), we have 

nil. = n + M, 

np = n - M. 
(1) 

On the other hand, a product function is not usually 
an eigenfunction of 82, the operator for the square of 
the total spin. However, since 82 and 8. commute, it 

711 
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is possible to form linear combinations ofproductfunc­
tions which are simultaneous eigenfunctions of both 811 

and 8 •. We, therefore, may span the 2N-dimensional 
N-spin space by the set of such simultaneous eigen­
functions and regard it as the union of a set of disjoint 
subspaces, each subspace characterized by its eigen­
values of 82 and 8 •. Since the eigenvalues are of the 
form S(S + 1)1i2 and MIi, each subspace is identified 
by its quantum numbers Sand M. 

We introduce the projection operator ~SM' and 
define it to have the property that it projects an 
arbitrary N-spin function onto the subspace charac­
terized by Sand M. Formally, we may write ~SM as 
a partial resolution of the identity: 

(2) 

where OSMic is the kth eigenfunction of quantum 
numbers Sand M, and the summation is over an 
orthonormal set of OSMic spanning the S, M subspace. 
In other words, the OSMic are an orthonormal set of 
all the linearly independent eigenfunctions for the 
given Sand M. In view of the foregoing, it is clear that 

(3) 

where I is the identity operator. Moreover, from Eq. 
(2) and the orthonormality of the OSMic' 

~~M = ~SM' 

01M = ~SM' 

(4) 

(5) 

verifying that 0SM is a projector and showing that it 
is self-adjoint. 

The projector introduced in Eq. (2) is not the only 
projector which produces an eigenfunction of the 
given Sand M.' A projection onto any portion of the 
S, M subspace obviously would also produce such an 
eigenfunction and different eigenfunctions (but with 
the same Sand M values) would result from projec­
tions onto different parts of the S, M subspace. The 
reason for using the complete subspace, as in Eq. (2), 
is the desire to have l? SM commute with all permuta­
tion operators. 

To show that l? SM commutes with all permutation 
operators, we proceed as follows. Let P stand for an 
arbitrary permutation operator. Because 1',82, and 8. 
all commute, POSMlc must still be an eigenfunction 
with quantum numbers S and M, i.e., in general a 
linear combination of the OSMic: 

POSMIc = ~ V11c(P)OSMI' 
I 

'F. E. Harris, Advanc. Quantum Chem. 3, 61 (1966). 

(6) 

It can be shown that these coefficients V,iP) define 
an irreducible unitary matrix representation of the 
permutation group.5 Now, referring to Eq. (2), we 
see that (noting that P is a unitary operator); 

~SMP = Z IOSMIc)(P-10SMkl 
Ic 

= Z V:Ic(p-l) IOSMIc)(OSM11, (7a) 
Ic.! 

Interchanging dummy subscripts k and j in Eq. (7b) 
and writing Vi~(P-l) = Vlci(P), we see that l? SM and 
P commute. Because the V'Ic(P) describe an irreducible 
representation, there exists no subset of the OSMic for 
which this analysis can be carried out for all P. 

It is possible to use the V11c(P) to form an explicit 
representation of ~ SM' In particular, 

d II. 

l?SM = N' ~ ~ Vkk(P)P, 
• P 11:=01 

(8) 

where the P summation is over all N! permutations 
of N spins, and d is the dimension of the S, M sub­
space (the number of linearly independent OSMic)' 
Equation (8) shows that ~ SM can be characterized by 
the characters of V(P). 

Neither Eq. (2) nor Eq. (8) is an entirely convenient 
way of characterizing ~ SM for practical use. It is more 
useful to give the result of the application of l? SM to 
each member ofa basis of the N-spin space. Following 
USwdin,2 we seek to describe the action ofl?sM on a 
simple product of IX and {J spin functions. This course 
of action has the great advantage that in actuality the 
analysis need be carried out only for one member of 
the basis; results for the remaining basis functions can 
be immediately inferred. 

Consider the application of l? SM to a spin function 
in which the first n. spins are in state IX and the 
rem~inin~ n_ spins are in state p, where n" and n_ are 
as gIven In Eq. (1). Any other values ofn" and n, will 
lead to a zero result when l?SM is applied. We desig­
nate this product function [IX""] [{J"-]. The notation 
will be explained shortly. 

Since all eigenfunctions of given S and M have 
equal numbers of IX functions, l? SM converts 
[IX""J[{J"-] into a linear combination of functions 
generated by permuting its IX and {J functions into 

6 For a ~uller discussion, see M. Kotani, A. Amemiya, E. Ishiguro, 
and T. KImura, Table of Molecula, Integrals (Maruzen Co. Ltd. 
Tokyo, 1955). ' 
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distinguishable orderings: 

l'>8M[ot""][P"II] = l' C(P)P[ot""][P"II], (9) 
p 

where the sum is over those P which give rise to 
distinguishable product functions. 

We can relate C(P) for various P by use of the fact 
that l'>SM and every P commute. To do so, we apply 
to both sides of Eq. (9) a permutation Q which affects 
only the first n" spins. Bringing Q through l'> SM on 
the left side, we see that it only permutes the n", ot 
spins and therefore has no effect. This means that the 
right-hand side of Eq. (9) must also be unaffected. 
But there, the various P have produced functions not 
all of whose first n", spins are identical. Since applica­
tion of Q produces a nontrivial re-ordering of the first 
n", spins in P[ot"",H,8"II], it is necessary that all P which 
differ only by permutations among the first n", func­
tions have the same C(P). Corresponding remarks 
apply to the application of permutations Q involving 
the last nil spins. The conclusion is that C(P) can 
depend only upon the numbers of ot and ,8 spins in 
the first n"" and last nil positions of P[otn",H,8nll]. 

As a result of the arguments of the preceding 
paragraph, we write 

l'>SM[otn",upnll] = l CiS, M, n)[otn,.-i,8iUotipnll-i], 

i (10) 

where [otPpq] is the sum of all the (~Q) possible 
orderings of pot-functions and q p-functions. The 
summation is over all j values for which the spin 
functions are defined, and the C;(S, M, n) are coeffi­
cients whose values are to be the subject of later 
sections of this paper. Note that we show explicitly 
the values of S, M, and n = iN to which the coeffi­
cients refer.s We see also that j describes a set of 
permutations which when applied to [ot"",][pnll] cause 
j ,8-spins to be placed in the first n", positions (with 
jot-spins replacing them in the last nil positions). 

We ordinarily use Eq. (10) in contexts involving 
the evaluation of a matrix element. For example, 

(l'>SM[ot""'Upnll] Il'>SM[ot""UP"II]) 

= ([ot""'][P"II]Il'>1~SM 1 [ot""UP"II]) 

= l CiS, M, n)([ot""]W'II] I [ot"CipiUotiP"II-i ]) 
i 

= Co(S, M, n). (11) 

To obtain Eq. (11) we used the self-adjointness and 
idempotency of C) SM and the orthonormality of 
different spin products. Another example, arising 

• In the notation of Refs. 4. 21. 22. the coefficient here designated 
C1(S. M. n) is rendered Cj(S. M. 2n). In Ref. 10. CSoi stands for 
C1(S. M. n); M and n are not explicitly shown. 

when the antisymmetrizer is used, is 

(l'>SM[otn"'][P"II]1 P Il'>SM[OC""UP"II]) 

= ([ocn"UP"II]1 Pl'>SM l[otn"UP"II]) 

= l CiS, M, n)(p-1[ot""][P"II] I [oc"CipiUocipnll-i]) 
i 

= CiCP)(S, M, n). (12) 

Here, we require the fact that P and l'>8M commute, 
and we define j(P) to be the number of,8 spins in the 
first n", positions of P-l[otn",H,8nll]. The scalar product 
multiplying C;CP)(S, M, n) is unity because there will 
be exactly one term in its right half which matches the 
single product P-l[otn"'H,8nll]. 

Finally, we consider the effect of applying l8. M l'> 8M 
which according to Eq. (3) is the identity operator. 
We drop the M summation since only the M of Eq. 
(1) leads to nonzero contributions. Then, from Eq. 
(10), 

l ([oc""U,8"II]Il'>sM l[oc""'][P"II]) 
S 

= l C;(S, M, n)([ot""'][P"P] I [ot"..-i,8i][OCip"p-i]) 
s.; 

= l Co(S, M, n). 
S 

Thus we have a "normalization" condition 

l Co(S, M, n) = 1. (13) 
S 

If we also apply any permutation, as in P lS.M l'> 8M' 
we have, from Eq. (12), 

l ([ot""](P"P]1 Pl'>SM 1 [oc""'][P"P]) = l C;(P)(S, M, n). 
S S 

But, because P lS.M l'>SM = P, this is equivalent to 
([ot""'] [,8"11]1 P I[ot""'] [,8"11)), and any P characterized by 
a nonzero j(P) will make the matrix element vanish. 
Thus, we have the "orthogonality" condition 

l CiS, M, n) = 0, j ¥= O. (14) 
S 

Since some of the methods for finding the CJ(S, M, n) 
lead to homogeneous equations, Eq. (13) provides a 
means of determining the scale of these coefficients. 
Equation (14) can be used to check numerical work. 

III. SPIN PROJECfION (SANIBEL) 
COEFFICIENTS 

The coefficients CJ(S, M, n) have now received 
extensive study.2-4.7-15 It was first shown that they 

7 R. Pauncz, J. Chem. Phys. 37, 2739 (1962); M = O. 
8 P.-O. Lowdin (private communication. 1962); M = O. 
• F. E. Harris (private communication. 1962); M = O. 
10 F. Sasaki and K. Ohno. J. Math. Phys. 4, 1140 (1963); general 

S.M. 
11 V. H. Smith, Jr .• J. Chem. Phys. 41, 277 (1964); general S, M. 

Note the misprints: in Eq. (1) replacej = 1 by j = 0, and in Eq. (6) 
replace k by j. 
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obey the following recurrence relation, originally 
derived for M = 02 and later for nonzero M 11: 

(n + M - j)(n - M - j)CHl(S, M, n) 

+ [n + 2j(n - j) - S(S + 1) + M2]C j (S, M, n) 

+ /Ci_l(S, M, n) = O. (15) 

Subsequently, the Ci(S, M, n) were explicitly related 
to the vector-coupling coefficients.lo Alternatively, 
consideration of the behavior of the spin functions 
under the operations of the three-dimensional rotation 
group led to the integral formula3 

CiS, M, n) 

2S+1(" ( '2()) =-2-(-1)')o2F l M-S,M+S+1;1;sm"2 

X (cos2 ~r-i+M (sin2~)' sin () d(). (16) 

The vector-coupling method led to the following 
result, reported by Sasaki and Ohnolo : 

Ci(S, M, n) 

= (2S + l)tn - M - j)! (S + M)! 
(S - M)! 

X l (-1)k[(S-M+k)!]2 

k k!(S-M+k-j)!(n-S-k)!(2S+1+k)! 

(17) 

In Eq. (17) and all subsequent expressions involving 
factorials or binomial coefficients, it is to be under­
stood that summations are to be over all values for 
which the summand is well defined. 

Equation (16) was integrated by Smith,n using a 
representation of 2Fl as a Jacobi polynomial, thereby 
obtaining 

C (S M n) = 2S + 1 ~ (_l)S-M+i-k(S - M) 
j" n+S+1f k 

X ( S + M ) ( n + S )-1. (18) 
S-M-k n+M-j+k 

Replacing k by S - M - k, this expression is easily 
rearranged to the form 

Cj(S, M, n) = 2S + 1 l (_l)i+k(S - M) 
n+S+1k k 

XC: M)(;: :r1

• (19) 

This is the most efficient formula for M near to ±S. 

.. P.-O. Liiwdin (private communication, 1964); general S, M. 
11 N. Karayianis and C. A. Morrison, J. Math. Phys. 6, 876 (1965); 

general S, M. 
14 J. Shapiro, J. Math. Phys. 6, 1680 (1965). 
15 J. E. Harriman, J. Chem. Phys. 40, 2827 (1964). 

Equation (19) also makes explicit the symmetry in M: 
Ci(S, M, n) = Ci(S, -M, n). 

Equations (17) and (18) or (19) are not easily shown 
to be identical. As a first step towards the demonstra­
tion, it is convenient to identify Ci(S, M, n) in terms 
of generalized hypergeometric series. We use the nota­
tionlG 

pFq[lXl' 1X2' . : : : IXp; ZJ =! (lXlMlX2h '. '. '. (lXp)k
Zk

, ' 
f3l' f32, , f3q /c=O (f3lMf32h (f3q)/ck. 

(20) 

with (U)k = u(u + 1) ... (u + k - 1), (u)o = 1. If 
some IXt is a negative integer the series is deemed to 
terminate when (lXi)k = 0; no difficulty in interpreta­
tion arises unless a (f3j)k becomes zero for a smaller 
value of k. This case is not encountered here. 

By a suitable grouping of the factors in Eq. (19), 
it may be brought to the form 

C (S, M, n) = 2S + 1 (_l)i(n + S)-l 
i n+S+1 j 

X aF2[M - S, -M - S,j + 1;.1J. (21) 
j - n - S, 1 

Incidentally, Eq. (19) may itself be easily verified 
without the intermediate introduction of a Jacobi 
polynomial by use of Eq. (20) for 2Fl in Eq. (16). We 
perform the integration directly in the variable 
z = sin2 «()12). Each term involves a definite integral 
of the form 

Ll
ZP(1 - z)q dz = p! q!j(p + q + I)!. 

Returning to Eq. (17), we now transform it first 
to some possibly useful explicit expressions for 
Ci(S, M, n), and then to a hypergeometric series 
equivalent to Eq. (21). Rewriting Eq. (17) to cast it in 
terms of binomial coefficients, we obtain 

C (S M n) = 2S + 1 (n + S)-l(n - M\-l 
i" n+S+1S+M j J 

X l ( -ll (n + S + 1) 
k n-S-k 

X (S - ~ + k) (S - ~ + k). 
(22) 

Our next step is to apply the binomial-coefficient 
addition theoreml? 

18 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 
Higher Transcendental Functions (McGraw-Hill Book Co., Inc., 
New York, 1953), Vol. 1, Chap. 4. 

17 See, for example, H. Margenau and G. M. Murphy, The 
Mathematics of PhYSics and Chemistry (D. Van Nostrand Company. 
Inc., Princeton, N.J., 1956), 2nd ed., pp. 433ft'. 
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in the form forward comparison with the definition, 

C (S M n) = 2S + 1 (_1)f(n + S)-1 
(24) i" n + S + 1 j 

Inserting Eq. (24) into Eq. (22), interchanging the k 
and I summations, and cancelling factorials where 
possible, we obtain for the k summation of Eq. (22) 

! (S. - M) (S - M + 1) 
I J - 1 1 

X !(_1)k(n + S + 1)(S - M + k). 
k n-S-k k-I 

Using the relationship17 

to convert (_l)k(S-k~ik) to (-I)l(M-t"!!-l), the k 
summation may be evaluated using the addition 
theorem to reach 

ClS, M, n) 

= 2S + 1 (n + S )-1 (n - M)-l 
n+S+1 S+M j 

X !(-1i (S.- M)(S - M + l)(n + M -I). 
I J-l 1 n-S-I 

(26) 

Similar steps starting from the replacement in Eq. 
(26) of (S--r+I) by !k (S-1:.tH)(D lead to 

C/S,M, n) 

= (2S + 1)(n + M)! (n - M)! 
(n + S + l)(n + S)! (n - S)! 

X (n ~ Mf (n ~ MTI 
x t(-1)i-

k
( ~ M)( ~ M)(; = Z) (27) 

Once again we have reached a form in which M and 
-M appear symmetrically. Equation (28) is the most 
convenient form for small j values, as the k summa­
tion runs at most from 0 to j. This equation is also an 
appropriate point from which to obtain another 
expression in hypergeometric series. By straight-

(n - M - j)! (n + M - j)! 
x 

(n - S - j)! (n + S - j)! 

X SF2 ' ". [
M - S -M - S -j'1J 

n - S - j + 1,1 

(29) 

MacRobert18 gives an identity involving 3F2 series 
which for the case at hand is 

F [M - S, -M - S,j + 1; 1J 
S 2 . S 1 J - n - , 

_ (j - n + M)S-M F [M - S, -M - S, -j; 1J 
- S 2 . 

(j - n - S)S-M n - S - j + 1, 1 

(30) 
Since 

(j - It + M)S-M (n - M -j)! (n + M -j)! 
= 

(j - n - S)S-M (n - S - j)! (n + S - j)! ' 

the Sasaki-Ohno and Smith formulations are proven 
equivalent. 

For completeness, we cite various special cases of 
the Ci(S, M, n). The first three of these were reported 
by Sasaki and Ohno. For j = 0, from Eq. (27), 

Co(S, M, n) = (2S + 1)(n - M)! (n + M)! . (31) 
(n + S + l)(n - S)! (n + S)! 

For M = S, from Eq. (19), noting that k has only 
the value zero: 

C;(S, S, n) = (_1)i (n ~ ; ~ 1) (n ~ srt. (32) 

For S = n, using Eq. (27), noting that j and k must 
be equal, 

C .( M )_(n+M)!(n-M)! ,n, , n - . 
(2n)! 

(33) 

We have obtained one new result. For j = n - M, 
using Eq. (28), noting that k has only the value 
S-M, 

Cn_M(S, M, n) = (_l)n-s( 2S + 1 ) 
n+S+1 

x G = Z)(;: ~rl. (34) 

IV. RECURRENCE FORMULAS 

Since the CiS, M, n) are proportional to general­
ized hypergeometric series, we may use the results 
available for these series to obtain recurrence formulas 

18 T. M. MacRo bert, Phil. Mag. 28, 488 (1939). 
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among contiguous C/(S, M, n). Alternatively, we 
have found that the recurrence relations can be 
derived from a further analysis of the properties of 
the eigenfunctions ()SMk which appear in the definition 
of C)SM' 

Taking first the approach based on hypergeometric 
functions, we start from the relations connecting 
contiguous functions. The functions contiguous to 

pF q[OCI , oc2, ... , ocp; Z] 
PI' P2' ... , pq 

are those which are obtainable by increasing or 
decreasing a single OCi or PI by unity. We denote these 
contiguous functions by F(OCi+), F(oc,-), F(P;+), 
F(PI-)' Among a given sF2 and its ten contiguous 
functions there are eight linearly independent linear 
recurrence relations. However, relations in which P2 
changes are not of use here because they involve 
hypergeometric functions which cannot be identified 
with any C;(S, M, n). 

Rainvillel9 has derived the recurrence relations 
needed for use here. Although his derivation is 
restricted to positive integral P;, the results are also 
valid for the zero or negative PI values needed here. 
The six contiguous relations not involving P2± are, 
for aF2['·lp~ •. :::.l]: 

(OCI - ocJF = ocIF(OCI +) - OCsP(OC2+), (35) 

(OCI - oca)F = ocIF(OCI +) - ocaF(oca+), (36) 

(OCI - PI + I)F = ocIF(OCI+) - (PI - I)F(PI-)' 
(37) 

pF = PI(OCI - P2)F(OCI-) 

- (OC2 - PI)(OCa - PI)F(PI +), (38) 

pF = PI(OC2 - P2)F(OC2-) 

- (OCI - PI)(OCS - PI)F(PI +), (39) 

pF = PI(OCa - P2)F(0Cs-) 

- (OCI - Pl)(OC2 - PI)F(PI +), (40) 

where 
p = PI(OCI + OC2 + OCa - PI - P2)' 

From Eqs. (21) and (35)-(40) we obtain the following 
six recurrence relations among the CiS, M, n): 

(S - M + j + I)C/(S, M, n) 

+ (n + S + 2)C;+l(S, M, n + 1) 

= (S - M)[(2S + 1)/2S] 

X C;(S - i, M + i,n + i), (41) 

11 E. D. Rainville. Bull. Am. Math. Soc. 51, 266 (1945). 

(S + M + j + I)C;(S, M, n) 

+ (n + S + 2)CHI(S, M, n + 1) 

= (S + M)[(2S + 1)/2S] 

X C;(S - i, M - i, n + t), (42) 

C/(S, M, n) + Ci+1(S, M, n + 1) 

= C;(S, M, n + 1), (43) 

(n - S)(n + S + I)C;(S, M, n) 

+ PCi-I(S, M, n - 1) 

= (n + M - j)(n - M - j)Ci(S, M, n - 1), (44) 

(n - S)C;(S, M, n) + (S - M + 1) 

X [(2S + 1)/2S + 2]C;(S + t, M - i, n - t) 
= (n - M - j)C;(S, M, n - 1), (45) 

(n - S)Ci(S, M, n) + (S + M + 1) 

X [(2S + 1)/2S + 2]Ci (S + t, M + t, n - t) 
= (n + M - j)Ci(S, M, n - 1). (46) 

We note that Eq. (43) was previously given by 
Harriman.15 

The alternative procedure for obtaining these 
recurrence relations involves an interesting synthesis 
of projection-operator and vector-coupling techniques. 
Rather than derive all six formulas, we illustrate with 
a typical example. Our starting point is the combina­
tion of Eqs. (2) and (12) to obtain 

C;(S, M, n) 

= ([ocn«][pnp]1 C)SMP i I[ocn«][pnp]) 

= L ([ocn«][pnP] I ()SMk)«()SMkl Pi I[ocn«][pnp]), (47) 
k 

where Pi is any permutation which interchanges 
j oc, p-pairs in [ocn~] [PRP]. For the relation to be derived 
now, we choose Pi such that it leaves the first function 
unaltered. 

The ()SMk are now related to the eigenfunctions 
for smaller numbers of spins using the genealogical 
construction scheme. Writing ()%Mk to indicate 
explicitly that the functions refer to an N-spin system, 
the total set of ()%Mk consist of all those obtainable 
by either of the formulas 

i 
()N = _ (S - M + 1) oc()N-l 

SMk 2S + 2 S+i.M-i.k 

i 

(S + M + 1) p()N-I (48) + 2S + 2 S+l.M+l.k' 

i 
()N (S + M) ()N-I 

SMk = 2S oc S-i.M-i.k 

i 
+ (S ;S M) P()~~i.M+i.k' (49) 
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The at and P functions refer to spin 1; the (N - 1)­
spin functions describe spins 2 through N. The k 
values in Eq. (48) range over the (N - I)-spin 
eigenfunctions for S + t while those in Eq. (49) 
refer to the (N - I}-spin eigenfunctions for S - t. 
If S = 0, Eq. (49) does not apply. The summation in 
Eq. (47) is to be construed as including both these 
sets of O~Mk • 

Inserting Eq. (48) and (49) into Eq. (47) , and 
dropping all terms which vanish due to orthogonality 
in spin 1, we have 

C;(S, M, n) 

= (S - M + 1) ~ ([at .... ]fR .. II] I rxON- 1 ) 
2S + 2 f LP S+t.M-!.k 

x (rxo:;I.M-l.kl P; l[rx .... ][P .. II]) 

+ (S ;S M) t ([rx .... ][p .. lI] I rxO:j.M-t.k) 

X (rxo:-=-I.M_l.k1 P; I[rx .... ][P"II]). (50) 

Integrating spin 1, we see that the remainder of each 
term on the right side ofEq. (50) is exactly of the form 
given in Eq. (47) for an (N - I}-spin system; in 
particular, 

ClS, M, n) 

= ClS + t, M - t, n - t) (s - M + 1) 
2S + 2 

(s + M) + 2S C;(S - t, M - t, n - t). 

By replacing M by -M, and noting that 

C;(S, M, n) = CiS, -M, n), 

we also have 

C;(S, M, n) 

= (S;s: ~ I)C;(S + t, M + t, n -t) 

(51) 

(
s - M) + 2S ClS - t, M + t, n - t). (52) 

Equations (51) and (52) are linearly dependent upon 
Eqs. (41)-(46). Similar techniques yield the remainder 
of the recurrence formulas. 

Equations (51) and (52) are also illustrative of a 
fact which has proven useful in manipulations 
involving spin-dependent operators, namely that 
many of the relationships are entirely independent of 
j. This fact also facilitates the construction of j­
independent recursive schemes for generating the 
C;(S, M,n). 

Now that the recurrence relations are in hand, we 
can verify that the CiS, M, n) satisfy the pure 
recurrence relation alongj which we cited as Eq. (15). 
Writing Eq. (43) for j and n - 1: 

C;(S, M, n - 1) + Ci+l(S, M, n) = C;(S, M, n) 

(53) 
and, forj - 1 and n - 1, 

C;_l(S, M, n - 1) + C;(S, M, n) = C;_l(S, M, n), 

(54) 

we reach Eq. (15) by eliminating C;_l(S, M, n - 1) 
and C;(S, M, n - 1) from Eq. (44). 

V. GENERATION OF THE Ci(S, M, n) 

We have found that the most efficient way to 
generate the Ci(S, M, n) is to start from 

C;(S, M, S) = (S + M)! (S - M)!/(2S)!. (55) 

Note that these coefficients are independent of j. We 
then make Co(S, M, n) for n = S + 1, S + 2, ... , 
up to the maximum n value needed. From Eq. (31) 
we easily obtain 

Co(S, M, n) 

= (n(n + ~; -=- ~: + 1») Co(S, M, n - 1). (56) 

All remaining Ci(S, M, n) are then built up by 
systematic use of Eq. (43). We make C1(S, M, n) for 
all n values starting from n = S + 1, using the 
Co(S, M, n) values already available and the value of 
C1(S, M, S) from Eq. (55). Then from Eq. (55) and 
the C1(S, M, n) we make C2(S, M, n), etc. 

Tables of the Ci(S, M, n) for n values through 10 
have been prepared by Manne.2o 

VI. PHYSICAL APPLICATIONS 

The most frequent applications of the spin projec­
tors discussed here have been to energy calculations. 
The usual situation is that a wavefunction 'F' is 
generated from an N-electron spatial function E(r) 
and a spin function [rx .... ][fJnll] byantisymmetrization 
and spin projection: 

'F' = l'>sM,t{;E(r)[rx""][fJnll]. (57) 

Here ,t{; is the antisymmetrizer, defined as 

(N!)-l I €pp, 
p 

where the sum is over all permutations P and Ep is 
the parity of P. 

10 R. Manne, Theor. Chim. Acta 6, 116 (1966); a more extensive 
table is available as Preprint No. 153, Quantum Chemistry Group, 
Uppsala University, Uppsala, Sweden, 1965. 
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We next form the matrix elements of an operator B, 
simplifying our results by recognizing that 08M and 
A commute and are idempotent, and that A commutes 
with B. 

('YI B I'Y) 

= (08MAE(r)[lXnlX][pnp]1 B 108MAE(r) [lXnlX][pnp]) 

= (E(r)[lXnlX][pnp]I 0 8MBAO 8M IE(r)[lXnlX][pnp]). (58) 

If B is spin free, 08M and B commute, and one of 
the 08M factors can be dropped from Eq. (58). If we 
then introduce the definition of A and separate the 
space and spin integrations, we reach, with the aid of 
Eq. (12), 

('YI B I'Y) = (N!)-1 I EpC;(p)(S, M, n)(EI BP IE). 
p (59) 

Equation (59) shows that the C;(S, M, n) entirely 
characterize the effect of spin upon the matrix element 
of a spin-free operator B. 

Spin-dependent operators can be handled by 
methods similar to those just described. However, 
B no longer necessarily commutes with 08M and it 
by hypothesis has spin dependence. The procedure 
to be followed depends upon the nature of the spin 
dependence of B. If we assume B to be a one-electron 
operator of the form 

N 

B = I br(rj)b,,( aj), (60) 
i=1 

where r i and ai refer to the spatial and spin coordinates 
of the ith electron, the equation corresponding to Eq. 
(59) is 

('YI B I'Y) = (N!)-1 I I Ep ([lXnlX][pnpli 
i p 

X 08Mb,,(ai)P08M 1[lXnlX][pnp]) 

X (81 b.(ri)P IE). (61) 

Because 08M and btl do not commute, no further 
direct simplification is possible. We see that the effect 
of the spin is thus carried in the factor 

This factor can be reduced to an expression involving 
several Ci(S, M, n) differing in their values of j, S, 
M, and n. The recurrence relations of Sec. IV can be 
used to simplify the results. For further details the 
original literature can be consulted.4•21.22 
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New properties and relations to Clebsch-Gordan coefficients have been found and proved for a 
certain subset of isospin crossing matrix elements. These properties, coupled with the well-known fact that 
the crossing matrix is simply related to a real orthogonal matrix, provide a quick method to calculate 
~rossing matrices of rank ~ 4. Procedures of construction and tables are given for all crossing matrices 
Involving I ~ t. For the sake of completeness as well as clarification of the confusing point about phases, 
we include a systematic discussion of crossing relations and a general expression for crossing matrices 
applicable to arbitrary phase conventions. For the crossing matrix in which both direct and crossed 
reactions are elastic, some interesting inequalities among elements in the first and last columns are noticed 
and their physical implication is briefly discussed. 

I. INTRODUCTION 

The relation between the isospin crossing matrix 
(denoted by C.M. hereafter) for a four-line connected 
part and the 6j symboP has been known2 for some 
time. General discussions of the crossing relations and 
formulas for the C.M., with convention-dependent 
phase factors, have been given by several authors.a-s 
Although the expression of the C.M. in terms of 6j 
symbol can be easily derived, the over-all phases, 
which are very important in practical calculations in 
order to be consistent within a given convention, 
often cause confusion. To settle this question of 
crossing phases once and for all, we give a detailed 
discussion of the crossing relationS in the Appendix A. 
From this result we derived a general formula for the 
C.M., with its over-all phase written in a compact 
and physically transparent way, which can suitably 
accommodate all the different conventions. 

Our main interest, however, is to investigate whether 
we can calculate the low-rank C.M. by just making use 
of their general properties. One method of this kind, 
which has been used for? 7T'N and forG 7T'7T' scattering is 
to obtain the C.M. by explicitly constructing projec­
tion operators of definite isospin in both direct and 

* This work was done under the auspices of the United States 
Atomic Energy Commission. 

1 See, for example, A. R. Edmonds, Angular Momentum in 
Quantum Mechanics (Princeton University Press, Princeton, N.J., 
1960). Also, M. Rotenberg, R. Bivins, N. Metropolis, and J. K. 
Wooten, Jr., 3-j and 6-j Symbols (Technology Press, Cambridge, 
Mass., 1959). 

IF. J. Dyson, Phys. Rev. 100, 344 (1955). 
a A. O. Barut and B. C. Unal, Nuovo Cimento 28, 112 (1963). 
4 P. A. Carruthers and J. P. Krisch, Ann. Phys. (N.Y.) 33, I 

(1965). These authors divided particles into classes in their discussion 
of the crossing phase, a procedure which seems to us confusing and 
unnecessary. 

I D. E. Neville, "Isospin Crossing Matrices," Lawrence Radiation 
Laboratory Report UCRL-70059, 1966. 

• J. R. Taylor, J. Math. Phys. 7,181 (1966). Our discussion of iso­
spin crossing relations follows a similar line. 

7 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). 
• G. F. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960). 

crossed reactions and then searching for their relations. 
Unfortunately, the approach along this line is quite 
complicated except for a few simple elastic cases. In 
the following, we want to present an algebraic method 
for calculating the C.M. We have found certain simple 
phase properties of the outermost layer of C.M. 
elements and their relations with Clebsch-Gordan 
coefficients. In addition we have proved some useful 
sum rules for the trace and for the column and row 
elements in elastic C.M.'s. These properties, coupled 
with the well-known fact that the C.M. is simply 
related to a real orthogonal matrix, provide us enough 
constraints to calculate all C.M.'s of rank equal to or 
lower than four. So far the largest isospin for estab­
lished particles, with B = 0, 1, is -i; hence, our method 
covers all C.M.'s involving known baryons and 
mesons. 

As a by-product of our investigation, we have 
noticed that there exist interesting inequalities for the 
matrix elements of an arbitrary elastic C.M. The 
physical implication of this fact is discussed in Sec. VI. 

In Sec. II, we discuss the phase convention used in 
this note and derive a general expression of the C.M. 
which covers all different conventions. The general 
properties of the C.M., together with simple sum 
rules among matrix elements, are given in Sec. III. 
In Sec. IV, we give procedures for constructing the 
C.M. and also tabulate all C.M.'s involving I ~ -I. 
Formulas for all elastic C.M.'s up to rank four are 
also given; these might be of use for spin crossing 
matrices in a static modeJ.7 Finally, in Sec. V, we give 
the proof of those properties stated in Sec. III. 

n. PHASE CONVENTION 

For a general reaction involving two-particle 
channels, if we let a + b -+- C + d be the s reaction, as 
usual, we call a + c -+- b + d and a + J -+- C + h the 
t and u reactions, respectively. The letters a, b, c, and 

779 
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d stand not only for particle type but also for the 
isospin value of each particle; the same letters with 
and without bar are antiparticle conjugate to each 
other. Throughout this note, the Condon-Shortley 
conventionl is used. We use all. to denote a charge 
state of multiplet a with I. component ot, and 
(cyddl A lal1.bp) to denote the amplitude for a typical 
reaction all. + bp -- cy + dd' The phases of all ampli­
tudes or, equivalently, the phases of all particles, are 
adjusted in such a way that isospin invariance is 
expressed by 

(cyddl A lal1.bp) = ! DI1.'iu)D/I'/I(u)D~iu)D:'iu) 
«' .. . ~' 

x (Cy,dd, 1 A lal1.,b/l')' (1) 

where u is any group element of SU(2, C)9 and D(u) 
is the usual irreducible representation of u with 
dimension (2/ + 1) for each particle; star means 
complex conjugation. 

As is shown in the Appendix A, the crossing relation 
compatible with (1) takes the general form 

(cAl A lal1.bp) = '1(b, f3)'1*(d, b) (cyij_pl A lal1.d-d)' (2) 

where the '1's are phase factors which can be written as 
'1(j, m) = '1;( -l)m with '1; arbitrary and independent 
of m. Thus, we can take all crossing phases of the type 
'1(j, m) to be real for convenience, and rewrite (2) as 

In real phase convention, which we use hereafter, 
there is two-fold freedom in selecting '1a for a given 
isomultiplet a, i.e., 

'1a = -'1it = ±i, if 2a is odd, 

'1a = '1(l = ±1, if 2a is even. 

We are now in a position to define the C.M. un­
ambiguously: Let As, At, and Au denote the am­
plitudes of definite isospin in s, t, and u channels 
respectively; they are defined throughlO 

(cyddl A lal1.bp) = ! (a, ot; b, f31 s)(c, y; d, b I s)A .. 
s (4) 

(b_pddl A lal1.c_y) 

= ~ (a, ot; c, -y I t)(b, -f3; d, b I t)At, (5) 
t 

(cyb_pl A lal1.d_d) 

= ! (a, ot; d, -b I u)(c, y; b, -f31 u)A". (6) 
" 

• This is the group of complex 2 x 2 unitary unimodular matrix. 
10 Our notation for C-G coefficients is the same as in Ref. I; 

sometimes we just write (h, m1;h, m.1 j) = (jl, m1;j., m.1 j, 
m1 + m.). 

The C.M.'s C,t and Cs,. are such that 

As = ~ CstAt , 
t 

As =! C8u A,.. 
u 

(7) 

(8) 

Notice that the phases of the A's depend on the particle 
order of writing the Clebsch-Gordan coefficients, 
sincel 

(h, ml;j2, m21j) = (_l)it+I.-1 (ja, m2;h, mllj)·. 

In our convention, Eqs. (4)-(6), we simply let the 
particle written in the "first" ("second") position in 
each channel also be the one located at the first 
(second) position in each C-G coefficient. Thus de­
fined, it can be easily shown that 

Cst(a + b -- C + d) 
= (- 1)2CHHC-S-"CS,.(a + b -- d + c), (9) 

where the reaction in the bracket specifies the s reaction 
for each C.M. Because of (9) we confine our attention 
to Csu from now on. 

With the crossing relation (3) and the definition 
of the. 6j symbol, together with (4) and (6), we finally 
get 

C8tt = 17b'1i-l)Hd+2S(2u + 1){: ~ :}. (10) 

The phase factor in (10) exhibits a symmetrical 
dependence on the two crossed particles, and in the 
general phase convention '1aC _1)d is simply replaced 
by ['1d( _1)d]*. A very important fact which follows 
from our analysis is that there are only two cases in 
which the phase of (10) is independent of convention: 
one case is when band d belong to the same particle 
multiplet, then '1b( -1)b['1d( _1)d]* = 1; the other 
case is when band d belong to two multiplets which 
are particle-antiparticle conjugate to each other, by 
(A9) we have 

'1b(-l)b['1aC-l)d]* = '1b1J6 = (_1)2b. 

A special case of particular interest is the C.M. for 
elastic scattering, where the '1 factors drop out and we 
simply havell 

Csu(a + b--a + b) 

= (_1)2a+2b(2u + 1){: : :}. (10') 

It is worthwhile to mention that the phase in (10') is 
such as to make each row sum to unity, 12 or equiv­
alently, the last column elements being all positive. 
(The proof is given in Sec. V.) 

11 For an interesting connection of this formula to the generalized 
Pomeranchuk theorem, see C. N. Yang, J. Math. Phys. 4, 52 (1963). 

12 This is always the case if we define all elastic amplitudes in the 
same way; for example, a natural choice would be that all such 
amplitudes have positive imaginary parts. Note the C.M. for NN* 
and N* N* given by Ref. 3 have opposite phases compared to our 
result. 
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As one last remark about the general formula (10), 
we noted that the ratios13 

and 

Csu(a + b - c + d)/C.uCa' + h - c' + d) = (_1)2b 

(with Ia = la' and Ie = Ie') are independent of any 
particle-phase convention. This can be seen from the 
group-theoretic result14 (A9). Taking nucleon-anti­
nucleon scattering as an example, we must have 

C.u(N + R - N + R)/C .. JN + R - R + N) = -1. 

In the following sections, it is convenient to con­
sider a matrix C.u whose phase differs from that of 
C.U by the rule 

C
8

", = TJbTJaC _1)d+b+2S
( -1)a+b+e+dC

8u 

The last form is written for mnemonic reasons. 

Ill. GENERAL PROPERTIES OF THE 
CROSSING MATRIX 

From the last section, C is given by 

(11) 

C = (_I)a+b+e+d(2u + 1){a b S} (12) 
8U cd u· 

With this relation and the properties of 6j symbols, we 
then infer the following: 

(A) 

(
2U + 1)1 

Cs", = 2s + lOs"" (13) 

where 0 is a real orthogonal matrix; thus, 

. 
If a + b ~ c + d, 

C _ (c, c; b, a - c - d I u)(a, a; d, -d I u) 
e+d,u - I . 

(a, a; b, c + d - a c + d, c + d) 
(16) 

It is clear (15) and (16) are related by the exchange 
a +-+ c and b +-+ d. 

(D) Coupling (13) and (C), we can get the last 
column of C in terms of last row of C-l: 

CS,UM = e~;++/)C;;~,s, (17) 

where UM is the maximum of u. 
(E) If Ib = Id, i.e., the two crossed particles have 

the same isospin, then C2 = 1 and 0 is symmetrical. 
(F) For the case Ia = Ie and Ib = Id, we have sum 

rules for the matrix elements 

", 

I (2s + I)Csu = (2u + 1), 
s 

Tr C = I C",., = 0, if n is even, 

1, if n is odd, " 

where n is the rank of C. 

(18) 

(19) 

(20) 

(G) Again for the elastic case only, the elements in 
the last row are simply 

CaH,u = (a, a; b, -b I u, a - b)2, (21) 

while those in the first column are given by (without 
loss of generality we take a ~ b): 

Cs,a_b = (-I)I(a, a -I; b, -b + II a - b, a - b)2, 

(22) 

where I == (a + b) - s, taking values from 0, 1, ... , 
to 2b. 

C - (2U + 1)e::1 

su - 2s + 1 us' 

(H) Another special case worth mentioning is that 
(14) when Ia = Id and Ib = Ie' then 

(B) The last row and last column of C are all 
positive whereas the first row and first column are 
alternating in sign. 

(C) The last row can be expressed in terms of 
Clebsch-Gordan coefficients as follows: If c + d ~ 
a + b, 

C _ (a, a; d, c - a - b I u)(c, c; b, -b I u) 

a+b,u - (c, c; d, a + b - c I a + b, a + b) . 
(15) 

18 The formula given by Ref. 4 fails to give distinct crossing phases 
between crossed panicles and antiparticles of half-integral isospin. 

"For an interesting implication of this result applied to self­
conjugate particles with half-integral isospin, see H. Lee, Phys. Rev. 
Letters 18, 1098 (1967). 

Cso = (_l)a+b+8[(2a + 1)(2b + 1)]-1. (23) 

The properties stated above are useful for con­
structing the C.M. Following are properties with 
interesting dynamical implications. 

(I) For Cs",(a + b-a + b) and a ~ b: 

(i) Ca-b,aH is greater than any other element. 
(ii) The elements in the last column decrease with 

increasing s. 
(iii) The elements in the first column increase their 

magnitude with increasing s, for a -:;6 b, and become 
all equal in magnitude when a = h. 

(iv) The elements in the first row increase in magni­
tude with increasing u. 
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(J) For e(a + b--a + b) with a/b» 1, the anti­
diagonal elements are close to unity to the order of 
bfa, while others are all vanishingly small in the order 

esu ~ 0«b/a)ls+U-2al); 

and the signs of esu are given by 

sgn e
8U 

= (_1)8+u-2a, for s + u < 2a, 

sgn e8U = 1, for s + u ~ 20. 

(K) For e8U(a + a -- b + b), the element with 
largest magnitude in each column is the one with 
s = O. 

Properties (A), (E), and (H) are well known,1 (K) 
has been proved by Masuda,15 and the remaining 
ones are proved in Sec. V. 

IV. METHOD OF CONSTRUCTION AND 
TABLES FOR CROSSING MATRICES 

Since by (11) we can obtain the most general 
crossing matrix for different conventions and particle 
sets, it is sufficient for us to consider the e matrix for 
various set of isospins. From the relation (12) and 
symmetry properties of the 6j symbol, it is clear that 
e(a + b -- c + d) and e(b + a -- d + c) are identi­
cal, while e(a + b -- c + d) and e(a + d -- c + b) 
are inverse to each other. Hence for a given set of 
isospin a, b, c, and dthere are at most two independent 
e matrices to be considered, namely, e(a + b-­
c + d) and e(a + b -- d + c). 

The procedures for constructing e matrices are as 
follows: 

Case of rank one: By (13) we trivially obtain 

e = (2U + 1)I-. 
8U 2s + 1 

Case of rank two: By (13) and (B) we may put 

I-
e = (2U + 1)0 

8U 2s+18u 

with 

where ex can be determined from any element in the 
last row by using (C). 

Case of rank three or four: Although our method 
can cover all C.M. up to rank four, we consider only 

16 N. Masuda, Progr. Theoret. Phys. (Kyoto) 33, 864 (1965). 

those in which either (or both) the sand u reaction is 
elastic (in the sense ofisospin), since others necessarily 
involve particles with I> t, in which we are not 
interested. First consider e(a + b -- a + b); the last 
row and first column are immediately obtained by using 
(G). [It is amusing to notice that the numbers given 
by (21) and (22) also appear in a column and row in 
the table of Clebsch-Gordan coefficients.] With (14) 
relating symmetrical elements about diagonal for the 
case e = e-1, we easily get the first row and last 
column. The remaining elements are then determined 
by sum rules in (F). 

As for the case a + b -- b + a, we use (C) and (D) 
to get the last row and column, and (H) to get the 
first row; then the rest can be determined by orthog­
onality constraints imposed on 08U • 

The main scheme of the above procedures is quite 
clear: first we calculate the outermost layer of ele­
ments; then we use the orthogonality constraints 
together with sum rules to get the remaining elements. 
Since the number of parameters needed to describe an 
arbitrary real orthogonal matrix of rank 2, 3, and 4 is 
1, 3, and 6, respectively, we see that the available 
information is more than necessary to obtain a unique 
result. 

In fact it is interesting to note that for e(a + i -­
a + I), the sum rules from (F) are alone sufficient to 
fix all elements. By (18) and (20), e can be param­
eterized as 

e = i -ex 1 + ex i. 
I-ex ex 

Now using (19) we have 

2a( -ex) + (20 + 2)(1 - ex) = 2a, 

so 
ex = (20 + 1)-1. 

The following tables for C.M.'s are listed in the 
order of increasing rank. The reaction written in each 
case is the s reaction for e and the u reaction for e-1

: 

t+l--l+l 

e = e-1 = I-~ t i· 
"2 t' 

!+t--!+t 

e = e-1 = 1-; ! I; 
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a+1-- a +1 
1 2(a + 1) ---

e = e-1 = 
2a + 1 2a + 1 

2a 1 -- --
2a + 1 2a + 1 

1+1--1+ 1 

1 _ /6 2..)6 
1 

..)6 3 3 
e= e-1 = 

1 1 2 2 - - -
..)6 2 3 3 

%+1--t+% 

_ ..)2 ..)10 _ 3..)2 5..)2 

4 4 4 4 
e= 

..)2 3 
e-1 = 

..)10 ..)10 ' 

4 2..)10 4 4 

a+1--t+a 

l+I--%+1 

e _ e-1 _I -i 
- - t(10)l 

1+%--%+% 

!(lo)ll; 

1 

I 
_.l 

e = e-1 
= 3 (20)-l 

t(5)ll· 
1 ' 

1+1--1+1 

t -1 J!. 
3 

e = e-1 = -t t t , 
! 1 .1 

"2 6 

i+l--i+1 
.1 -1 .a 
6 2 

e = e-1 = -t .l.l 3 
15 "5 , 

.l 2 -L 
2 "5 10 

a+l--a+l 

e = e-1 

1 1 2a + 3 --
a(2a + 1) a 2a + 1 

(2a - 1) a2 + a-I 2a + 3 

783 

e= 1 
[2(2a + l)]l 

[ 
3a Jl ' 

a(2a + 1) a(a + 1) (a + 1)(2a + 1) , 

1 (a + 1) 2a - 1 1 1 -- --
-2a 2(a + 1) 2a + 1 a + 1 (a + 1)(2a + 1) 

e-' ~ [2(2. ~ 1)]; f(·: l)r 2[ .(. : 1)( %+1--1+% 

i-(3)l -t(10)l !(6)-l 

1+ 1-- 1 +% 

1 

e= 
2 

(5)l 

2(2)l 

5(3)l 

6 

(5)l ' 

2(6)1 

1 (10)! 

3 3 

(~t C~)l' 

1 _3[(a ~ l)r 
e = 1 -1 3 

[3(2a + l)]l [2a(a + l)]l 

1 3[ a Jl 
2(a + 1) 

(2a - 1) 

e= -i(3)l (10)-l t(6)l , 

i(3)l %(10)-l 112 (6)l 

3-l -2(3)-l 

e= -i-(lO)l 1
2
5 (lO)l 

6-l 1
4
5 (6)l 

[
5(a + 1)(2a + 3)Jl 

2a(2a - 1) 

[
5(2a - 1)(2a + 3)Jl 

2a(a + 1) 

[ 
5a(2a - 1) Jl 

2(a + 1)(2a + 3) 

-(2a + 1) 

3l 

3 (lO)-l 

110 (6)l 

(2a + 3) 

e-1 = 1 
[3(2a + l)]l 

-(2a - 1) [(a 2: 1)r (2a + 1) 

[2a(a + l)]l 
(2a + 3)[ a Jl 

2(a + 1) 

[
(2a - l)(a + 1)(2a + 3)Jl (2a + 1)[(2a - 1)(2a + 3)Jl 

lOa lOa(a + 1) [
(2a - 1)a(2a + 3)Jl 

10(a + 1) 
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-1 ! -~ 1. 
4 

e = e-1 = 1 -H 1 H 
-1 ...;1_ ! ...:L 

20 20 

1 .JL 1 -L 
20 20 

a+!~a+! 
3 1 3(a + 1) 

2(a + 2) 
a(2a - 1) 2a - 1 a 

6(a - 1) 8a2 + 4a - 13 2(a2 + a - 3) 3(a + 2) 

e = C;1 = 1 a(2a - 1) (a + 1)(2a - 1) a (a + 1) 

(2a + 1) 3(a - 1) 2(a2 + a - 3) 8a2 + 8a - 9 6(a + 2) 
a (a + 1) a(2a + 3) (a + 1)(2a + 3) 

2(a - 1) 
3a 6 3 --

a + 1 2a + 3 (a + 1)(2a + 3) 

V. PROOFS OF THE GENERAL PROPERTIES 

To prove (B) we use a formula1 

{

il i2 II + 12} = (_I)i l+i2+ll+I,[(2/1)! (2/J! (jl + i2 + II + 12 + I)! 
11 12 13 (211 + 212 + I)! (jl + i2 - 11 - 12)! 

X (jl + II + 12 - i2)! (j2 + II + 12 - iI)! (jl + 13 - 12)! (j2 + 13 - II)! J*. (24) 
(II + i2 + Is + 1)! (ji + 12 -Is)! (/2 + 13 - iI)! (jl + 12 + 13 + 1)! (11 + i2 -13)! (11 + 13- iJ 

that 8m = a - b; this implies that 

a - b ~ Ie - dl, 
Let 8M and U M represent the maximum of the 8 and u 
values that appeared in the C.M., while 8 m and Urn 

represent the corresponding minimum values. Since so 
8M is equal to the smaller value of (a + b) and a + d ~ e + b = UM' 

Now, (c + d), while UM equals the smaller of (a + d) and 
(b + c), the 6j symbols 

{a b 8 M } and {a b 8} 
e due d UM 

in all cases can be put into the form (24) by use of the 
following symmetries: 

{
a b 

e d 

By (24) and (12) we immediately get 
sgn e = sgn e = (_1)2a+2b+2c+2d = 1 

8.U BUM ' 

where sgn x == xllxl. 
On the other hand, 8 m is the larger value of 

la - bl and Ie - dl, Um the larger of la - dl and 
Ib - cl. For example, let us assume for definiteness 

{; ! 8;} = {; ! a ~ b} 

= {a ~ b ! ;} = L: b : ;}. 

Applying (24) to the last form, we get the phase 
( -1 )a+d+u, hence 

sgn e(a-b),u = (_1)2a+b+c+2d+u 

= (_1)u-b-C = (_I),,-uM. 

Similar considerations for all other cases lead to the 
same result, namely, 

sgn eSM,u = (_1)U-UM 
and sgn es,u

m 
= (_l)"-sM. 

This completes the proof of assertion (B). 
One can verify (C) straightforwardly by direct 

substitution of the explicit expression for each entry 
in (15) and (16), with the use of (24) andl 
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But we prefer the following proof in view of its 
physical transparency. Take the case e + d ~ a + b; 
we consider the following set of charge states, 

la, a) + Ib, b) --Ie, c) + Id, a + b - c). (26) 

Now the lhs is a pure I. = a + b state while the rhs 
has only a fraction 

(e, e; d, a + b - e I a + b, a + b) 

of an I, = a + b state, so the whole expression rep­
resents 

(e, e; d, a + b - e I a + b, a + b)A.=aH' 

On the other hand, the crossed reaction 

la, a) + Id, -a - b + c) --Ie, c) + Ib, -b) (27) 

represents a linear combination of different Iu ampli­
tudes, namely, 

1 (a, a; d, e - b - a I u)(e, e; b, -b I u)Au' 
u 

Equating this to the previous expression we arrive at 
(15). Notice that if we restore the crossing phase 
'Y}(d, a + b - e)'Y}(b, b) to the amplitude represented 
by (27) according to (3), then instead of (15) we 
automatically have an expression for CaH,u' 

The sum rule (18) can be proved most easily as 
follows: Consider a = e and b = d, then C.u = e.u 

by (11); now let A be an identity operator, from (4) 
and (6) we have As = Au = 1; since C." is independent 
of A, (8) is just reduced to lu e." = 1. 

To prove the sum rule (19) we use (13) and (18): 

L (2s + l)e ... = L [(2s + 1)(2u + 1)]10 ." 
• • 

= L [(2u + 1)(2s + 1)]10 ". 
8 

= 1 (2u + l)e ... = (2u + 1). 
• 

The proof of the sum rules (20) is more elaborate. 
First we note that Tr e = Tr ° from (13), and 0 2 = I 
from (E). Since now the eigenvalues of ° can only be 
± 1 and its trace is invariant under diagonalization, 
we conclude that Tr e = integer. Now using (J), 

es" = (_1)2a+2b(2u + 1)P(a b s)P(a b u) 

which we shall prove later, we can put 

esu = CJs+u,2a + Bsu' (28) 

where Bs" -- 0 as alb -- 00. So for sufficiently large a 
we see that (20) indeed follows. To extend the proof to 
all values of a, we fix b and consider e • ..(a) as a func­
tion of the real variable a; it is actually a rational 
function of a without poles for a ~ b, as can be seen 
from the analytic expressionl for the 6j symbol. 1)0, 
what we have proved about the trace for large a can be 
analytically continued down to all values of a as low 
as b; thus we have (20). 

To prove the statements in (I), we use (25) in (21) 
and (22) to obtain the analytic expression for eaH,u 

and eS,a-b, and then use (14) to get the expressions 
for e.,aH and ea- b,,,. Taking ratios we have 

es,aH = (a + b + 2 + s) > 1, 
es+1,aH (a + b - s) 

(29) 

les,a-bl (s + 1 + b - a) 
-'---..::=....::..:... = < 1, for a > b, 
leS+1,a-bl (s + 1 + a - b) 

= 1, for a = b, (30) 

I ea- b, .. 1 = (2U + 1) (U + 1 + b - a) < 1 (31) 
lea- b,,,+11 2u + 3 U + 1 + a - b . 

These relations confirm (i) through (iii). To show 
that ea-b,,,H is the largest element, we employ 

1(2a + 1){: ~ ~}I = le",,(s + b -- U + b)1 

= 10aa(s + b--u + b)1 < 1, 

so 

Ie ... 1 = (2u + 1) I{a b S}I (2a + 2b + 1)-1 
ea-b,aH a b u 2a·+ 1 

< ( 2u + 1 ) < 1. (32) 
2a + 2b + 1 -

Finally, for property (J), we have assumed a » b, so 
(a - b)/(a + b) Ri 1 and SRi U Ri a. (We use Ri to 
mean approximation to the order of b/a.) Using the 
explicit formula for the 6j symbol, we can write 

~ (-I)"(z + 1)! 1 
x~ , 

where 

• [(z - a - b - U)!]2 [(z - a - b - s)!]2(2a + 2b - z)! (2b + s + u - z)! (2a + s + u - z)! 

pea b c) == (-a + b + c)! (a - b + c)! (a + b - c)! 
(a + b + c + 1)! 

and z takes all integer values such that the arguments in the factorials are nonnegative. It is easy to see that 
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the term with highest z in the sum is the one with the leading power in a; thus (let s == a + m, U == a + n): 

esu R; (_1)2a-S-UP(a b s)P(a b u) (2b + s + u + 1)! 
[(s + b - a)!]2[(u + b - a)!]2(2a - s - u)! (2a - 2b - 1)! 

R; (_1)2a-S-U (b - m)! (b - n)! (2a)'+u-2a, 
(b + m)! (b + n)! (-m - n)! 

for s + u ~ 2a, 

e
s
,. ~ P(a b s)P(a b u) (2a + 2b + 1)! 

[(a + b - s)]2[(a + b - U)!]2(S + u - 2a)! (s + u - 2b)! 

R; (b + m)! (b + n)! (2a)2a-S-U, 
(b - m)! (b - n)! (m + n)! 

for s + U ~ 20. The proof is completed. 
Equation (21) is just a special case of (15), while 

Eq. (22) can be verified by direct substitution: 

e .. a-b = (_l)2a+2b{a b S) 
(2a - 2b + 1) a b a - b 

= (_l)2a+2b{ s b a) 
a - b b a 

= (_1)s-a-b (2b)! (s + a - b)! 
(2a + I)! (s + b - a)! 

In the last step we make use of (24). On the other hand, 

<a,a -I;b, -b + 1\a - b,a - b)2 

= (2a - 2b + 1)<a _ b, a _ b; b, b - 1/ a, a - I? 
2a + 1 

= (2a - 2b + 1)[ (2b)! (2a - I)! ], 
(2a + 1)! (2b - 1)! 

so this is just (-I)'es,a_b if we put I = (a + b) - s. 

VI. DISCUSSION IN CONNECTION WITH THE 
RECIPROCAL BOOTSTRAP 

Several years ago Chew proposed a very attractive 
mechanism,16 the so-called reciprocal bootstrap, for 
the self-consistent calculation of the N, !J. system. One 
of the main features in the theory is that the crossing 
matrix plays an important role in determining the 
forces. Roughly speaking, the force due to the ex­
change of N is strongest in the (3,3) channel, while 
the force from the exchange of !J. is strongest in the 
(1, 1) channel. This results from the fact that the 
crossing matrix in question is such that the bottom 
(top) element in the first (last) column is positive and 
largest in magnitude. From (29) and (30) we see, in 
fact, all elastic matrices with a F b exhibit this general 
character. Furthermore, whenever property (1) is 
applicable [actually the condition a » b for its validity 

18 G. F. Chew, Phys. Rev. Letters 9, 233 (1962). 

can be relaxed to alb> b for small b, as can be verified 
by the general formulas for e(a + b ~ a + b) given in 
Sec. IV], we expect that the strongest force in each 
column (or row) is given by the antidiagonal elements, 
and the reciprocal bootstrap mechanism is likely to 
operate. The sign and rough magnitude of the forces 
produced by other elements can also be estimated 
without the explicit C.M. 

However, if in a system the spin C.M. or the 
isospin C.M. or both are of the type with a = b, the 
situation is quite different due to property (K). In this 
case, the exchange of a particle with zero spin or zero 
isospin or both would be important in all the direct 
channels, and we do not expect this to be a reciprocal 
bootstrap system. 
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APPENDIX 

In the following, we work with the spinless case for 
simplicity; however, our result is not affected if we 
have spin. The most general crossing relation without 
constraint from (1) can be expressed as 

<K11 A IK2 ; aa"p) = 1] <K1 ; iLa, - pi A IK2) (AI) 
and 

<K~I A IK;; iLa" -p) = 1] <K~; aa" pi A IK~), (A2) 

where the K's represent particle sets which are not 
crossed, and p( -p) is the 4-momentum of aa,(iLa,). 
That the crossing phase 1] is independent of p but 
depends only on the crossed particle can be understood 
from Lorentz invariance. We shall not attempt to give 
the proof but refer to Ref. 6 to prove that the same 
1] appears in both (AI) and (A2). We take the con­
vention of writing 1] as 1](a, ex) when a particle aa, in 
the ket vector (initial state) is crossed; then 1]*(a, ex) is 
the crossing phase when aa, is crossed from a bra 
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vector (final state). From (Al) we have 

1J(a, -0(.) = 1J(a, 0(.). (A3) 

In particular, for a four-line connected part the 
crossing relation is 

(cAl A la .. b/l) = 1J(b, (3)1J*(d, ~) (cij-pl A la .. d_6)· 
(A4) 

We define the matrix Ai corresponding to each set of 
1J(j, m) so that 

(AS) 
clearly 

At = A-I. 

Now (A4) can be rewritten as 

(cyd61 A la"bp) = 1 (cybp, 1 A la"d6,) AhA~~. (A6) 
/1'6' 

We apply the transformation (1) on both sides of (A6) 
to obtain 

1 (cy,d6,1 A la .. ,bp') D"'I1.DnD:'yDt'd 

= 1 (cy,hrl A la",dd") 

X D .. , .. D;'p,D:'yDd"d,AhA~~ 

= 1 (Cy,dd,1 A la .. ,b/l') 

x D",..(N-l D* N)nD:'y(N-l D* N)t'd, 

where primed indices are to be summed over. Com­
paring both ends of the last equality we conclude that 

N-1Db*(u)N = Db(U), (A7) 

Aa-1Da*(u)Aa = Da(u). (A8) 

First we note that any two unitary matrices, say Al 
and A2 , both of which satisfy either (A6) or (A 7), can 
only differ by a phase. Since the relation d(u) = 
~lIDi*(u)AI = A1IDi*(u)A2 implies 

[A;lAI' Dj(u)] = 0 

for all u, by Schur's lemmaI7 we get A2IAI = aI. 
Taking the determinant of this equation on both sides 
yields lal = 1. It is well knownl that 

di(TT)Di*(U) dLl(n) = Dl(U) , 

w~ere d;"m,(7T) =:= (_I)I+m'l5m._m" so in general 
A!nm' = "1;( _I)m ~m.-m" with "I; an arbitrary phase 
independent of m'. From (A4) we immediately get 
1J(b, (3) = 1Jb(-l)fl and 1J(d,~) = 1Ji-I)6. It is clear 
that (A3) implies 

1Ja = (-I )2a1Ja , (A9) 

so we see it is an intrinsic characteristic that 1Ja and 
1}il have opposite signs when 2a is an odd integer.I4 

11 E. P. Wigner, Group Theory (Academic Press Inc., New York 
1959). ' 
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An effective Hamiltonian is derived which describes the relative motion of two oppositely charged 
particles in a homogeneous magnetostatic field. 

I. INTRODUCTION 

In what follows, we consider the motion of a system 
of two charged particles in a constant, homogeneous 
magnetic field B. The central problem in the theory of 
the Zeeman effect for such a system is to compute the 
stationary states and energy levels as a function of 
IBI. This is usually done relativistically to various 
orders in (X = 1~7 and ml/mf" where ml and m2 are 
the masses of the two particles. For definiteness, we 
always take particle 1 to be an electron, with charge 
el = -e. The charge ea of the second particle will at 
first be left arbitrary, but certain of our results hold 
only for the case that the system as a whole is neutral, 
i.e., that ell = -el . 

For the case that particle 2 is a proton (m2 = 
1836 m1), Lambl has computed the Zeeman levels to 
first order in ml /m2 using the relativistic Breit equation. 
The result is what one would expect from simple 
physical arguments2 : namely, that the term PoB. L 
must be replaced by (1 - ml !m2)p,oB • L, where Po is 
the Bohr magneton and L the orbital angular momen­
tum. The nonrelativistic result which we obtain below 
agrees with Lamb's result to lowest order in the mass 
ratio. 

For systems with mass ratios closer to unity, such 
as muonium (ma ~ 200 ml) or pp,- (ma ~ 9 ml), 
terms of higher order in the mass ratio are at least as 
important as terms of higher order in (x. In the extreme 
case of positronium (ml = ma), the expansion in 
powers of the mass ratio is not useful. As a first step 
toward a more satisfactory treatment of positronium 
and other systems with mass ratios close to unity, we 
treat the nonrelativistic SchrOdinger equation in such 
a way that the dependence of the solutions on ml/ma 
is made explicit to all orders, i.e., exactly. The main 
purpose of this nonrelativistic treatment is to provide 
insight regarding the mixing of relative and center-of­
mass (eM) variables which occurs in the nonrela­
tivistic Hamiltonian through the vector potential. 

* Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

1 W. E. Lamb, Phys. Rev. 85, 259 (1952). 
a H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One­

and Two-Electron Atoms (Academic Press Inc., New York, 1957), 
p.214. 

For the case of a neutral system (el = -eJ, we 
find an exact solution to a somewhat tricky problem in 
elementary quantum mechanics. The problem is to 
separate out the eM variables and obtain an effective 
Hamiltonian which operates on functions of the 
relative coordinates. The effective Hamiltonian is 
formally identical to that for a particle of a different 
(reduced) mass moving in a different magnetic field 
and in a harmonic-oscillator potential. The latter has 
terms which represent the kinetic energy of the eM 
motion, and terms which represent the Stark effect 
due to the electric field which would be seen by a 
comoving observer. 

II. DERIVATION OF THE HAMILTONIAN IN 
RELATIVE AND CM COORDINATES 

The Hamiltonian for our problem is 

H = ni + n~ + elea , 
2ml 2m2 Irl - r21 

(1) 

where ni is the kinetic momentum of the ith particle: 

We choose the z axis of our coordinate system in the 
direction of the magnetic field B. It is convenient at 
this point not to specify the gauge completely, but 
we assume that each of the three components of A(r) 
is a linear combination of x, y, and z. Themagnetic 
field does not depend on position or time, and satisfies 

B = V x A(r). (3) 

The eM coordinates R = (X, Y, Z) and the relative 
coordinates r = (x,y, z) are related to the positions 
r i by 

(4) 

where (X = ml/(ml + m2) and {3 = m2/(ml + mJ. The 
inverse relations are 

r1 = R - {3r; 

r 2 = R + (Xi". (5) 

788 
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By virtue of the requirement that A be linear in r, we 
find that A transforms like r under the coordinate 
transformation (5): 

A(rl) = A(R) - {3A(r), 

A(r2) = A(R) + otA(r). 
The gradients 

and 

Vr = (:x' :y , :z) 
are related to those which appear in Eq. (2) by 

VI = -Vr + otVR , 

(6) 

V2 = Vr + {3VR • (7) 

From Eqs. (1), (2), (5), (6), and (7) we obtain the 
desired expression for H: 

H = - 1i
2 

V'~ _ ..It.- V'~ + ele2 + -.L 
2ft 2M r 2c2 

~ x [DA2(R) + 2EA(R). A(r) + FA2(r)] 

+!...- G[A(R). Vr + i!:..-A(r). VR ] 'h { 
c M 

+ IA(R). VR + JA(r). Vr}. (8) 

In obtaining Eq. (8) we have assumed that the order of 
factors is immaterial in dot products between A's and 
V's. To insure that this is the case, we restrict ourselves 
to gauges in which 

o 0 0 
ox Air) = oy AII(r) = oz Air) = O. (9) 

Besides the usual total mass M = ml + m2 and 
reduced mass ft = m1m2/M, the other new constants 
in (8) are 

D = e~/ml + e~/m2' 
E = ote~/m2 - {3e~/ml 

= (ml/M)e~/m2 - (m2/M)e~/ml' 
F = {32eVml + ot2e~/m2 

= (m2/M)2e~/ml + (ml/M)2e~/m2' 
G = e2/m2 - e1/ml , 

I = (el + e2)/M, 

(10) 

J = (l/M)(el m2/m i + e2ml/m2)' 

lli. USE OF A GAUGE TRANSFORMATION 
TO FIND CONSTANTS OF MOTION 

Up to now we have left the gauge arbitrary, subject 
to the restrictions mentioned above. We now consider 
two candidates for the vector potential, both of which 

are linear in r and satisfy Eqs. (3) and (9). For our 
first candidate we choose AII(r) = Bx, A", = A z = O. 
The advantage of this choice is that the spatial 
dependence of A is on only one coordinate, so that it is 
easy to find coordinates which do not appear in the 
Hamiltonian. Landaus used such a gauge to solve the 
problem of a single charge moving in a magnetic field. 

Our second candidate is the one which preserves the 
cylindrical symmetry of the problem: 

A'(r) = -!r x B. (11) 

Its components are A~ = !Bx, A~ = -!By, A~ = O. 
All quantities expressed in this gauge are given primes. 
The primed and unprimed vector potentials are related 
by 

where 
A'(r) = A(r) - VF(r), 

F(r) = lBxy. 

{I 2) 

(13) 

If 'Y(rl' r2) represents a state in the unprimed gauge, 
the same state is represented by 

'Y'(rI , r2) = exp [-(i/lic) ! eiF(ri)]'Y(rl, r2) (14) 

in the primed gauge. This transformation of wave­
functions insures that 

(15) 

and, hence, that H''Y' = (H'Y)" where H' and n~ 
are obtained from Hand ni by replacing A by A'. 
More generally, the transformation of an arbitrary 
operator from the unprimed to the primed gauge is 
as follows: 

(Operator), = exp [- (i/lic) ! eiF(r;)] 

X (Operator) exp [(i/lic) I eiF(ri)]. (16) 

Our notation is slightly inconsistent in that A and 
A' are different operators according to Eq. (12), 
rather than representations of the same operator in 
different gauges. But, except lor A and A', all primed 
and unprimed operators are related by Eq. (16). 

Inserting the (unprimed) vector potential A into 
Eq. (8) and setting the momentum conjugate to Z 
equal to zero, we obtain 

1i
2 

1i
2 

( 0
2 

0
2 

) 
H = - 2ft V'~ - 2M oX2 + oy2 

+ e1e2 + B2 (DX2 + 2EXx + Fx2) + iliB 
r 2c2 c 

x [G(X~ + i!:..-x~) + IX~ + JX~J. 
oy M oY oY oy 

(17) 

8 L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non­
Relativistic Theory (Addison-Wesley Publ. Co., Inc., Reading, 
Mass., 1958), p. 474, and the reference cited therein. 
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Since Y does not appear explicitly in Eq. (17), the 
operator 

Ii a II --­
y - i oY (18) 

commutes with H, and can be taken as a constant of 
motion. Applying the gauge transformation (16) to the 
right-hand side of (18), we obtain 

II' = II +! oA (19) 
y y coY' 

where 

A = e1F(r1) + e2F(r2). (20) 

From Eqs. (5), (13), and (20), we obtain 

A = !B[el(X - f3x)(Y - f3y) 

IV. SEPARATION OF VARIABLES FOR A 
NEUTRAL SYSTEM 

We now specialize to the case of a neutral system. 
Substituting e1 = -e and e2 = +e into Eqs. (10), we 
obtain 

D = e2/fl, 

E = (e2/M)(ml/m2 - m2/m1), 

F = e2(l/fl - 31M), 

G = e/fl, 

1= 0, 

J = (e/M)(ml/m2 - m2/ml)' 

(26) 

The most general simultaneous eigenstate of H, II x, 
and II y is of the form 

+ e2(X + ex.x)(Y + ex.y)]. (21) 'F(X, Y, r) = exp [~(Px + e: y)xJ 
From Eqs. (18), (19), and (21), and the definitions of 
ex. and f3, we obtain 

n~ = ~ ~ + B [(e1 + e2)X + (m1e2 
- m2e1 )xJ. 

lOY 2c ml + m2 

(22) 

By the symmetry of the primed gauge, we may per­
form a rotation through 900 about the z axis. Re­
placing Y by X, Y by x, X by - Y, and x by -y in 
Eqs. (19) and (22), we obtain another operator which 
commutes with H: 

(23) 

From Eq. (21) and the second of Eqs. (23), we obtain 

II - ~ ~ !2[( )Y m 1e2 - m 2e1 ] x - - el + e2 + y . 
i ax c m1 + m2 

(24) 

It is worthwhile to verify directly from Eqs. (17) and 
(24) that II x commutes with H. But n x and II y 

cannot, in general, both be constants of motion. 
Their commutator 

is zero only if the over-all charge of the system is zero. 
This reflects the fact that the system as a whole moves 
in a straight line only if its charge is zero.4•5 

4 B. P. Carter, Report #UCID-1SI80, Lawrence Radiation 
Laboratory, University of California, Livermore, California, 1967. 

5 In Ref. 4, constants of motion are found for a neutral system 
containing an arbitrary number of particles in a magnetic field. 

where P x and Py are the eigenvalues of n x and n y . 

The Schrodinger equation H'F = E'F will be satisfied 
if and only if h!p(r) = E1jJ(r), where h is defined by 

H'F(X, Y, r) = exp [~(Px + e: Y)X ] 

X exp (~PyY)h1jJ(r). (28) 

It is clear that Eq. (28) is satisfied If h is obtained from 
H by making the following replacements: 

Ii a 
---+P i oY y, 

Ii a eB 
---+P +-y 
i ax xc' 

~ ~ -+ eB X + ~ ~ . 
i oy c i oy 

(29) 

Making these replacements in the right-hand side of 
Eq. (17) and using Eqs. (26), we obtain6 

1i2 e2 1 h = __ V2_- +-
2fl r 2M 

X [( P x + e: y)2 + (p y _ e: x)] 
+ (! _ -±-)e

2
B2 x2 _ eB (ml _ m2)X ~ ~ . 

fl M 2c2 Me m2 m1 i a y 

(30) 

6 From Eq. (30) on, we dispense with subscripts Rand r, it 
being understood that all gradients operate on the relative 
coordinates. 
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We call h the effective Hamiltonian for the relative 
motion of the two particles, since h operates on 
functions of the relative coordinates and does not 
involve eM coordinates or their derivatives. We 
emphasize that Px and Py in (30) are just numbers. 
Equation (30) may be compared to the radial Schro­
dinger equation for a particle in a central potential. 
In this comparison, Px and Py are analogous to the 
orbital angular momentum L which appears in the 
centrifugal potential. 

We may rewrite Eq. (30) in the suggestive form 

h=--V+-a +---1 (Ii e)2 p2 e
2 

2/1 i c 2M r 
1 e2B2 

- - er· (v x B) + --2 (X2 + l), (31) 
c 2Mc 

where a is a vector potential for the effective magnetic 

JOURNAL OF MATHEMATICAL PHYSICS 

field 

b m2 - ml B V = = x a (32) 
m2 + ml 

and v = P / M is the velocity of the eM of the system. 
If we had not set the momentum P z conjugate to Z 
equal to zero, Eq. (31) would still be valid for P = 
(Px,Py,Pz). The term in Eq. (31) involving v is 
just the potential for the electric field 

E = v x B/c (33) 

which is present for a comoving observer, i.e., one for 
whom the eM is at rest and who is moving with a 
velocity v relative to the lab frame. We note in passing 
that we may easily generalize our treatment to the 
case of crossed electric and magnetic fields in the lab 
frame by transforming to a frame in which the 
electric field vanishes. 
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We define classical fields, corresponding to unitary representations of the inhomogeneous Lorentz 
group with M2 < 0, which belong to the discrete series. These fields satisfy Bargmann-Wigner equations 
which are given in explicit matrix form. 

1. INTRODUCTION 
The aim of this article is to define and describe 

classical fields which satisfy the equation 

(0., - 1)1p(x) = 0, 
where 

02 3 02 
0"'=-2-L -2' 

OXo k=lOXk 

These fields possess a spin degree of freedom which is 
described by spin indices (IX, u). IX is discrete and 
ranges over all nonnegative integers. u is continuous 
and it describes certain rest classes in SL(2, C). The 
indices (IX, u) transform as a nonunitary representa­
tion of the homogeneous Lorentz group. The fields 
can, moreover, be constructed in pairs 1pix, u), 
1p~(x, u) which satisfy Bargmann-Wigner equations: 

00 

L P~P(p, u)1pP(P, u) = 1pfl(p, u), 
p=o 

00 

L P~P(p, u)1pP(p, u) = 1p,.{p, u) 
p=o 

• Permanent address: CERN, Geneva. 

(in momentum space). The matrices P and Pare 
infinite matrices of triangular shape with elements 
which are constructed later in this article. 

The problem whether objects belonging to masses 
M2 < 0 might be physically relevant and possibly 
lead to a new kind of field theory has been studied 
recently.l We intend to contribute to this discussion 
only by enlarging the number of classical objects 
which can perhaps be submitted to a later quantiza­
tion and by deriving field equations, which in the 
case of spin-t particles proved so convenient for the 
description of electromagnetic interactions. 

Fields on timelike mass shells, the familiar objects 
of field theory, can be defined in several fashions. The 
best known method is due to Bargmann and Wigner2 

who base their construction on the theory of unitary 
representations of the inhomogeneous Lorentz group. 
For spin S and Po > 0, an irreducible representation 

1 G. Feinberg, Phys. Rev. 159, 1089 (1967). 
2 V. Bargmann and E. P. Wigner, Proc. Nat!. Acad. Sci. US 34, 

211 (1946). 
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can be defined on the Hilbert space 

Je = {CfJm(P): m~-B II CfJm(P) I 2 

by 

x lJ(p2 - M2)O(pO) d'p < oo} 

+s 
U(a, X)CfJm(P) = ! eil""Dmm,[R(a, P)]CfJm'(P')' 

m'=--, 
where 

p' = tr1p(tr1)+, 

R(a,p) = a(p)aa(p')-l E SU(2), 
and 

a(p)pa(p)+ = M. 

a(p) is as usual a rotation-free boost. The essential 
step is the continuation of the representation Dmm,(u), 
U E SU(2), to a representation of the whole homo­
geneous group SL{2, C). This can be achieved in two 
ways: 

U"p substituted by a"p 
or 

U"p substituted by (a-l)~p. 

Both substitutions lead to representations of SL(2, C) 
because Dmm,(u) is a polynomial in u"p' Because the 
coefficients of this polynomial are real, we have more~ 
over 

D«tr1)+)mm' = D(a l)m'm = D-l'+(a)mm' • 

We define 

m 

'P~p) = ! D"m(a(p)+)CfJm(P), 
m 

thus obtaining quantities with simple transformation 
properties: 

With 

Ua'P,,(p) = ! D"p(a)'Pp(p'), 
p 

Ua'P~P) = ! D"p«a-1)+)'Pi1(p'). 
p 

p«/J(p) = ! D"m(a(p)+)Dmp(a(p» = D"p«p/M)-l), 
m 

P"ip) = ! D"m(a{p)-l)Dmp«a(p)-l)+) = D"P(p/M), 
m 

we get th~ Bargmann-Wigner equations 

! p«/J(p)'PP(p) = 'P~(p), 

where 

p 

! P"P(P)'Pi1(p) = 'Pip), 
p 

! p«/JPP? = lJ;. 
p 

After a Fourier transformation this yields fields 

"Pix), "P~{x) and differential operators 

of order 2S + 1. Local bilinear invariant densities 
can easily be found, e.g., 

Requiring, on the other hand, only the Bargmann­
Wigner equations to hold for "Pix) and "P~{x) together 
with the Klein-Gordon equation 

(0", + M~"P(x) = 0, "P = 'P" or 'P~, 

yields a field which consists of two irreducible repre­
sentations, one positive timelike, the other negative 
timelike. The equations 

~ (tP«/J( -i ~)pP?( -i ~) -lJ~)'P? = 0, etc., 

are less restrictive. This gives rise to the particle­
antiparticle symmetry. 

Gel'fand and Yaglom3 based their approach on the 
theory of representations of the homogeneous Lorentz 
group. They require that "P(x) transforms under 
the homogeneous Lorentz group as a certain represen­
tation ("index transformations") and that it satisfies 
the linear field equation 

( -iY" ~ + M)"P(X) = o. 
ox" 

The finite or infinite matrices y" are to be determined 
from the requirement that the field equation is co~ 
variant. 

This approach is very general. Bargmann-Wigner 
fields can be obtained as a special case and after some 
superfluous field components have been eliminated. 
If "P{x) transforms as a finite direct sum of unitary 
irreducible representations of the homogeneous 
Lorentz group, it can in general be decomposed into 
irreducible unitary representations of the inhomo~ 
geneous Lorentz group such that 

(1) representations with M2 > 0 appear as a discrete 
direct sum, the discrete spectrum of M2 is bounded 
from above and accumulates at zero; 

(2) representations with M2 < 0 appear as a direct 
integral and a direct sum, the spectrum of M2 is 
continuous, contains a discrete set of eigenvalues, and 
is unbounded from below; 

a M. A. Nairnark, Linear Represe1ftations of the Lorentz Group 
(English trans!.: Pergamon Press, Oxford. 1964). and the original 
publications quoted in this book. 
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(3) there exists a finite set of functions 

M~(S) 

(mass relations) which relate the mass and the spin of 
the representations occurring. 

These fields enable us to describe simultaneously an 
infinite spectrum of M2. The Bargmann-Wigner 
fields to the mass M2 < 0 which we are going to 
study now, are, however, much simpler objects. 

2. UNITARY REPRESENTATIONS OF THE 
DISCRETE SERIES FOR THE GROUP SU(l, 1) 

AND THEIR CONTINUATION 

A. The Discrete Series Dj; and D" 

Let m: and m: be two linear spaces defined by 

~{ = {fez): fez) holomorphic in Izl < 1 
and continuous in Izl ::;; I}, 

~ = {fez): fez) E m:}. 
Defining a norm by 

IIfII: = 2k - 1 r (1 _ IzI2)2k-2 If(z)1 2 dz 
7T J 1-1:51 

for k = 1, i, 2,' . " and as the limit k ->-1+ for 
k = 1, enables us to complete m: and m:. We call the 
Hilbert spaces Jek and Jek • Because of 

If(z) I ::;; (1 - IzI2)-k IIfllk' 

all elements of JeiJeJ are holomorphic (antiholo­
morphic) for Izl < 1. We can give a basis in Jek(Jek ) by 

{fm} , fm(z) = zm, {fm},fm(z) = zm, 

m = 0, 1, 2,···. 

The basis elements have the norm 

(
2k - 1 + m\-l 

II/milk = m J' 

For an element v E SU(1, 1), 

we define an irreducible unitary representation in Jek 

by 

where 
, VllZ + V21 

Z = . 
V12Z + V22 

In this fashion we obtain the series Dt .' Similarly we 

• V. Bargmann, Ann. Math. (2) 48, 568 (1947). 

define the series D; in Jek by 

T"f(z) = (V21Z + Vll)-2Y(Z'), 

-f V22Z + V12 
Z = . 

V21Z + Vu 

Let us consider the special element v~ E SU(1, 1): 

(ei~/2 0) 
v~ = 0 e-i~/2' 

It turns out that the basis vectors fm are eigenvectors 
of T,,~: 

D+' T. I' = ei~(k+m). 
k' "~Jm Jm' 

D-· T. I' - e-i~(k+m). 
k' v~Jm - Jm' 

B. The Continuation of T" on Polynomial Spaces 

The definition of T" can be extended to all elements 
of SL(2, C) by simply replacing 

However, this operation leads in general to elements 
lying outside Jek or Jek' 

In the sequel the polynomial spaces :J'(:f) which 
consist of polynomials in z(z) and are dense in Jek(Jek) 
playa particular role. On these subspaces, T" can be 
extended to an operator Ta , provided a satisfies the 
following conditions: 

or 

or 

Jek : a12z + a22 ~ 0 for Izl::;; 1, 

IZol > 1, when Zo = -a22/a12' 

Jek: a21z + au ~ 0 for Izl::;; 1, 

IZol > 1, when Zo = -aU/a21' 

In that case, 

and Ta is an unbounded operator with domain 
C) ::> :J', or'O ::> 3'. The conditions on a found above are 
referred to as conditions I. 

C. The Continuation of T" on the Whole Hilbert 
Space 

Though not important for our purposes, we give a 
characterization of all those a E SL(2, C) for which 
Ta can be defined on the whole Hilbert space. 
This domain of elements a is called Graev's domain.5 

For the sake of simplicity we consider only the 
representation Dt. Conditions on the element a 

& M. I. Graev, Am. Math. Soc. Trans!. (2) 16, 393 (1960). 
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for D; can be obtained by the substitution 

The necessary and sufficient condition (Graev's 
condition) is that 

, anZ + a21 
Z = 

a12z + a22 

defines a contraction, i.e., 

Iz'l < 1 for Izl ~ 1. 

In this case fez') is well defined and analytic in Izl ~ 1, 
whatever the singularity of fez) on the unit circle is. 
Moreover, we find 

when 

Tr (TtTa) =m~oCk - ~ + m) IITafmll: 

~ II Tafoll~ (1 - p2)-2k < 00 

p = max Iz'l < 1. 
1"/ :51 

Use has been made of 

II TJm Ilk < pm IITJollk' 

The existence of the traces of T:Ta proves that Ta 
is bounded and completely continuous. When we 
introduce a real four-vector PI': 

a 
P = Po + 2PkO'k = aO'aa+, 

k=1 
a 

P~ - 2P: = -1, 

the condition that 
k=1 

z ----+ Z' 
a 

is a contraction can be expressed by Graev's domain: 

Po < 0, IPal > 1. 

D. Triangular Matrices 

The simplest manner to satisfy conditions I is 

Di;: au = 0, a22 ~ 0, 

D;: a21 = 0, an ~ O. 

Then a has the form, respectively, 

a = k = fA 0), \u A-I 

(
A-

1 
) a=k= 0 ~, 

in Di;, 

in D;, 

with A, p complex. Such triangular matrices constitute 
a group K (respectively, K). 

As we did in the case of Graev's domain, we can 

characterize conditions I by a four-vector (note the 
difference I). 

a 

+ ~ -1 (-1)+ P = Po ~PkO'k = a O'a a , 
k=1 

3 

P~ - LP~ = -1. 
k=1 

This yields for 

Dt domain I: Po + Pa > 0, 

D;;; domain i: P3 - Po > o. 
We continue the discussion first for the case Dt. 
Inserting 

a = vk, v E SU(l, 1), v+O'a = 0'3V-1, 

into the definition of p, yields the elements A, f1, of 
k(p): 

A = (Po + b)-i, f1, = (PI + ipJ(po + P3)-i. 

These matrices k(p) can be used as boosts. It is 
remarkable how natural the choice of boosts as tri­
angular matrices is: The domain to which the repre­
sentation of SU(l, 1) can be extended coincides with 
the domain in which a triangular boost can be defined. 
Triangular boosts are not rotation free; we should, 
therefore, better call them "twists." 

The complementary domain 

po + P3 < 0 
can be reached by boosts iO'I • k( -p) (see Ref. 6). 
Triangular matrices leave the space :J' invariant, this 
space carries therefore a representation of K by 
means of unbounded operators. Normalizing the 
basis f m' we find the matrix elements 

(1',) = C A2k+ml+m2I'm2-ml 
k mIm2 mimS ' 

where 

1 [m2! (2k - 1 + m2)!]i 
~-= . (m2 - ml)! mI! (2k - 1 + ml)! 

In the case D; we get the same result 

(Tk)m1ma = (Tk)mlma' 

In particular, both matrices are triangular matrices 

of the upper-right type. The space if is invariant 
against T", where T" is a representation of the element 
kEK. 

3. BARGMANN-WIGNER FIELDS 

A. The Field Element to the Angle no 
Let a Hilbert space Je be defined by 

Je = {cPm(P): ~oflcPm(P)12dP(P) < oo}, 
8 G. Rideau, Commun. Math. Phys. 3, 218 (1966), 
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where 
d",(p) = d'pd(p2 + 1). 

In this Hilbert space we define a unitary representation 
of the inhomogeneous Lorentz group by 

00 

U(a,lIJ)rpm(P) = l eiPIIJDmm·(R(a, p»rpm'(P')' 
m=O 

with D E Dt , and 

p' = cr1 • P . (a-1)+, 

R(a,p) = a(p) . a' a(p')-l E SU(I, 1), 

a(p)pa(p)+ = aa' 

We choose a(p) as 

a( ) = k(p), for Po + Pa > 0, 
Pial' k(-p), for Po + Pa < 0. 

Dmm,(v) may be any representation of the series Di; . 
The series D; can be treated similarly (see Sec. 4). 
For Po + Pa > 0, we represent a(p) by A(P): 

A(p) = Tk(p)' 

If rpm is in ::1', A(p) and its inverse can be applied to it, 
and we are allowed to define 

00 

"Pip) = l A-1(P)"m . rpm(P) . O(po + Pa)· 
m=O 

If P and p' are both in I, then we may further write 

00 

Ua"Pip) = l D"".(a)"P".(p'), 
«'=0 

where by definition 

D"",(a) = [A-1(p)D(R(a, p»A(p')]"" .. 

For momenta p on a given orbit, we use the notation 

a's possible, we proceed as follows. Let us define 

3 

le~,k = 1, 
k=l 

where Un is any matrix of SU(2). To make the relation 
between Un and en unique, we may define 

Un,ll ~ 0, Un E SU(2)jU(I). 

The equation 

where 

can be solved by 

an(p) = u,/k(Pn)un' 

The corresponding little group SU(1, l)n consists of 
elements 

where 

R(a, p, .0) = an(p)aan(p,)-l 

= uo1R(an, pg)un, 

We introduce a field element to the angle .0 by 

00 

"Pip, .0) = l [A-\Pn)D(R(un, Pn))]"m 
m=O 

For this definition to make sense we must, moreover, 
take 

rp'(p) = D(R(un,po»rp(p)E::I'. 

If pEl and U E SU(2) are such that also 

p' = u-1pu E I, 
.0 for the direction of the momentum three-vector in we obtain 
the system Po = 0. In particular, we denote the 
direction of the positive third axis by .00 ' Remember­
ing that our definition of boosts involved a normal 
form Pn = a3 , we write the "field element" "Pip) just 
constructed as 

The extension of this definition to all .0 and the final 
substitution of.Q by rest classes of the group K are the 
next steps to take. 

B. The Field Element for Arbitrary AngIe .0 

The condition that p and p' are both in I is a 
condition on the element a E SL(2, C) which cannot 
be satisfied by all a's. To make an application of all 

00 

U ... "Pip, .00) = l D"".(u)"P,,'(p', .00) 
,,'=0 

00 

= l [D(u)A-1(p')]"mrpm(P')· 
m=O 

Let us choose 

U = Un and p~ = unP'uo1 = p. 

Then we may insert our definition of the field element 
to the angle .0, 

00 

rpm(P') = l [D(R-1(un, p»A(P)]m,,"Pip', 0), 
,,=0 

and get 

U"n"Pip, .00) = "Pip', 0), p' = uo1puo, 
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because by definition 

D(un)A-l(p')D(Jrl(Ug, p»A(p) = 1. 

For elements p, p' which are not simultaneously of I, 
we take 

UUoV'",(p, ( 0) = V'iP', 0) 

as a definition of Uuo' 

C. Application of SL(2, C) to V'",(p, 0) 

We find in Sec. 3D that the field V'",(p, Q) contains 
many superfluous variables. This is the price we have 
to pay for a p-independent transformation property 
under application of the homogeneous Lorentz 
group. To find this transformation property, we first 
write 

V',,(p, un) instead of V',,(p, 0). 

Second, we note that an arbitrary element a E SL(2, C) 
can be decomposed as 

a = k . U, Un ~ 0, k E K. 

This decomposition tells us that the quotient 

SL(2, C)/K 

can be characterized by such elements u: 

u E SU(2) I U(I), i.e., Un ~ O. 

From the relations 
00 

k E K: UkV'riP, 1) = 2 (Tk) .. pV'p(p', 1), 
p=o 

P' = k-1p(k-1)+, 

U E SU(2)jU(1): UuV' .. (p, 1) = V'riP', u), 
pi = u-1pu, 

we find, for general a E SL(2. C), 

UaV'ip, u) = UuUaV'iupu-I, 1) 

= UkU .. ·tpiupu-t, 1) 
00 

= 2 (Tk) .. pU u'V'p(k-1up(k-1ut, 1) 
p=o 

00 

= 2 (Tk) .. ptpp(a-1p(a-1)+, U'). 
p=o 

Here we made use of 
ua = ku' 

which describes the transformation of points in the 
space SL(2, C)/K. The matrix elements of T", were 
given in Section 2.4. 

D. The Elimination of Superftuous Variables 

The fact that a field V'",(p, u) belongs to an irreducible 
representation of the inhomogeneous Lorentz group 

leads to an identity which helps us to eliminate super­
fluous variables. If Ul> Ut E SU(2)/U(1) are such that 

00 

PUl' PUI EI, 
Pu = upu-t, 

tp .. (P, u1) = 2 [A-1(pUl)D(R(Ul' PuJ) 
p=o 

X D(R(uz, PU2)r1 A(pu.n.ptpp(p, U2) 

or, as a definition of D.r;./J, 
00 

V'",(p, u1) = 2D.aP{p lUI, uz)tpp(p, u2)· 
p=o 

For P .. , u = u1 , and u = U2, not simultaneously in I 
the D.",p can, in general, not be defined. 

4. THE PARITY TRANSFORMED FIELD 

A. Definition of a Field 1prrv, u) 

If a representation of SU(1, I) belongs to the series 
Dt, the conjugate representation belongs to D; with 
the same k. The conjugation can best be defined in the 
basis {fm}. The idea of defining a field V''''(p, u) consists 
in continuing first the conjugate representation and to 
conjugate it back after the continuation. However. 
we emphasize that the field tp"'(p, u) thus obtained is 
different from the conjugate contragredient repre­
sentation of tp,.(p, u). The reason is that 

J(; = k-1,T 

does not imply 
T'k = (Tk )-l.T· 

Indeed the latter equation is impossible, since Ti is 
upper-right but the transpose of T;;l is lower-left 
triangular. 

We proceed similarly as before. We define 

k(p) , for Pa - Po > 0, 
a(p) =. fC( ) fi < 0 

U11K -P. or Pa - po , 

where the elements of k(p) are 

A. = (Ps - Po)-l, P. = -(-Pl + ipz)(Ps - Po)-t. 

For pEl we represent a(p) by B(p): 

B(P) = Tk(~)' 

If Pt is a time inversion 

PtPo = -Po. PtP", = +p",. 

we may write 

J(;(Ptp) = k-1.T(p). 

By means of the matrix B(P) we define 
00 

tp"'(p,Oo) = I B-1(p)", ... cfo ... (p)O(Pa - Po) 
_0 
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as before. For k E K we have 
00 

UkV/'(p, no) = I (T'k)oc{J1jJP(p', no), 
p=o 

p' = k-1p(k-1)+. 

In addition we introduce 
00 

1jJ4(p, £1) = I [B-1(Pn)D(R(unPn))]"m<P".(p) 
".=0 

. B(enP - Po)· 

Here we marked the difference in the definition of 
R(a,p), which is due to the different boosts used. 

The quantities 1jJ4(p, u) transform, finally, as 

with 

<Xl 

Va1jJ4(p, u) = I (T:t)"p1jJP(p', u"), 
p=o 

ua = kU", 
p' = o-lp(o-l)+, 

We point out that the argument u" is not equal to u' 
obtained from 

ua = ku', 

B. Bargmann-Wigner Equations 

After a Fourier transformation we obtain 

1jJ..(X, u) = (217)-1-f ei 'll"1jJ..(p, u) dp,(p), 

with the property 
00 

U(a.II)1jJ..(x, u) = I (Tk)"p1jJp(a+xa + y, u'). 
p=o 

Our aim is to construct a dual object 1jJ"(x, u) which is 
connected with 1jJ,,(x, u) by a covariant field equation. 
The form of1jJ4(x, u) is not yet suited for such a purpose 
since 

(a) its support is different from the support of 
1jJ,,(p, u); 

(b) u transforms differently and so does the support. 
To cure these defects we perform first a time reflection 
Pt: 

.;p~p, u) = 1jJ4(Ptp, u). 

To adjust the transformation property of u we make 
an additional total inversion in 1>".(p): 

<Pm(Ptp) -. <p'.,.(Ptp) = <Pm(p.p). 

Since p = p.P transforms as 

p -. p' = a+pa, 

i.e., contravariant as compared withp, we introduce a 
new representation by 

Ua- Oa = U(a-1)+, U.,- 0., = Up,., = Ufo 

The relation defining the change in u is now 

U(a+)-1 = kU" 
which implies 

k = (k-1)+, u" = u'. 

This is in accord with the relation 

k(Ptp) = [k(p)-I]+ 

already found above. In this fashion we obtain a 
quantity 1p"(p, u) which transforms as 

<Xl 

0a1jJ"(p, u) = I(Tk-l.7')"p~(p', u'). 
p=o 

In the derivation of this equation we have to make use 
of the fact that Un commutes with P t and that, in the 
basis {f".}, 

Tk = TE (/i; is the conjugate of k), 

because the matrix elements depend polynomially 
on the matrix elements of k with real coefficients. 
Now we are in a position to derive the Bargmann­
Wigner equations: 

implies 

or 

where 

00 

1jJ"(p, u) = IP"p(p, u)1jJp(p, u), 
p=o 

00 

1jJ..(P, u) = I P"p(p, u)~(p, u), 
p~o 

ro 

p«P(p, u) = I (Tkzo)"y(Tk)yp , 
y=o 

Here p, k, and u are defined by: 

p = 0-10'3(0-1)+, 

a = ku. 

Of course p"p depends only on k. It is a triangular 
matrix with the elements 

p«P = (2)'p,)P-«c"p' 

;, and p, are the elements of k. It is remarkable that all 
diagonal elements of P and P are equal to one. 

A Fourier transformation of P and P makes not 
much sense because of the singularities involved in the 
elements of P and P. Indeed, for u = 1, we have 
k = k(p) and, therefore, 

).p, = -(PI + ip0/(po + Pa)· 

On the other hand, the fields 1jJ" and 1jJ" must satisfy 
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the boundary condition that 

"Pa( "P") '"" (pen + Po)" 

or of higher order for pen + Po --+ 0+. A 

From the fact that the elements of P and P are of 
homogeneity zero in the momentum follows imme­
diately that the Klein-Gordon equation must be 
imposed on the fields as an independent condition. 

5. DISCUSSION 

We have obtained fields 

"Pa(x, u) 
which satisfy 

(a) the Bargmann-Wigner equations; 
(b) the Klein-Gordon equation; 
(c) certain identities. 

We recall that the identities have been introduced to 
eliminate superfluous variables and to connect our 
fields with an irreducible representation of the 
inhomogeneous Lorentz group. We emphasize, how­
ever that it makes good sense to abandon these , . 
identities. Indeed, a timelike Bargmann-Wlgner 
field is also reducible into two components satisfying 

/Po/ =m. 

Abandoning the identities in our case would lead to a 
representation which is reducible into components 
which can all be ascribed to the solutions of 

/p/ = A. 

Instead of a particle-antiparticle duality this would 
entail a continuous internal symmetry group SU(2). 

Let us now make a comment on the transformation 
properties of our fields. A Gel'fand-Yaglom field 
"P(x, u) transforms as 

Ua"P(x, u) = AtlXtz"P(a+xa, u'), 

where ua = ku', A is the diagonal element kll of k, 
t1 , t2 are complex numbers. Let us decompose k as 

The matrices 

constitute the nilpotent group N and the diagonal 
matrices constitute the Abelian group A, i.e., 

K=NA. 

If in a completely irreducible representation of K, N 
is mapped on the identity, the representation is one­
dimensional and a representation of A. This yields 
the multiplier of the Gel'fand-Yaglom field. In our 
case the nilpotent group N is represented by infinite 
triangular matrices. 

Gel'fand-Yaglom fields have an important advan­
tage over our fields, since they allow us to construct 
local invariant densities in a simple fashion, e.g., 

["P, "P](x) = J ip(x, u)"P(x, u) dfl(u) 

in the case of the principal series. However, if we allow 
for a reducibility with respect to the inhomogeneous 
Lorentz group of an arbitrary degree, this statement 
is nearly trivial. Indeed, a field belonging to the regular 
representation of SL(2, C), 

"P(x, a), a E SL(2, C), 

gives the invariant density 

["P, "P](x) =f dfl(a)ip(x, a)"P(x, a). 

Such fields can even be made to satisfy the equation 

(0., + M2)"P(X) = O. 

Let us finish with a remark concerning the conneC­
tion of spin and statistics. We know that Pauli's proof 
of the spin-statistics theorem is based on the degree 2S 
of the homogeneous polynomial p(J.P(p). In this 
context, it is remarkable that our triangular matrices 
plZ/J{p) are homogeneous of degree zero independently 
of what the spin k is. 
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